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The performance of a novel giant magnetoresistance (GMR) heterostructure
Fe/Ag/Fe/InAs/Ag(100) in the current-perpendicular-to-plane geometry is presented. Cal-
culations are based on a realistic tight-banding model with full spd bands and the recursive Green’s
function algorithm. Results show that the system’s GMR can reach values above 1000%. This
GMR enhancement mainly is a result of the wave vector filtering effect imposed by the InAs
layer, restricting conductance within a small region around the Γ point in the 2D Brillouin Zone.
Calculations also reveal that when the Fermi level sits in the InAs band gap, GMR gradually
saturates as a function of InAs thickness with a smooth plateau; whereas when the Fermi level is
in the InAs conduction band and close to the band bottom, GMR exhibits an oscillatory behavior
with a large period. This GMR oscillation in a semiconductor sandwiched between a ferromagnetic
layer and a nonmagnetic layer is a novel phenomenon that has never been reported before. GMR
oscillations are also observed with respect to Ag thickness, with oscillation amplitude determined
by the Fermi level position relative to the InAs conduction band edge. The oscillation periods
in both cases can be well explained by the concept of quantum-well states, and are determined
by the spanning vector of the Fermi surface belly of the material whose thickness is varied. The
observed GMR oscillations are due to the quantum interference of conduction electrons near the Γ
point. The GMR and area-resistance (RA) product profiles at a wide range of InAs Fermi energies
are also compared. Near the GMR peak (with GMR above 1000%) in the conduction band, RA
product can be as low as 8.8 Ωµm2. This feature of large GMR but small RA product results from
the wave vector filtering effect of doped InAs, and it makes the structure under study distinct from
conventional GMR systems (small GMR, small RA) or magnetic tunnel junctions (large GMR,
large RA).

PACS numbers: 75.47.De, 73.40.Sx, 73.23.Ad, 73.40.Gk

I. INTRODUCTION

Since the discovery of giant magnetoresistance (GMR)
in Fe/Cr multilayers by Fert1 and Grünberg2, GMR het-
erostructures have been widely applied in biotechnology
as biosensors, in spintronics as building blocks of spin-
transfer-torque random access memory, and in magnetic
storage technology as read heads (although GMR sen-
sors have not been recently used as read heads, there
is an expected transition back to GMR sensors as areal
densities of hard drives keep growing3). This motivates
extensive research to understand its mechanism. It is
now well understood that the spin-dependent scattering
plays an important role in the mechanism of GMR ef-
fect, which has been demonstrated in experimental and
theoretical works4–7 for both current-in-plane (CIP) and
current-perpendicular-to-plane (CPP) geometries. While
the GMR effect was first discovered in the CIP geome-
try, GMR in the CPP geometry is usually much higher
than CIP. Our work in this article mainly focuses on CPP
GMR with clean interfaces.

Many new GMR heterostructures with various mate-
rials have also been explored by experiments, including
Fe/Ag8, Fe/Cu9, Co/Cu10, Co/Ru and Co/Cr11. Inter-
estingly, in all of these systems, GMR and the exchange
coupling between ferromagnetic layers are both found
to oscillate with the thickness of nonmagnetic spacer.
Moreover, the periods of both oscillations consistently

coincide with each other9–11, and GMR reaches its en-
hanced values when the exchange coupling is antiferro-
magnetic. It is believed that this oscillatory behavior
of exchange coupling and GMR should be ascribed to
the exchange interactions mediated by conduction elec-
trons in the spacer12. While this interpretation strongly
suggests a Ruderman-Kittel-Kasuya-Yosida(RKKY)-like
interaction between the ferromagnetic layers, the exper-
imental oscillation periods are often found to be much
larger than the predictions from simple RYYK-like mod-
els. Numerous theoretical models have been proposed
to explain this discrepancy13–15. The theory in Ref.15

provides an especially insightful picture, where it utilizes
the concept of quantum-well state and its modulation on
top of the Bloch waves to give a universal explanation
of the magnetic coupling oscillation in various multilayer
structures. It turns out that this interpretation is equiva-
lent to a theoretical treatment where the RKKY coupling
is evaluated in a superlattice with discrete lattice spac-
ing. The resulting equation to calculate the oscillation
period suggests that the period is determined solely by
the band structure of the nonmagnetic spacer, and the
values of the periods obtained from it are quantitatively
consistent with experiments. This quantum-well model
of GMR oscillation also appears to be applicable to our
simulation results presented later in this paper.

In many applications, there are requirements not only
on the magnetoresistance (MR) of the device, but also
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the total resistance. Both MR and the total resistance
control the signal-to-noise ratio of a device, and the to-
tal resistance also determines the amplitude of the signal
that the device can produce. However, the magnitude of
GMR in known structures is very small, usually around
the order of 10%∼100% even at low temperatures. More-
over, in order to produce a detectable signal, GMR de-
vices often need to adopt a nanopillar structure because
of the relatively small resistances of its metallic compo-
nents. This low MR and low resistance feature appears
in every conventional GMR structure, significantly lim-
iting its application, for example, in high areal density
magnetic recording.

On the other hand, instead of a metallic nonmagnetic
spacer, one can insert an insulator between the ferromag-
netic layers, and form a magnetic tunnel junction (MTJ).
The tunneling magnetoresistance (TMR) of MTJ is usu-
ally higher than its GMR counterpart. A TMR of 30%
at 4.2K and 18% at room temperature was observed in
Fe/Al2O3/Fe junctions16. Later, Butler17 and Mathon18

independently made the theoretical prediction that in a
fully crystalline Fe/MgO/Fe junction the TMR can reach
the order of 1000%. This prediction has been confirmed
by experiments19,20, where TMR up to 200% at room
temperature was observed, and a TMR of 1100% has
been reported in a CoFeB/MgO/CoFeB junction21. The
fact that the experimental value of TMR is approaching
its theoretical prediction gives a strong proof of the valid-
ity of the theoretical models. Both models (Butler’s and
Mathon’s) suggest that there are two main ingredients
in the emergence of a large TMR: (a) coherent tunnel-
ing of highly spin-polarized ∆1 Bloch states (symmetry
filtering), and (b) tunneling in the direction of in-plane
wave vector k‖ ≈ 0 (wave vector filtering towards the Γ
point). The ∆1 states are polarized because they decay
at a slower rate in MgO than states with other symme-
tries and these states are only available to the majority
spin of Fe. This asymmetry between transport of major-
ity and minority spins is the strongest at the center of
the 2D Brillouin Zone (Γ point). Therefore, a thick MgO
barrier that strongly favors perpendicular tunneling can
ensure the selection of electrons near the Γ point and
increases the TMR. However, the necessity of a thick in-
sulating MgO raises a disadvantage in these TMR struc-
tures: high MR can only be achieved with high resis-
tance, which causes impedance mismatch to the pream-
plifier, decreases the speed of the device, and increases
its energy consumption. In fact, the resistance-area (RA)
product of an MgO junction is typically many orders of
magnitude larger than that of a conventional metallic
GMR structure, and thus scales poorly with decreasing
device size.

Given that both conventional GMR and TMR struc-
tures suffer from shortcomings, a heterostructure that
can exhibit high MR while maintaining a small resis-
tance, or even a tunable resistance, is therefore very de-
sirable. A reasonable question to ask is, by applying the
above physics of large TMR in MgO junctions, whether

FIG. 1. Band structures of Fe, Ag and InAs (lightly doped)
in (100) direction.

the GMR of a fully metallic heterostructure can be en-
gineered to be as large as, or even larger than, the MgO
junctions’ TMR. The authors of22 have provided a pos-
sible answer to this question. They proposed a structure
with a conventional GMR trilayer Fe/Ag/Fe attached
to a lightly doped InAs substrate, and showed that it
could exhibit GMR up to 105% at zero temperature with
clean interfaces. Since the ∆1 states are only available in
the majority spins of Fe, and the Fermi level only meets
with the ∆1 band in Ag, the Fe/Ag interface serves as
a symmetry filter and polarizes the ∆1 electrons. Unlike
Fe/MgO junctions, here the wave vector filtering effect is
no longer a result of a thick insulating spacer, but due to
the fact that the Fermi surface of a lightly doped InAs
can be engineered to be very small surrounding the Γ
point. Since propagating modes are available throughout
the Fe/Ag/Fe/InAs structure in this case, the resistance
is expected to be small. Moreover, the resistance can be
tuned because the Fermi surface of InAs can be altered
by its doping level. The above statements about the band
structures in Fe/Ag/Fe/InAs is illustrated in Fig. 1.

While this ultra-high GMR in Fe/Ag/Fe/InAs is very
appealing, in practical applications the InAs layers are
likely to be terminated by other materials. With a fi-
nite length of the InAs collimator and the introduction
of an additional interface, the GMR may be well below
the above predicted value and could exhibit other inter-
esting behaviors. To explore these speculations, we study
the GMR as a function of the InAs collimator thickness
and the Ag spacer thickness at various InAs Fermi ener-
gies. In order to terminate the InAs layers while main-
taining the band structure matching in the system, we
choose to use Ag as one of the semi-infinite leads, as
shown in the schematic picture of the heterostructure
Fe/Ag/Fe/InAs/Ag(100) under study (Fig. 2). Note that
the FCC lattice of Ag needs to rotate 45◦ to match the
BCC lattice of Fe and the zinc blende lattice of InAs.
Given the lattice constant of Fe aFe = 2.87Å, we see
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FIG. 2. Schematic picture of the system under study.

that the lattice constant of InAs (6.05Å) is close to 2aFe
and the lattice constant of Ag (4.09Å) close to

√
2aFe.

Therefore, we assume a perfect lattice match through-
out the system during our calculations. We also assume
that the Fermi levels of all layers align with each other,
and according to experiments23, no Schottky barrier is
formed at the Fe/InAs interface. Defining the top of the
InAs valance band to be zero energy, the Fermi level posi-
tion relative to the InAs conduction band edge is selected
to represent different doping levels, which can be deter-
mined by the dopant density through the parabolic band
formula n = 2

√
2(mEf )3/3~3π3, where n is the electron

density and m is the effective mass. We assume that the
Fermi level position is spatially uniform. This assump-
tion is simplifying, because the Fermi level pinning24 and
band bending effects near the InAs interfaces are ignored.
However, since the energy difference between the pinned
Fermi level and the conduction band edge at the inter-
face is very small, usually less than 0.1eV according to
experiments25 (the exact value or even the sign of this
energy difference is not yet very clear25–27), most of our
calculations with thick InAs layers take place where the
Fermi level varies slowly with spatial position. We there-
fore believe that our assumption would not cause quali-
tative errors. This assumption has been checked in the
realistic case of 5 × 1017cm−3 electron density and en-
ergy offset at the interface of 0.04eV by solving the Pois-
son equation and adjusting the on-site energies as func-
tions of varying overall InAs thickness. A GMR of about
2000% and an oscillation period of about 80 monolayers
is produced, in quite close agreement to our simplified
approach for the same Fermi level (an electron density of
5 × 1017cm−3 corresponds to a Fermi level 0.1eV above
the InAs conduction band edge from the parabolic band
approximation). The corresponding GMR from our sim-
plified approach is also about 2000% and the oscillation
period is also about 80 monolayers, see Fig. 4 and Table. I
later in this paper.

In the following sections of this article, we will first de-
scribe our theoretical model and computational approach
towards a realistic simulation for the transport proper-
ties of Fe/Ag/Fe/InAs/Ag. Then we will move on to
examine our simulation results and study the GMR de-
pendence on InAs thickness, Ag thickness and the Fermi
level position.

II. SIMULATION METHODS

A. Tight-binding model and Fisher-Lee relation

We start our calculations by constructing our system’s
Hamiltonian based on a tight-binding model. For each
spin, the general form of the Hamiltonian reads:

H =



HL TL,1
T1,L H1 T1,2

T2,1 H2

. . . TN−1,N
T1,N−1 TN TN,R

TR,N HR

 . (1)

Here, N is the total number of atomic layers in the
scattering region. Hi (i = 1 . . . N) represents the on-
site Hamiltonian of layer i. HL and HR represent the
Hamiltonian of the left and right semi-infinite leads re-
spectively. The elements Ti,j ’s are the hopping matri-
ces connecting layer i to layer j, because only nearest-
neighbor interactions are considered, only the Ti,j ’s that
relate nearest layers are nonzero. Notice that each ma-
trix element mentioned above is by itself also a matrix.
The dimension of these sub-matrices is NorbM ×NorbM ,
which is determined by the number of atomic orbitals
Norb and the number of atoms M on each layer. We
have included full spd orbitals for Fe, Ag and InAs, thus
Norb = 9. Each layer consists of 2 atoms with periodic
boundary condition, i.e. M = 2. The Slater-Koster pa-
rameters used to calculate the Hamiltonian matrix ele-
ments are taken from Ref.28 for Fe and Ag. It needs
to be pointed out that the parameters from Ref.28 were
derived with next-to-nearest neighbor interactions, while
we only use the nearest neighbor parameters in our sim-
ulations. This will cause slight distortion of the bands,
particularly the s-p bands, but since the symmetries and
overall positions of the bands are unchanged, the dis-
tortion is unlikely to bring about qualitatively different
results. The Slater-Koster parameters for the InAs spd
orbitals are obtained by a nonlinear least squares fitting
to the spds∗ bands given in Ref.29. Because of the lack
of the s∗ orbital that is important for the exact shape
of the conduction band, our fitted results are only valid
within some tenths of eV above the conduction band bot-
tom (with a 0.05eV difference of the band gap compared
to Ref.30). However, since the wave vector filtering effect
that we are interested in occurs only when the Fermi level
is close to the band bottom, we believe that our fitted pa-
rameters for InAs are realistic enough for the purpose of
this article, and will not cause any qualitative errors. The
hopping parameters between layers of different materials
are calculated by Harrison’s formula30.

In order to study the magnetoresistance of the system,
we use the Fisher-Lee formula31 to relate the conductance
G with the transmission coefficients of the electrons:

G =
e2

h
Tr(t+t) =

∑
k,k′,σ

tσk,k′t
σ∗
k,k′ , (2)
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where the sum is over the 2D Brillouin Zone perpen-
dicular to the (100) direction, and tσk,k′ is the trans-
mission coefficient of an incoming wave with transverse
wave vector k transmitted to an outgoing wave at k′

for a spin channel σ. The GMR is then defined as
GMR = (GP − GAP )/GAP , where GP is the conduc-
tance when the magnetizations of Fe are parallel (P) and
GAP is the conductance when the magnetizations are an-
tiparallel (AP).

The transmission coefficients can be extracted from the
Green’s function of the system, using the general Green’s
function formalism proposed by Ref.32:

tkR,kL = Φ̃+
kR
G(kL, kR)VΦkL

√
vkR
vkL

e−ikRD. (3)

Here, G(kL, kR) is the Green’s function matrix element
that connects the perpendicular wave vector kL in the
left lead to kR in the right lead. vkL(vkR) is the group
velocity of the propagating mode in the left (right) lead
with wave vector kL(kR). ΦkL and ΦkR represent the set
of eigenvectors of the Schrödinger equation for the leads.

Φ̃+ is the corresponding inverse of Φ with Φ̃+
k Φk′ = δk,k′ .

V is a complicated matrix constructed from Φ, Φ̃+ and
the hopping matrices of the leads, its definition can be
found in Ref.32. D is the length of the scattering re-
gion. We will dedicate the next section to the method of
calculating G(kL, kR). The evaluation of the other quan-
tities needed on the right hand side of Eq. (3) depends
on solving the Schrödinger equation of the semi-infinite
leads: detailed description of the method can be found
in Ref.33.

B. Recursive Green’s function algorithm

From the above discussion, we have seen that the cen-
tral link between the Hamiltonian and the conductance
of the system is the Green’s function element G(kL, kR)
that connects the leads. Consider a structure withM×M
atoms on one atomic plane and with N planes in the
scattering region. Naively, in order to obtain the com-
plete Green’s function (and thus the element G(kL, kR)),
we can directly invert the whole M2N ×M2N Hamil-
tonian matrix, which typically has a time complexity
of O(M6N3). Owing to the strong k-space filtering ef-
fect present in Fe/Ag/Fe/InAs/Ag, conduction occurs
only in a small region of the 2D Brillouin Zone, and to
achieve convergence, about 106 k-points need to be sam-
pled. Thus, direct inversion of the Hamiltonian will be
too computationally expensive. To see this, notice the
Green’s function calculated this way is redundantly ex-
pensive, because only the matrix elements that connects
the leads are used in equation (3). Alternatively, instead
of dealing with the system as a whole, we can add one
atomic layer at a time and calculate only the necessary
Green’s function elements recursively. This way, we only
need to invert a M ×M matrix each time for N layers,

which leads to a time complexity of O(M6N). Compared
to the O(M6N3) complexity of direct inversion, this re-
cursive Green’s function technique is especially efficient
for systems with large N . In our study, N normally takes
a value more than 100, and by applying the recursive
Green’s function algorithm, it implies more than 4 or-
ders of magnitude acceleration. The foundation of this
useful method was laid by Thouless and Kirkpatrick34,
and has become a standard tool to compute transport
properties of various mesoscopic systems35–39.

In all of the calculations presented in this article, the
thickness of the second Fe layer is fixed to be 8 monolay-
ers, and the variables are the InAs thickness, the Fermi
level position relative to the InAs conduction band edge,
and the Ag thickness. An imaginary part of 10−3eV is
added to the Fermi energy to ensure numerical stability.
106 k-points are sampled in the 2D Brillouin Zone. We
have checked that doubling the mesh density gives an
average error less than 5%, so the results are believed to
have achieved convergence.

III. SIMULATION RESULTS

A. GMR dependence on InAs thickness

As explained in Section I, the enhancement of GMR
in Fe/Ag/Fe/InAs/Ag is greatly due to the wave vec-
tor filtering effect imposed by InAs on the Fe/Ag/Fe
trilayer, limiting electron transmission to a small region
around the Γ point. Since this is a property of the Fermi
surface of bulk InAs, when the thickness of InAs is de-
creased one could expect the wave vector filtering effect
to be weakened and thus the GMR. Also, the position
of Fermi level can alter the size of the InAs Fermi sur-
face, this will change the GMR behavior as well. We thus
start our discussion on the simulation results by looking
into the GMR dependence on InAs thickness at differ-
ent Fermi levels. Firstly, we fix the Ag spacer thickness
to be 4 monolayers, and select two Fermi levels (0.27eV
and 0.45eV) in the InAs band gap. The results are plot-
ted in Fig. 3(a). In both cases, MR starts to increase
dramatically with about 20 InAs monolayers (∼6nm),
reaches 1000% with about 40 monolayers (∼12nm), and
eventually arrives at a saturation plateau. The satura-
tion behavior of MR here is very similar to the one of
Fe/MgO MTJs with increasing MgO thickness20. Al-
though, InAs in this case is actually an insulator, and
serves as a k-space filter that favors perpendicular tun-
neling just as MgO does, it should be emphasized that
the MR saturations in these two situations actually result
from distinct mechanisms. As demonstrated in Ref.40

by simulations, the MR saturation in Fe/MgO junctions
occurs only when the interfaces are disordered (which
must be the condition in the experiments of Ref.20), oth-
erwise, MR would keep growing monotonically with in-
creasing MgO thickness. Since we assume clean interfaces
throughout our system, apparently the above explana-
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tion doesn’t apply. In fact, as mentioned in Section I, in
Fe/MgO junctions, MgO is not only a wave vector filter
(favoring electrons near the Γ point), but also a sym-
metry filter (favoring the ∆1 states only in the majority
spin). As a result, the conductance of P configuration
keeps decaying at a slower rate than the conductance
of AP configuration inside MgO, and this manifests as
a monotonic MR growth without saturation. On the
contrary, in our system Fe/Ag/Fe/InAs/Ag, InAs only
serves as a wave vector filter, which means that inside
InAs, the ∆1 states in majority spin doesn’t have an
advantage in transmission over other states in minority
spins. Therefore, the increase of MR with increasing InAs
thickness only comes from restricting electron transmis-
sion towards the Γ point. Once the thickness of InAs is
large enough, and basically only the electron at the Γ

FIG. 3. MR dependence on the InAs thickness (a) and the
relation between MR and RA of P configuration (b) when
the Fermi level sits in the InAs band gap. The band gap of
InAs is from 0eV to 0.47eV. The dashed lines are to indicate
a GMR of 1000% with an RA product about 10 Ωµm2.

point can effectively transmit, MR will stop increasing
because the conductance of P configuration now decays
at a similar rate inside InAs as the conductance of AP
configuration. This can also be understood by merely
looking at the conductance contrast close to the Γ point
of a Fe/Ag/Fe trilayer. Our simulations show that the
conductance ratio between P and AP configuration near
the Γ point is not infinite (although can be up to 107%).
One can imagine that by imposing the wave vector fil-
tering effect of InAs, the MR should be limited by this
conductance ratio set by the Fe/Ag/Fe layers, and there-
fore should exhibit a saturation behavior. Owing to the
small band gap of InAs, the enhancement of MR doesnt
have to give rise to very large resistance as in MgO junc-
tions. Fig. 3(b) shows the relation between MR and the
RA product of P configuration for the same two cases.
When the Fermi level is deep in the band gap (0.27eV),
the RA product is much higher than when its close to
the conduction band bottom. Nonetheless, to achieve an
MR above 1000%, the RA product can be as low as about
10 Ωµm2. Considering the RA product of Fe/MgO MTJ
is typically of the order of 1000 Ωµm2, our system clearly
demonstrates the advantage of significantly smaller resis-
tance with sufficiently enhanced MR.

We now move on to study the GMR dependence on the
InAs thickness when the Fermi level is in the InAs con-
duction band. Again we fix the Ag spacer thickness to be
4 monolayers, and select various Fermi energies ranging
from 0.48eV to 0.57eV. The results are plotted in Fig. 4.
Instead of the smooth saturation shown above, the GMR
in these cases is an oscillatory function of InAs thickness.
And the GMR tends to be smaller when the Fermi level
is larger, because a larger Fermi level allows more elec-
trons away from the Γ point to conduct and weakens the
wave vector filtering effect. Clearly, whether the InAs
Fermi level is positioned in the gap or in the conduc-
tion band draws a line between two distinct MR behav-
iors. This strongly indicates that the GMR oscillation
is a result of the quantum interference of propagating
modes that are available in InAs only when the Fermi
energy is large enough to activate electrons in the con-
duction band. More interestingly, the oscillation period
obviously correlates to the Fermi level position relative
to the InAs conduction band edge: the larger the Fermi
energy, the smaller the period. This correlation between
the GMR oscillation period and the band structure of the
conducting nonmagnetic layer is in fact a universal phe-
nomenon that emerges in almost every GMR structure,
as we mentioned earlier in Section I. Among many the-
oretical works to provide explanations to the periodicity
in GMR, we find that the model in Ref.15 is fairly simple,
but can provide results that agree very well with experi-
ments. Thus we will briefly describe its formalism below,
and apply it to our simulation results in order to draw
a quantitative relation between the Fermi level position
and the GMR oscillation period. The model argues that
the wave function in a heterostructure can be viewed as a
quantum-well state consisting of a Bloch function that is



6

FIG. 4. GMR as a function of InAs thickness at various Fermi levels in the InAs conduction band

TABLE I. Comparison between average observed PInAs from simulations to predicted PInAs from Eq. (7) and (8).

Ef,InAs 0.490eV 0.503eV 0.517eV 0.531eV 0.544eV 0.558eV 0.571eV
Observed PInAs 188 144 132 102 89 81 75
Calculated PInAs 212 153 126 109 98 89 83

modulated by an envelope function. The Bloch function
is derived from the bulk states at the band edge nearest
to the Fermi level, and the envelope function ensures that
the boundary conditions are met at the interfaces. This
type of wave function originates from an expansion of the
quantum-well wave function around the bulk states of the
band edge, thus it’s especially suitable to describe mate-
rials with Fermi level close to the band edge, for example,
doped semiconductors as InAs in our system. The com-
bination of the Bloch function with wave vector kedge
and its modulating envelope function with wave vector
kenv gives rise to a total wave vector, i.e. the Fermi wave
vector:

ktot = kf = kedge ± kenv. (4)

Since the envelope function determines the overall am-
plitude of the wave function, when the thickness of the
quantum well coincides with the peaks of the envelope,
resonances are expected to occur and bring about an en-
hancement in transmission. Therefore, we expect an os-
cillation in conductance with a period P that is half of

the wave length of the envelope function, that is:

P =
π

kenv
. (5)

In the case of InAs, the band edge closest to the Fermi
level is at the center of the 2D Brillouin Zone, thus
kedge,InAs = 0 and Eq. (4) becomes:

kf,InAs = kenv,InAs. (6)

(The bands are symmetric on the two sides of the center
of the Brillouin Zone, so the ± sign doesnt make a dif-
ference.) Note that for the zinc blende lattice of InAs,
the zone-boundary wave vector kBZ,InAs = 2π/aInAs =
π/2dInAs, where aInAs is the lattice constant, and dInAs
is the spacing between adjacent atomic planes (aInAs =
4dInAs for zinc blende lattice). If we choose dInAs as the
unit of the period in InAs (PInAs), and kBZ,InAs as the
unit of kf,InAs, one then obtains from Eq. (5) and (6):

PInAs =
2

kf,InAs
. (7)
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FIG. 5. Average observed PInAs from simulations and pre-
dicted PInAs from Eq. (7) and (8) as functions of the Fermi
level position.

Since we are interested only in the region no more than
a couple tenths of eV above the band edge, we can ob-
tain an analytical expression of kf,InAs in terms of the
Fermi energy Ef,InAs by a parabolic approximation to
the conduction band that we input to our simulations.
This gives us:

kf,InAs =

√
Ef,InAs − 0.475(eV )

166.62
(in units of kBZ,InAs).

(8)
Using Eq. (7) and (8), we are ready to calculate PInAs
in terms of Ef,InAs and compare them to the average
observed periods from simulations. The results are sum-
marized in Table I and Fig. 5. It shows that the above
equations can produce periods in close approximation of
the ones observed, with errors no more than 10 monolay-
ers (other than 0.49eV). Note that only the local maxima
are used to identify the peak positions in simulation re-
sults. However, as can be seen from Fig. 4, some of these
local maxima are biased towards the left of the whole
shape of the peaks, and thus can be misleading in find-
ing the actual peak positions. Also, the periods are fairly
large. Considering these two factors both introduce er-
rors to the observed periods, they are believed to be in
reasonable agreement with the calculated periods. We
therefore conclude that the model described above can
truly explain the physical origin of the GMR oscillations
with respect to InAs thickness.

One may argue that the above model is valid only
for addressing the oscillatory conductance of one specific
magnetization configuration in our system, but not nec-
essarily the oscillatory GMR, since GMR is defined as
the relative variation of the conductance between P and
AP configurations. Therefore, it is necessary to examine
how the conductance depends on InAs thickness as well.
Fig. 6 shows a plot of GMR and conductance channels vs.

FIG. 6. GMR and conductances as functions of InAs thickness
at Fermi level 0.57eV. The dashed lines are given as guides to
the eye for one GMR peak and valley.

InAs thickness corresponding to the situation of Fermi
level at 0.57eV. The notion up-down conductance (G↑↓)
means the conductance of majority-spin electrons in the
left Fe lead to the minority-spin band in the second Fe
layer, and similar for the other notions. G↓↓ is not shown
because it is too small to have any visible effect on GMR.
One immediately sees that the GMR oscillations and the
conductance oscillations are in fact not in phase. How-
ever, the three conductance channels are almost in phase
among themselves. Notice that although G↓↑ seemingly
shows a larger period (or a seemingly phase shift), this is
actually not the case, as can be confirmed by the equal
spacing between the oscillation valleys of the three con-
ductance channels. Instead, G↓↑ shows a transition of
the peak shape from longer right tails to longer left tails.
This transition of the G↓↑ peak shape mostly controls
the GMR oscillation: the GMR peaks are positioned at
the G↓↑ valleys, while the GMR valleys at the G↓↑ peaks.
Another feature shared by the conductances is that the
peak values tend to decay with increasing InAs thickness.
This feature also manifests itself in GMR. Since we as-
sume clean interfaces and no defects in our simulations,
the decay of the peaks cannot be explained by any mean-
free path arguments. Rather, it should be explained by
a cancellation effect among the partial conductances in
the 2D Brillouin Zone around a stationary point of the
perpendicular wave vector. (Indeed, the Γ point is a sta-
tionary point for InAs.) This argument is supported by a
stationary-phase approximation to the 2D Brillouin Zone
sum of the partial conductances41, which is valid for large
layer thickness, as is the case for InAs here.

To end our discussions of this section, we would like to
point out that the GMR oscillation with respect to InAs
thickness is a novel effect that has not been reported be-
fore. Unlike the common GMR oscillations observed in a
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metallic spacer sandwiched between ferromagnetic layers,
we have demonstrated a GMR oscillation in a semicon-
ductor sandwiched by a ferromagnetic layer and a non-
magnetic layer. This GMR oscillation also provides us
with the ability to tune the resistance of the system not
only by changing the doping level of InAs, but also by
changing the thickness of InAs, which, unlike changing
doping, doesnt have to change GMR. Fig. 7 is a scatter
plot of GMR vs. RA product of P configuration (RAP )
corresponding to Fermi level at 0.52eV. Clearly, GMR is
not a monotonic function of the RA product, instead, for
a given GMR, the RA product has various tunable val-
ues. For example, with a GMR of 2000%, the RA prod-
uct can have values ranging from 10 Ωµm2 to 50 Ωµm2.
Particularly, with merely 32 InAs monolayers (∼9nm),
the system already shows a GMR of 1042% with an RA
product of only 7.8 Ωµm2. In other words, with a 7.8 Ω
resistance, the size of the scattering region can be as small
as 1µm2 × 13nm (4 monolayers of Ag, 8 monolayers of
Fe and 32 monolayers of InAs).

B. GMR dependence on Ag spacer thickness

In this section, we are going to examine the re-
lation between GMR and Ag spacer thickness in
Fe/Ag/Fe/InAs/Ag. The Fermi level of InAs was set
to be 0.50eV and 0.56eV (both in the conduction band).
The thickness of InAs was chosen close to the positions of
the first peaks shown in Fig. 4 (120 monolayers for 0.50eV
and 100 monolayers for 0.56eV). The resulting GMR as a
function of the Ag thickness is plotted in Fig. 8. In Both
cases, the GMR exhibit an oscillatory behavior with a pe-
riod of 8 monolayers. This period is larger than the ones

FIG. 7. GMR vs. RA product of P configuration with Fermi
level at 0.52eV. The selected point is to demonstrate a situ-
ation with large GMR, small RA and small size of scattering
region.

observed in experiments15 or in other simulations22,42,
which are about 5 monolayers. Nonetheless, the expla-
nation for this discrepancy is clear: the nearest neigh-
bor treatment in our simulation causes slight distortion
in the band structure of Ag. In fact, we can again use
Eq. (4) and (5) to calculate the oscillation period for Ag
(PAg). The band edge of Ag is at the zone boundary,
so kedge,Ag = kBZ,Ag = 2π/aAg = π/dAg, where aAg is
the lattice constant, and dAg is the atomic plane spacing
(aAg = 2dAg for FCC lattice). One then obtains:

PAg =
1

1− kf,Ag
, (9)

where PAg is in units of dAg and kf,Ag in units of kBZ,Ag.
For the true Ag band structure, kf,Ag = 0.819kBZ,Ag,
thus Eq. (9) gives PAg = 1/(1 − 0.819) = 5.5 mono-
layers; whereas in the band structure that is input to
our simulations with only nearest neighbor interactions,
kf,Ag = 0.878kBZ,Ag, so PAg = 1/(1−0.878) = 8.2 mono-
layers. The above discussion confirms that the slight dis-
tortion from the nearest neighbor treatment is indeed
the reason for the difference between the oscillation peri-
ods. However, it also demonstrates that our calculation
is self-consistent, and will not cause qualitative errors.
Both cases in Fig. 8 shows GMR peaks above 1000%,
but the peak values and the oscillation amplitudes are
quite different from each other. When the Fermi level is
closer to the InAs conduction band bottom (0.50eV), the
peak GMR is larger and so is the oscillation amplitude
(10% ∼ 4000% for 0.50eV compared to 350% ∼ 1500% for
0.56eV). This is because, in this situation, the electrons
allowed to transmit are closer to the Γ point, imposing
a stronger wave vector filtering effect that favors large
GMR. Also, the Γ point is a stationary point of the per-
pendicular wave vector for Ag. When the region allowing
transmission is smaller surrounding the stationary point,

FIG. 8. GMR dependence on the Ag spacer thickness at two
Fermi levels in the InAs conduction band.
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FIG. 9. GMR (top panel) and conductances (lower three pan-
els) vs. Ag thickness with Fermi level at 0.50eV. Conduc-
tances are in units of e2/h. Dashed lines are given as guides
to the eye for one GMR peak, one GMR valley, and one small
dip near GMR peak.

less partial conductances with periods different from the
stationary period contribute to the total conductance,
giving a stronger coherent interference and thus a larger
oscillation amplitude. To study the phase shifts between
GMR and different conductance channels with respect
to Ag thickness, we plot the results in Fig. 9 for Fermi
level at 0.50eV (G↓↓ is not shown for its value is too
small). The results are similar for 0.56eV. Interestingly,
G↑↑ and G↓↑ are in phase with each other (and almost an-
tiphase with G↑↓), and they mostly determine the GMR.
This is different from other simulations42, where G↑↑ and
G↓↑ are almost antiphase. According to Ref.42 with the
structure Fe/Ag/MgO/Fe, the Ag layer represents a po-
tential step in the system and causes a phase shift be-
tween G↑↑ and G↓↑, which largely enhances the MR. It
may be that the additional Ag layer that is introduced as
the right lead in our system causes an additional phase
shift, and as a result aligns the phase between G↑↑ and
G↓↑. This phase alignment between the two dominating
conductance channels in P and AP configurations obvi-
ously weakens the GMR enhancement. As a result, the
G↑↑ peaks don’t align with the GMR peaks, but rather,
with the GMR valleys; whereas the GMR peaks are po-
sitioned away from the G↓↑ where G↑↑ still has relatively
large values. The G↑↓ peaks, on the other hand, match
with the small dips near the GMR peaks.

C. GMR dependence on the Fermi level position
relative to the InAs bands

In this section, we present the simulation results of
GMR and RA products (RAP for P configuration and
RAAP for AP configuration) as functions of the Fermi

level position for a wide range of energies, covering the
region from the valence band top (0eV) to the conduc-
tion band bottom (0.47eV). During these simulations, the
thicknesses of InAs, Fe and Ag are fixed to be 200, 8,
and 4 monolayers respectively. The results are plotted
in Fig. 10. We can see that GMR is enhanced to values
above 1000% from 0.10eV to 0.64eV, ranging from the
InAs band gap to the conduction band bottom. In this
energy region, the RAP peak and RAAP peak are offset,
giving rise to a large GMR. As discussed in Section III A,
although InAs filters wave vectors towards the Γ point
both in the band gap and at the conduction band bot-
tom, the mechanisms of GMR enhancement are in fact of
distinct natures. This is demonstrated by the RA prod-
ucts. When the Fermi level is in the InAs band gap, GMR
is greatly enhanced, and the RA products are extremely
large (due to the large thickness of InAs), indicating that
InAs is an insulator favoring perpendicular tunneling.
The RA products abruptly decrease as the Fermi level
enters the InAs conduction band, indicating that InAs
now operates as a conductor, but the GMR is still very
large. In fact, the GMR peak on the right is inside the
conduction band, which means that the wave vector fil-
tering effect is stronger there than in the band gap, even
with this large InAs thickness. As the Fermi level grows
further into the conduction band, GMR and RA prod-
ucts both decrease, as more and more electrons far from
the Γ point start to effectively transmit. However, there
still exists an energy region where the GMR is above
1000% (larger than conventional GMR systems and com-
parable to conventional MTJs) with RAP smaller than
10 Ωµm2 (orders of magnitude larger than conventional
GMR structures and orders of magnitude smaller than

FIG. 10. GMR and RA products as functions of the Fermi
level position. The valence band top is at 0eV and the con-
duction band bottom at 0.47eV. The dashed lines are guides
to the eye for a selected point whose GMR is above 1000%
and RAP below 10 Ωµm2.
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conventional MTJs). We have selected one of these cases
and indicated it in Fig. 10. Another observation is that
the offset between the RAP and RAAP peak gives rise to
an inverse GMR effect near the top of the valence band,
which only exists within less than a tenth of eV. With
the Fermi level going further into the valence band, a
relatively large GMR effect emerges again, as indicated
by the smaller GMR peak on the left. This is because
the top of the valence band, similar to the bottom of the
conduction band, is confined around the Γ point, thus
also imposing a wave vector filtering effect favoring per-
pendicular transmission and enhanced GMR. However,
the spin-polarized ∆1 states that dominate conductance
are s-like, while the top of the InAs valence band is p-
like, thus there exists a symmetry mismatch that weak-
ens GMR. As can be seen in Fig. 10, the enhanced GMR
in the valence band quickly vanishes as the Fermi level
decreases.

IV. SUMMARY

We have presented a detailed study on the enhance-
ment and oscillation of CPP GMR in the heterostructure
Fe/Ag/Fe/InAs/Ag(100). Our calculations demonstrate
that with optimal Ag and InAs thickness the system is
able to achieve GMR higher than 1000%. This large
GMR results from the coherent conduction of highly po-
larized ∆1 states limited at the center of the 2D Brillouin
Zone, which is due to the wave vector filtering effect im-
posed by the InAs layer. We show that GMR is an os-
cillatory function of Ag thickness with amplitude tuned
by the InAs Fermi energy. And depending on the po-
sition of Fermi level, GMR either exhibits a saturation
behavior (in the InAs band gap), or oscillates (in the
InAs conduction band) with respect to InAs thickness.

Although GMR oscillation with respect to nonmagnetic
spacer thickness is a common phenomenon, it has only
been observed in metallic spacer sandwiched between fer-
romagnetic layers. What we have shown in this article is
a GMR oscillation in a semiconductor sandwiched be-
tween a nonmagnetic layer and a ferromagnetic layer,
which is a novel phenomenon. Interestingly, despite the
different natures of the spacer layers and the sandwich-
ing layers, the GMR oscillations can be well explained
by one single model of quantum-well state resonances
and the oscillation periods are solely determined by the
Fermi wave vector of the spacer layers in the perpendicu-
lar direction. We have shown that the calculated periods
and the observed ones are in good agreement. The ad-
vantage of our proposed system is that its resistance is
tunable by the Fermi level and the InAs thickness, and
the RA product falls into the region between conventional
GMR structures and MTJs. This feature enables our
system to produce a large GMR and a detectable signal
while maintaining a reasonably low resistance that scales
nicely with decreasing device size, which is very desirable
for nowadays technologies especially in high areal density
magnetic recording. We have illustrated this feature by
showing the dependence of GMR and RA product on
a wide range of InAs Fermi energies. One specific con-
figuration of our system with an RA product as low as
7.8 Ωµm2 and a GMR above 1000% has been demon-
strated, and at the same time the scattering region is
only 13nm long.
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