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Oxide–embedded bulk iron is investigated in terms of first principle calculations and data mining.
29 oxides are embedded into a vacancy site of iron where first principle calculations are performed
and the resulting calculations are stored as a dataset. Predicton of the dissolution energy of oxides
within in iron and the bulk modulus of oxide–embedded iron is performed using machine learning.
In particular, support vector machine (SVM) and linear regression (LR) are implemented where
descriptors for determining the dissolution energy and bulk modulus are revealed. With trained
SVM and LR, prediction of dissolution energy for different oxides in iron and the inverse problem –
deriving corresponding descriptor variables from a desired bulk modulus– are achieved. The physical
origin behind the chosen descriptors are also revealed where manipulating each individual descriptor
within a multidimensinal space allows for the prediction of the dissolution energy and bulk modulus.
Thus, prediction of physical phenomena is, in principle, achievable if the appropriate descriptors are
determined.

I. INTRODUCTION

Strengthening materials has been a fundamental in-
terest of material scientists as the mechanical properties
of the materials play crucial roles in a variety of areas,
randing from tool development to supporting advanced
technologies. However, designing strengthened materials
is challenging as the number of known structural ma-
terials is far outweighed by the unknown material pos-
sibilities. Development of mathematical algorithms as-
sociating with first principle calculations allows for the
prediction of mechanical properties of materials, lead-
ing towards the rapid acquisition of material data [1–3].
With the large amounts of material data available, mate-
rial design becomes achievable on the basis of trends and
sequences in materials data upon the revelation of key
descriptors [4–6]. Descriptors are defined as sets of vari-
ables determining material properties; therefore, descrip-
tors can also be referred to as a material genome [1, 7].
In another words if descriptors for material properties
are revealed, one can consider that prediction of mate-
rial properties or material choice can, in principle, be
achievable. However, the number of descriptors involved
are often greater than 3 variables. Therefore, descriptors
must be treated within a multi–dimensional space, mak-
ing machine learning an effective tool for treating vari-
ables multidimensionally. Thus, combining first principle
calculations and data science including machine learning
has the potential to change how material science would
be treated.
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Oxide dispersion–strengthened (ODS) iron alloy is in-
vestigated as a prototype case for discovering key descrip-
tors representing properties of ODS iron. The dispersion
of metal oxides in a metal matrix is a technique used to
increase the strength of metal for applications in extreme
conditions such as high temperatures and high pressure
as such alloys possess high thermal stability with good
resistance against dislocation[8–10]. There are two im-
portant properties regarding ODS iron: the dissolution
state of the oxide particles in the iron matrix and the
bulk modulus of the oxide–embedded iron. The dissolu-
tion state of the oxide particles is important to ODS iron
because the role of the oxides within the metal matrix is
to halt dislocation due to the pinning effect. Within a
high temperature environment, the prevention of thermal
expansion is crucial where a high bulk modulus is consid-
ered be resistant against thermal expansion. Thus, the
dissolution energy of oxides and bulk modulus are two
key properties for designing ODS iron and descriptors
representing the dissolution energy of oxides and bulk
modulus are explored. In particular, the workflow shown
in Figure 1 is proposed. First principle calculations are
implemented to calculate oxide–embedded bulk iron and
the calculated results are then stored as a database. Ma-
chine learning is utilized to find the descriptors respon-
sible for the dissolution energy of oxides and the bulk
modulus. Once the descriptors are determined, the ma-
chine can be trained using the corresponding database
and, once trained, will be able to aid the design of ODS
iron. In addition, the physical meaning behind the cho-
sen descriptors are also investigated. Thus, the design of
ODS iron is performed using first principle calculations
and data mining.
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FIG. 1: A Proposed workflow of the atomic model
construction, first principle calculations, database

construction, machine learning, and prediction of the
bulk modulus and dissolution energy of oxides. Atomic
color code: orange– Fe, red– O, light and dark blue–

element variables A and B.

II. DENSITY FUNCTIONAL THEORY AND

MODEL

First principle calculations within grid based projec-
tor augmented wave (GPAW) method is implemented
in order to calculate the material properties of oxide–
embedded bulk iron [11]. The exchange correlation of
Perdew–Burke–Ernzerhof (PBE) and spin polarization
are applied [12]. The Γ point is used for calculating the
gas phase oxide clusters while periodic boundary condi-
tion is applied for bulk calculations where 4x4x4 special
k points of the Brillouin zone sampling is used [13]. The
dissolution energy (Ed) of oxide–embedded bulk iron are
calculated by Equation 1:

Ed = E[Fe+A2B2O7]− E[Fe]− E[A2B2O7] (1)

where 4 Fe atoms are removed in the Fe matrix, while
A and B represent variable atomic elements and O rep-
resents oxygen. Note that positive (negative) dissolution
energy is endothermic (exothermic).
The atomic models for first principle calculations are

constructed as shown in Figure 1. Gas phase ox-
ide clusters A2B2O7, where A and B represents the
atomic element and O represents oxygen, are con-
structed as such oxides are commonly observed in ODS
alloys [14, 15]. 29 different gas phase oxide clus-
ters, A2B2O7, are constructed. The base structure
of A2B2O7, shown in Figure 1, is determined using
the Basin-hopping algorithm where the ground state
structures of Y2Hf2O7 are explored and set as the
base structure it is a well obserbed oxided in ODS
steel [15–17]. In particular, the following oxide clus-
ters are considered: Y2Hf2O7, Y2Ti2O7, Y2Zr2O7,

Y2Ni2O7, Sc2Ti2O7, Nb2Ti2O7, Hf4O7, La2Ti2O7,
Ti4O7, Ti2Cr2O7, Y4O7, Y2Cr2O7, Y2V2O7, Y2W2O7,
Al4O7, La2Hf2O7, La2Zr2O7, Ni4O7, Si4O7, W2Ti2O7,
W2Zr2O7, Y2Ir2O7, Y2Mo2O7, Y2Re2O7, Y2Rh2O7,
Y2Ru2O7, Y2Ta2O7, Sc2Hf2O7, Nb2Hf2O7. These ox-
ide clusters are optimized using the Γ point where 15 Å
vacuum is applied in all directions with 0.0 eV of smear-
ing.
Oxide particles are experimentally observed to be em-

bedded in the iron matrix [3, 18]. Therefore, a 3x3x3 su-
percell of body center cubic (BCC) iron is constructed for
embedding oxide clusters. In particular, a chunk consist-
ing of 4 Fe atoms are removed from the 3x3x3 supercell
of BCC iron in order to create the vacancy site as shown
in Figure 1. The constructed 29 oxides clusters are then
embedded into the vacancy site of bulk iron.
Lattice optimization of oxide–embedded bulk iron is

performed in order to find the optimized lattice constant.
Once an optimized lattice is determined, further struc-
tural relaxation is performed in order to unveil the opti-
mized atomic configurations. After lattice and structural
optimization of oxide–embedded bulk iron is complete,
5% compression(expansion) is performed with taking 20
sample points where the equation of state is implemented
in order to estimate the bulk modulus. Thus, the bulk
modulus, lattice constant, and dissolution energies of ox-
ides are calculated. The information resulting from the
first principle calculations is then stored as a dataset for
further data mining; the dataset is listed in Supporting
Information [19].

III. COMPUTATIONAL RESULT

First principle calculations are performed in order to
calculate the lattice constant (Å), bulk modulus (GPa),
and dissolution energy (eV) of oxide clusters (A2B2O7)
in bulk iron. In general, ODS alloys are used in a high
temperature environment with high strain such environ-
ments with exposure to shockwaves or high pressures.
Within such extreme environments, one must consider
minimalization of the thermal expansion of materials. A
major indicator for resistance against thermal expansion
is the bulk modulus as a high bulk modulus suppresses
material expansion. Another important role of an ODS
alloy in such an extreme environment is the pinning ef-
fect where point defects such as the alloying element or
precipitation halts dislocation motion. The dissolution
state of the oxide particles within the iron matrices also
indicate whether the oxide particle can halt dislocation.
If oxides particles and the iron matrix interact under en-
dothermic matter, the oxides particles can be considered
to be undissolved in the iron matrix. Undissolved ox-
ide particles in iron matrices can be a point that halts
the dislocation as a pinning effect. Thus, low solubility
of oxides against an iron matrix plays an important role
where the low soluble oxides act as point defects and halt
the progression of dislocation.
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FIG. 2: Dissolution energy of oxide clusters (A2B2O7) and bulk modulus (GPa) of oxide–embedded bulk iron.

Figure 2 plots the calculated bulk moduli and disso-
lution energies of the 29 cases of oxide–embedded bulk
iron, where 0 is marked with a dotted line. For a high
temperature environment with high strain, an oxide–
embedded alloy with a high bulk modulus with endother-
mic(positive energy) is preferred in order to prevent ther-
mal expansion and halt dislocation. In this sense, Figure
2 indicates that Y2Zr2O7 and Y2Ti2O7 have a positive
dissolution energy with a high bulk modulus, making
them good candidates as oxides for ODS alloys. This
result shows good agreement with experimental reports
where Y2Ti2O7 is a commonly used oxide particles for
ODS alloy [14, 20].
In addition, Figure 2 presents a correlation between

the dissolution energy of oxides and the bulk modulus
of oxide–embedded bulk iron. In particular, a low bulk
modulus is achieved when the dissolution energy of the
oxides is endothermic in bulk iron. On the other hand,
a high bulk modulus is induced when the dissolution en-
ergy is exothermic and the dissolution energy is relatively
close to 0 eV. This suggests that the dissolution energy
of oxides could be a key descriptor representing the bulk
modulus of oxide–embedded iron.

IV. DATA MINING METHOD

Calculated results from first principle calculations are
stored as a dataset. In addition, corresponding informa-

tion such as electronegativity and electron affinity is also
added into the dataset as element information often plays
an important role to predict the material property. The
constructed dataset is listed in Supporting Information.
Machine learning is applied for predicting the dissolution
energies of oxides in iron and the bulk moduli of oxide–
embedded iron where cross-validation is used to measure
the accuracy of the chosen descriptors.
Scikit–learn is used for the machine learning process

[21]. In particular, support vector machine (SVM) and
linear regression (LR) are implemented for predicting the
dissolution energy and bulk modulus, respectively. Disso-
lution energy can be considered an indicator for the pin-
ning effect and whether oxides are dissolved in exother-
mic or endothermic matter. Therefore, dissolution en-
ergy is classified as ’0’ and ’1’ which indicates endother-
mic and exothermic energy, respectively. Polynomial ker-
nel is implemented for SVM. Bulk modulus is an indica-
tor for resistance against thermal expansion; therefore,
prediction of bulk modulus as a continuous value is per-
formed. Ordinary least squares within linear regression
is implemented for predicting bulk modulus.
Descriptors play a key role within machine learning

where several physical factors are treated in multi dimen-
sional space, resulting the prediction of physical phenom-
ena [3]. Therefore, descriptors determining dissolution
energy and bulk modulus are explored within the SVM
and LR. Descriptors are chosen from a dataset which
contains calculated results as well as information from
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the periodic table. Descriptors are evaluated using cross-
validation where an average score of 10 random train and
test data sets are taken.

V. DATA MINING RESULT

A. Dissolution Energy

Prediction of dissolution energies of oxides in iron is
performed using SVM. Dissolution energies are classified
into binary groups ’0’ and ’1’ where 0 and 1 are exother-
mic and endothermic energies, respectively. Descriptors
for determining the dissolution energy are explored using
cross-validation and SVM where test and train dataset
are randomly sorted to 10% and 90%, respectively. The
score is evaluated by taking the average of 10 random
test and train data sets. Cross–validation and SVM re-
veal that the following 4 descriptors are responsible for
determining the dissolution energy of oxides(A2B2O7) in
iron: electron affinity of A, electron affinity of B, elec-
tronegativity of A, and electronegativity of B. The aver-
age score with 4 descriptors results in 93% accuracy with
a highest score of 100 %.

FIG. 3: Prediction of dissolution energy of oxides,
Y2B2O7 (B=Sc-Au), in iron. Red and blue indicate
exothermic and endothermic states, respectively.

The prediction of dissolution energy is also performed
using the trained SVM. In particular, the effect of ele-
ment B in A2B2O7 is considered. Yttrium is generally
used as a base element for oxides in structural materials
[14, 15, 20, 22]. However, it is not well understood which
element would result in an exothermic or endothermic
dissolution energy when an yttrium–based oxide cluster
(Y2B2O7) is embedded in iron. Therefore, a transition
metal (Sc-Au) is used in place of B in Y2B2O7 in order to
determine if the dissolution energy will result in exother-
mic or endothermic energy using the trained SVM. Y
and B(where B= Sc-Au) are transformed into descriptor
variables electron affinity and electronegativity as the de-
scriptors for predicting dissolution energy are found to be
electron affinity of A, electron affinity of B, electronega-
tivity of A, and electronegativity of B. The trained SVM

is then used to predict the dissolution energy which is de-
fined as exothermic or endothermic. The predicted disso-
lution state of Y2B2O7 (B=Sc-Au) in iron are shown in
Figure 3. The dissolution state of oxides is viewed as an
indicator of the pinning effect that halts dislocation. In
light of this, the elements colored blue in Figure 3 are ex-
pected to possess such pinning effects when the element
is used in place of B in Y2B2O7. In addition, one can
see that the left portion of elements in Figure 3 tends
to exhibit endothermic reaction. Thus, the dissolution
state of oxides can be understood when the electronega-
tivity and the electron affinity of elements in the oxides
are treated within a multidimensional space.

B. Bulk modulus

Prediction of bulk modulus of the oxide–embedded iron
is performed using LR. Descriptors for predicting the di-
rect bulk modulus of oxide–embedded iron is explored us-
ing LR and cross validation where the data set is sorted
into 20% test data and 80% train data and the average
score of 10 random test and train datasets are evaluated.
Cross-validation reveals that the descriptors for predict-
ing the oxide–embedded iron are as follows: dissolution
energy of oxide in iron, density, lattice constant, and the
difference in electronegativity of oxides(A2B2O7). Fig-
ure 4 shows the true and predicted bulk moduli (GPa)
of oxide–embedded bulk iron. Figure 4 demonstrates
that the bulk modulus of oxide–embedded iron is well
predicted with an average score of 84% accuracy with a
highest score of 92% accuracy in cross validation.

FIG. 4: True and predicted bulk modulus (GPa) of
oxide–embedded bulk iron. Dataset is sorted into 20%

test data and 80% train data.

The prediction of descriptor variables from a desired
bulk modulus– essentially, the inverse problem– is per-
formed using trained LR. In particular, every possible
descriptor variable is generated and given to the trained
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LR which returns the corresponding bulk modulus. The
following sets of descriptor variables are considered: dis-
solution energy of oxides in iron(-5 eV to 5 eV with 10
cut), density(6.5 g/cm3 to 7.5 g/cm3 with 10 cut), lattice
constant(3.05 Å to 3.10 Å with 10 cut), and difference
in electronegativity of A and B in A2B2O7(0.00 to 1.00
with 10 cut). Every combination of the listed variables is
generated, resulting in a total of 10,000 combinations of
descriptor variables. The 10,000 descriptor variables are
given to trained LR which returns 10,000 corresponding
bulk moduli; this can be viewed as generating big data
using the trained LR. Once the big data is generated, it
becomes possible to directly mine a desired bulk modu-
lus and its corresponding descriptor variables. Descriptor
variables satisfying a bulk modulus of 130 GPa, 140 GPa,
150 GPa, and 160 GPa are explored in the generated big
data. Table I shows the corresponding descriptor vari-
ables satisfying the bulk modulus 130 GPa, 140 GPa,
150 GPa, and 160 GPa. Within 10,000 generated big
data, three possible descriptor variables are screened out
for 130 GPa ,140 GPa,and 150 GPa and one descriptor
variable for satisfying 160 GPa. This indicates that the
element in A2B2O7 could potentially be predicted us-
ing a desired bulk modulus in this proposed approach.
Thus, the bulk modulus of oxide–embedded iron can be
predicted by using trained LR. Meanwhile, and big data
can be constructed using trained LR where descriptor
variables can be extracted using a desired bulk modulus
from big data.

Bulk Diss Density Lattice Electro
130 2.77 7.38 3.09 0.00
130 3.88 6.83 3.09 1.00
130 5.00 6.94 3.08 0.11
140 1.66 7.83 3.07 0.00
140 2.77 6.83 3.07 1.00
140 5.00 7.50 3.08 0.55
150 1.66 6.83 3.06 1.00
150 2.77 6.61 3.05 0.00
150 3.88 7.50 3.06 0.55
160 -1.66 7.27 3.05 0.88

TABLE I: Bulk modulus with corresponding predicted
descriptor variables . Bulk:Bulk modulus in GPa, Diss:
Dissolution energy of oxides in iron in eV, Density:

Density in g/cm3,Lattice: lattice constant in Å, Electro:
difference in electronegativity of A and B in A2B2O7.

VI. PHYSICAL MEANING

The physical origin behind the chosen descriptors is in-
vestigated on the basis of electronic structures of oxide–
embedded bulk Fe. SVM reveals that the dissolution
energy of oxides in iron can be predicted using the de-
scriptors electronegativity and electron affinity of oxides.
This suggests that the bond state between iron and the
embedded oxide could play an important role. Four

oxides– Y2Ni2O7, Y2Ru2O7, Y2Hf2O7, and Y2Ti2O7– in
iron are chosen for investigation as the dissolution energy
of Y2Ni2O7 and Y2Ru2O7 in iron are exothermic while
Y2Hf2O7 and Y2Ti2O7 in iron are endothermic. The pro-
jector density of state (PDOS) of the d-electrons of the
metals and the p-electrons of oxygen in the chosen 4 ox-
ides in iron are calculated and shown in Figure 5. Figure
5 (a) shows that the d-electrons of Ni overlap with the
nearest d-electron of iron, indicating bonding between
Fe and Ni atoms. This results in the exothermic disso-
lution energy of Y2Ni2O7 in iron. In the same fashion,
the d-electron of Ru also overlaps with the d-electron of
iron as shown in Figure 5 (b). Thus, overlapping of iron
and the metal atom within the oxide is observed in the
electronic structure when the dissolution energy of the
oxide is exothermic. On the other hand, the electronic
structures of the oxides in iron behave differently when
the dissolution energy is endothermic as seen in Figures
5 (c) and (d). Figure 5 (c) shows that there is no over-
lapping between the d-electron of iron and both of the
d-electrons of the Hf and Y atoms. Similarly, neither
of the d-electrons of Y and Ti overlap with iron as seen
in Figure 5 (d). This results in endothermic dissolution
energy. Thus, the electronic structures of the oxides in
iron demonstrate that the overlapping of metal within
the oxide and iron results in exothermic dissolution en-
ergy while endothermic dissolution energy is observed if
the metal within the oxides and iron do not overlap.

FIG. 5: Projector density of state (PDOS) of (a)
Y2Ni2O7, (b) Y2Ru2O7, (c)Y2Hf2O7, and (d) Y2Ti2O7.

Other factors to consider are the electron affinity and
electronegativity of A and B in A2B2O7. Figure 5 demon-
strates that the dissolution energy of oxides in iron can
be understood by how metal in the oxides interact with
nearby iron. The two physical factors governing the in-
teraction between atoms are electron affinity and elec-
tronegativity. In fact, the following 4 properties– elec-
tron affinity of A, electron affinity of B, electronegativity
of A, and electronegativity of B in A2B2O7– are found
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to be descriptors for predicting the dissolution energy of
oxides. Individually implementing each descriptor does
not provide the dissolution energy of the oxide; rather,
the dissolution energy of the oxide is procured by com-
bining these descriptors within a multidimensional space.
Here, these 4 descriptors are plotted two dimensionally
where electron affinity and electronegativity of the 29
oxides in the dataset are used. In particular, the sum of
’electron affinity of A and electron affinity of B’ and the
sum of ’electronegativity of A and electronegativity of
B’ in A2B2O7 with the corresponding dissolution state
’endothermic’ or ’exothermic’ are plotted as shown in
Figure 6. Figure 6 shows that endothermic dissolution
energy can be expected when the sums of electron affin-
ity and electronegativity of metal in the oxides are small
while the sums of electron affinity and electronegativity
are likely to result in an exothermic dissolution energy.
The results reveal a correlation between ’electron affin-
ity and electronegativity of the metal within the oxide’
and the dissolution energy of the oxides in iron as seen
in Figure 6. These physical variables can be considered
to be responsible for determining the interaction between
oxides and iron if each physical property is treated in a
multidimensional space.

FIG. 6: Sum of ’electron affinity A and electron affinity
B’ and sum of ’electronegativity A and electronegativity

B’ in A2B2O7 with corresponding dissolution state
’endothermic’ or ’exothermic’

The bulk modulus of oxide–embedded iron can be pre-
dicted by using the following descriptors: dissolution en-
ergy of oxides in iron, density, lattice constant, and differ-
ence in electronegativity of oxides(A2B2O7) as shown in
Figure 4. There is a correlation between the dissolution
energy of the oxides within iron and the bulk modulus as
seen in Figure 2. Figure 2 shows that the bulk modulus is
small when the dissolution energy of the oxide is exother-
mic while a high bulk modulus is achieved when the dis-
solution energy of the oxide is endothermic. Figures 5
(a) and (b) show that bonding between the metal in the

oxide and the nearest iron occurs when the dissolution
energy of the oxide is exothermic while Figures 5 (c) and
(d) show that there is no bonding between metal in the
oxide and the nearest iron if the dissolution energy of ox-
ide is endothermic. One can also consider that a low bulk
modulus is achieved when there is no bonding between
oxides and Fe as such oxides behave as point defects while
a high bulk modulus is a result of exothermic reactions
as such oxides create bonds with surrounding Fe atoms.
In addition, Figure 6 reveals that electronegativity and
the electron affinities of A and B play an important role
in determining the dissolution state of oxides. Thus, the
bulk modulus of oxide–embedded iron can be understood
by the dissolution energy of the oxides in iron and the
difference in electronegativity of oxides(A2B2O7).

FIG. 7: Lattice constant (Å) and bulk modulus (GPa)
of oxide–embedded iron. Colorbar indicates the

corresponding Density (g/cm3).

The effect of density and the lattice constant against
the bulk modulus is investigated as two of the descriptors
for predicting the bulk modulus are density and lattice
constant. The lattice constant and the bulk modulus
with corresponding density is plotted and shown in Fig-
ure 7 where 29 oxides in the dataset are used. Figure 7
shows the linear relation between the lattice constant and
the bulk modulus where a high bulk modulus is expected
when the lattice constant is small while a small bulk mod-
ulus is predicted with a large lattice constant. In addi-
tion, density is added into this linear relation where var-
ious densities can exhibit within the same bulk modulus.
For instance, a density from 6.4 (g/cm3) to 7.5 (g/cm3)
would result in a bulk modulus of 140 GPa as shown in
Figure 7. As a result, density gives a new dimension in
Figure 7 where a variety of densities can be considered
to achieve a specific bulk modulus.
Each descriptor involved in the prediction of the dis-

solution energy and bulk modulus has a physical corre-
lation with each other, yet it is difficult to predict the
dissolution energy and bulk modulus using a single de-
scriptor. However, in principle, manipulating these de-
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scriptors within a multidimensional space allows for the
prediction of precise physical phenomena.

VII. CONCLUSION

In conclusion, oxide–embedded bulk iron is investi-
gated in terms of combining first principle calculations
and data mining. 29 different oxide clusters are embed-
ded into a vacancy site of bulk iron. First principle calcu-
lations are performed to calculate the dissolution energy
of the oxides and the bulk modulus of oxide–embedded
iron where the calculated oxides with high bulk moduli
and endothermic reactions with iron have good agree-
ment with oxides used in high temperature structural
materials. Data mining is utilized for the prediction of
the dissolution energy of the oxides and the bulk mod-
ulus of oxide–embedded iron. Prediction of dissolution
energy is performed using support vector machine where
descriptors for dissolution energy are revealed to be elec-
tron affinity and electronegativity of the metals within
the oxides. Prediction of the dissolution state of Y2B2O7

(B=Sc-Au) is also achieved using trained SVM. The bulk
modulus is predicted using linear regression where the
lattice constant, dissolution energy, density, and differ-
ence in electronegativity are determined to be descriptors

and the inverse problem– deriving corresponding descrip-
tors variables from a desired bulk modulus– is also ad-
dressed. The physical phenomena behind the descriptors
are investigated where each individual descriptor for the
dissolution energy and the bulk modulus correlate with
each other. Although predicting the dissolution energy
and the bulk modulus using a single descriptor is chal-
lenging, prediction of those properties can be achieved
when the individual descriptors are combined simultane-
ously in a multidimensional space. By utilizing multidi-
mensional space, the prediction of the dissolution energy
and bulk modulus of oxide–embedded iron is achieved.
Thus, if appropriate descriptors are determined and ma-
nipulated multidimensionally, the prediction of physical
phenomena, in principle, can be achievable.
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