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Abstract

The phonovoltaic cell harvests optical phonons like a photovoltaic harvests photons. That is,

a non-equilibrium (hot) population of optical phonons (at temperature Tp,O) more energetic than

the band gap produces electron-hole pairs in a p-n junction, which separates these pairs to produce

power. A phonovoltaic material requires an optical phonon mode more energetic than its band

gap and much more energetic than the thermal energy (Ep,O > ∆Ee,g ≫ kBT ), which relaxes by

generating electrons and power (at rate γ̇e−p) rather than acoustic phonons and heat (at rate γ̇p−p).

Graphene (h-C) is the most promising material candidate: when its band gap is tuned to its optical

phonon energy without greatly reducing the electron-phonon (e-p) coupling, it reaches a substantial

figure of merit [ZpV = ∆Ee,gγ̇e−p/Ep,O(γ̇e−p + γ̇p−p) ≈ 0.8]. A simple tight-binding (TB) model

presented here predicts that lifting the sublattice symmetry of graphene in order to open a band

gap proscribes the e-p interaction at the band edge, such that γ̇e−p → 0 as ∆Ee,g → Ep,O. However,

ab initio (DFT-LDA) simulations of layered h-C/BN and substitutional h-C:BN show that the e-p

coupling remains substantial in these asymmetric crystals. Indeed, h-C:BN achieves a high figure of

merit (ZpV ≈ 0.6). At 300 K and for a Carnot limit of 0.5 (Tp,O = 600 K), a h-C:BN phonovoltaic

can reach an efficiency of ηpV ≈ 0.2, double the thermoelectric efficiency (ZT ≈ 1) under similar

conditions.
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I. INTRODUCTION
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FIG. 1. (a) The phonovoltaic (pV) cell and (b) its energy diagram, which shows the quasi-Fermi

level (EF), conduction and valence bands (Ee,c, Ee,v), and the generation of an electron-hole pair.

In a pV, a source excites a population of optical phonon modes more energetic than the band gap

in a p-n junction. This population relaxes by producing electrons (and power) or acoustic phonons

(and heat).

The phonovoltaic (pV) cell harvests hot optical phonons like the photovoltaic harvests

photons, as shown in Fig. 1 and described in Phonovoltaic I.1 It is a nanoscale p-n junction

(length L) with metal contacts attached to both the p and n sides (at temperature Tc).

Within the junction, a source of optical phonons creates a non-equilibrium (hot) population

of optical phonons (at temperature Tp,O) more energetic than the band gap (Ep,O > ∆Ee,g)

and hotter than the cold contacts (Tp,O > Tc). This hot optical phonon population scatters

with the valence electrons to generate electron-hole pairs. Then, the intrinsic field of the

p-n junction separates them, forcing electrons (holes) towards the contact on the n (p)

side. If the electrons reach and are collected by the contacts before they accumulate in the

junction and inhibit further generation, then the device functions like a photovoltaic. That

is, it functions like a diode with a supplied phono-current. Conversely, if cell is longer than

the collection length (δe = νe/γ̇e−p, where νe is the electron velocity and γ̇e−p is the rate

of generation), then no significant non-equilibrium grows and the phonovoltaic acts like a

thermoelectric, as discussed in Phonovoltaic I.1 These two operational regimes are named

the phonovoltaic and thermovoltaic regimes, respectively. Here, the search for a material
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candidate which excels in the phonovoltaic regime continues. This search, which began in

Phonovoltaic II2, remains difficult, for a few reasons which are outlined below.

First, if the phonon mode is more energetic than the band gap, its extra energy (Ep,O −

∆Ee,g) is wasted; and if it is less energetic than the band gap, it can not generate electrons.

Furthermore, the band gap and optical phonon must be substantially more energetic than

the thermal energy; otherwise, the p-n junction to operates inefficiently, and the free carriers

inhibit generation. Thus, the phonovoltaic requires a material with Ep,O ≈ ∆Ee,g ≫ kBT ,

where T is the cell temperature and kB is the Boltzmann constant. As very few materials

have a phonon mode more energetic than 100 meV, and even fewer of these have a small

band gap, finding a promising material candidate is very challenging.

Further difficulties arise from the ability of a hot phonon population to relax through

a variety of channels, which includes but is not limited to the generation of electron-hole

pairs (at rate γ̇e−p). For example, optical phonons can down-convert into the acoustic

modes (at rate γ̇p−p), heat the free-carriers (at rate γ̇intrae−p ), and scatter with defects into

unusable phonon modes (at rate γ̇p−d). These additional pathways generate heat rather

than power. Thus, a pV material not only requires that Ep,O ≈ ∆Ee,g ≫ kBT , but it

also requires that the rate of electron generation dominates the rate of heat generation

(γ̇e−p > γ̇p→q = γ̇p−p + γ̇intrae−p + γ̇p−d + ...). This narrows the field of material candidates

further.

However, if a material candidate is found which meets these criteria, the benefits would be

momentous: By intervening before a low-entropy optical phonon population spreads into the

acoustic modes, gains a substantial amount of entropy, and becomes heat, the phonovoltaic

can substantially outperform a thermoelectric device. Indeed, Phonovoltaic I1 showed that

the phonovoltaic cell can approach the Carnot limit (ηC), whereas the thermoelectric cells

are limited, in practice, to around 0.2ηC. While the phonovoltaic cell may only reach between

0.5ηC and 0.7ηC at 300 K due to the limits in the phonon energy1, this would be a massive

step forward in steady-state heat harvest and recovery.

A. Phonovoltaic performance

Phonovoltaic I1 showcased a simple, analytical, and physically intuitive pV efficiency

(ηpV), based on the fraction of optical phonon energy preserved by the band gap (∆E∗

e,g =
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∆Ee,g/Ep,O) and the fraction of the hot optical phonons which relax by generating electrons

rather than heat [γ̇∗e−p = γ̇e−p/(γ̇e−p+ γ̇p→q)], the Carnot limit (ηC), and the fill factor of the

cell (FF). This efficiency is

ηpV = ηC∆E
∗

e,gγ̇
∗

e−pFF, (1)

where the Carnot limit is defined by the non-equilibrium between the hot optical phonon

population (Tp,O) and the cold contacts (Tc),

ηC = 1−
Tc
Tp,O

. (2)

A material figure of merit (ZpV) is extracted from Eq. (1)

ZpV = ∆E∗

e,gγ̇
∗

e−p, (3)

such that the pV cell efficiency is limited by its material figure of merit and the Carnot limit.

Noting that FF → 1 as ηC∆Ee,g/kBTc → ∞ and FF → 0.25 as ηC∆Ee,g/kBTc → 0, the pV

efficiency only reaches ηCZpV when there is substantial non-equilibrium (ηC ≫ 0) and the

band gap is much larger than the thermal energy ∆Ee,g ≫ kBT .
1 Few materials can meet

this criteria at 300 K, as discussed in the following section.

B. Phonovoltaic materials

The maximum optical phonon energy in a typical material is less than 50 meV.3–5 Not

only does this limit the band gap and thus the fill-factor of the phonovoltaic at higher

temperatures, as discussed previously, but it also inhibits generation, as will be discussed

in section IIIA. Only the semiconductors composed of first-row elements (e.g., Diamond

and BN) exhibit an optical phonon more energetic than 150 meV. However, the strong

bonds which produce these energetic phonons tend to localize electrons and open a band

gap well over 1 eV. Even in softer semiconductors, the band gap is typically much larger

than the optical phonon energy, as shown in Fig. 2. Thus, the optical phonons in a typical

semiconductor either can not generate electron-hole pairs or can only generate them quickly

under cryogenic conditions.

The sp2 hybridized, group IV semiconductors (e.g., graphene) are a notable exception. In

these materials, the symmetry between the two triangular sublattices creates the degenerate
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FIG. 2. The band gap and optical phonon energy of various semiconductors. An efficient pV

requires Ep,O > ∆Ee,g ≫ kBT , as in tuned graphene. In typical materials at 300 K, however,

∆Ee,g ≫ Ep,O or Ep,O ≈ kBT , as the strong bonds which enable energetic phonon modes also

localize electrons and open a large band gap. The symmetry of group IV, sp2 coordinated materials

(e.g., graphene) enables them to overcome this trend. For traditional elemental and composite

semiconductors, see [3–5]. For graphame (h-C:H), see [2,6]. For materials with the sp1 acetylene

bond, graphdiyne and BNyne, see [7,8]

Dirac points on the Fermi surface, and no band gap forms despite the strong sp2 bonds.9,10

Graphene, in particular, has extremely energetic optical phonon modes when compared to

most materials, despite its semi-metallic nature. Crucially, there are many methods with

which to open a band gap in graphene, and the e-p coupling dominates the p-p coupling.11

If the properties of graphene were to remain constant as the band gap is tuned to the

optical phonon energy, its pV figure of merit could exceed 0.8.2 No other material candidate

surveyed comes close to this promising figure of merit.
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II. TUNING THE BAND GAP OF GRAPHENE

Opening a band gap in graphene has received substantial attention since its discovery,

as many functional graphene devices require a band gap. Thus, researchers have proposed

many methods to achieve this goal. For example, researchers have proposed the use of a

large uniaxial strain12–14, an electric or magnetic field15,16, doping17, an ordered substrate18,

or chemical functionalization19 to open a band gap.

However, Phonovoltaic II2 showed that opening a band gap in graphene can severely

and negatively impact its interband e-p coupling. In particular, the use of hydrogenation to

shift from sp2 to sp3 hybridization and open a band gap reduced the e-p coupling so severely

that the figure of merit vanished. It is hypothesized that the change in hybridization was

responsible, as the e-p coupling between the σ and σ∗ bands is extremely weak in pure

graphene. Thus, this study looks at the manipulation of the sublattice symmetry rather

than the change in hybridization. This is done in general using a simple tight-binding model

and in particular using the ab initio (DFT-LDA) simulation of graphene with boron and

nitrogen atoms substituted into the lattice (h-C:BN) or placed below the graphene layer in

a graphene/BN bilayer (h-C/BN).

A. Graphene:BN

When the symmetry between the two sublattices in graphene is disturbed, a band gap

opens. In h-C:BN, carbon atoms in the crystal are replaced with a dilute concentration

of boron and nitrogen atoms.20–22 Electrons are attracted to the nitrogen atoms, or to the

carbon atoms surrounding the boron atoms, due to the relative electronegativity of boron,

carbon, and nitrogen. Ion-electron and electron-electron interactions propagate this pertur-

bation throughout the lattice, such that the symmetry of the graphene lattice is removed

and a band gap opens.23 The more BN that is substituted into the lattice, the larger the

band gap grows. Placing all of the boron atoms into one of the graphene sublattices and all

of the nitrogen atoms into the other sublattice creates the largest band gap at a given BN

concentration, as it maximizes the asymmetry created by the BN dopants.23

In theory, there is little reason to expect B and N atoms to order themselves at low

concentration such that most B atoms are on one sublattice and most N atoms are on the
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other sublattice. However, a low concentration of BN opens a relatively large band gap in

experiments24, larger than those predicted by density functional theory (DFT) simulations

of h-C:BN with B and N on separate sublattices.23 This is explained by the tendency of B

and N atoms to clump into local (BN)n domains and also by the under-estimation of band

gaps within DFT.23

Unfortunately, it is computationally impractical to calculate high-quality phonon and

electron-phonon properties in large supercells. This limits the granularity and variety of

h-C:BN crystals which can be reasonably simulated. Here, up to 6 × 6 graphene supercells

are used with two distinct substitutional paradigms: ordered [h-Cx(BN)y,o], wherein B and

N are always on a different sublattice, and disordered [h-Cx(BN)y,d], wherein B and N are
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FIG. 3. (a) The graphene sheet, its geometry, and brillouin zone (BZ). In graphene, the sp2

hybridized orbitals of carbon atoms form strong bonds with the three nearest neighbors in a

hexagonal lattice (defined by two vectors a1 and a2 of length a) with two symmetric, triangular

sublattices, separated by δ1. (b) h-C/BN bilayers. Real bilayers form Moire superlattices rather

than an ideally stacked structure due to the small difference in the h-C and h-BN lattice constants.
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spread between the two sublattices. Two examples of these paradigms are shown in Fig.

3(b).

B. Graphene/BN

When a graphene sheet is placed on a h-BN substrate, such that each boron atom lies

below a carbon atom in one sublattice and each nitrogen atom lies below a carbon atom

in the other sublattice, as shown in Fig. 3(c), the cross-plane Van der Waals interactions

remove the symmetry between these sublattices, and a band gap opens. However, h-BN

has a slightly larger lattice constant than graphene, such that the bilayer forms a Moire

superlattice, as shown in Fig. 3(c). This discrepancy spreads the boron – carbon and

nitrogen – carbon interactions evenly between the two graphene sublattices, such that no

net asymmetry arises, and no band gap opens.25,26 While a bilayer of graphene on an h-BN

substrate does exhibit a small band gap of 40 meV25,26, the number of atoms required to

simulate the h-C/BN superlattice prohibits ab initio phonon calculations.

Instead, the three ideal stacking configurations of h-C/BN are simulated here. These

stacking configurations are as follows: AA stacking, where the B and N atoms are directly

below the C atoms in graphene; AB-N stacking, where the N atoms are below the C atoms

and the B atoms are under the vacancy in the graphene lattice; and AB-B stacking, where

the B atoms are below the C atoms and the N atoms are under the vacancy, as shown

in Fig. 3(c). Although these structures are non-physical (i.e., do not capture the lattice

mismatch and its effects), simulating them helps to investigate the relationship between

the asymmetry, band gap, and e-p coupling in tuned graphene materials. Moreover, the

small unit cell enables the p-p coupling calculations which remain out-of-reach for the large

h-C:BN supercells.

III. CENTRAL MECHANISMS

Central to the successful operation of the pV and the material figure of merit is the

interband electron-phonon coupling which drives electron generation, and the competing

interactions which produce heat. These interactions include the intraband electron-phonon

coupling, wherein a free charge gains kinetic energy after absorbing a phonon; the phonon-
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phonon coupling, wherein an optical phonon down-converts into two acoustic phonons; and

the phonon-defect coupling, wherein an optical phonon scatters with a defect to produce high

momentum phonons incapable of generating electrons. In this section, these four mechanisms

are discussed.

A. The Electron-phonon coupling

As a phonon displaces the ions in a crystal, it changes the electric potential-field created by

those ions. Electrons around the displaced ions can scatter against the perturbed potential

and absorb the phonon.27 The electron-phonon coupling describes this interaction (as well

as phonon emission). The e-p interaction element follows from perturbation theory is28

Mep,α,i,j(ke,kp) = (
~

2mωkp,α
)1/2〈ke + kp, j|

∂ϕe

∂dkp,α
|ke, i〉, (4)

where i and j are the initial and final band indices, ϕe is the electron potential energy, m

is the atomic mass, and ωkp,α and dkp,α are the frequency and atomic displacement pattern

of a phonon with momentum kp and polarization α. The first group of terms describes the

displacement of the phonon mode and the second quantifies the change in potential where

initial and final electron states overlap. Thus, a strong e-p coupling requires, at minimum,

that the valence and conduction states overlap substantially.

The Fermi golden rule (FGR)29 turns this coupling element into an e-p scattering rate

(γ̇e−p), i.e.,

γ̇±e−p(kp, α) =
2π

~

∑

ke,ij

|Mep,α,i,j(ke,±kp)|
2δ[Ee,i(ke)− Ee,j(ke ± kp)± ~ωkp,α] (5)

× [fe,i(ke)− fe,j(ke ± kp)], (6)

where the + (−) indicates absorption (emission), and Ee,i(ke) and fe,i(ke) are the energy

and occupation of an electron in band i and with momentum ke.

The occupation terms have important consequences. Primarily, if the band gap is much

larger than kBT and the Fermi level is far from the valence and conduction band edges, the

intraband interactions are substantially reduced by either the lack of conduction electrons

[fe,c(ke) ≃ 0] or by the lack of empty states in the valence band [fe,v(ke) ≃ fe,v(ke±kp) ≃ 1].

Conversely, if the band gap is much smaller than kBT or if doping moves the Fermi level

into the conduction or valence bands, the interband interaction is inhibited by the lack of
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empty states in the conduction band or the lack of electrons in the valence band. Moreover,

as the band gap approaches the optical phonon energy, the number of available energy

conserving states approaches zero. Thus, strong interband coupling requires that the band

gap is smaller than the phonon energy and that the phonon energy is substantially larger

than kBT , i.e., Ep,O > ∆Ee,g ≫ kBT .
2
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FIG. 4. The ratio of the interband generation rate to the total rate of optical phonon absorption

by electrons in graphene. When the optical phonon energy is much larger than kBT in an intrinsic

semiconductor, the rate of interband generation events dominates the rate of intraband heating

events until ∆Ee,g → Ep,O. As the optical phonon energy approaches kBT or as the Fermi level

approaches the conduction band edge (EF → Ee,c), the interband interactions dominate over a

much smaller range of band gap energies. When Ep,O/kBT < 5, the intraband interactions always

dominate.

As previously noted, intraband phonon absorption events heat the electron population

and do not contribute to power production. Therefore, they can reduce the material figure

of merit. However, these events can be neglected, and the summation in Eq. (6) is safely

restricted to the interband indices, in three instances.

First, intraband scattering events heat the optical phonon population, rather than cooling

it. For example, when electrons (holes) are excited into energetic conduction (valence) states

by an electric field, they emit optical phonons as they relax, which heats the optical phonon
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population. In this case, the intraband interactions do not act as a undesirable relaxation

pathway. Rather, they act as the source of optical phonons required for pV operation, and

the intraband coupling can be substantial without affecting ZpV.

Second, the collection of hot optical phonon modes are limited to momenta which enable

energy conservation for inter- but not intraband transitions, such that the intraband inter-

action rate is zero. For example, only interband e-p interactions occur in graphene when

kp < Ep,O/(|νe|~), where νe is the electron Fermi velocity. Conversely, if the interband tran-

sition is forbidden by momentum and energy conservation, but the intraband interaction

is allowed, then intraband interactions dominate. For example, only intraband interations

occur in graphene when kp > Ep,O/(|νe|~).

Third, there are substantially more electrons near the valence band edge than there are

holes or conduction electrons, i.e., Ep,O > ∆Ee,g ≫ kBT and under moderate doping. To

quantify this condition, consider a material where the inter- and intraband coupling elements

have similar magnitude throughout the brillouin zone (BZ), i.e., |Mep,α,c,v| ≈ |Mep,α,c,c| ≈

|Mep,α,v,v|, where c and v represent the conduction and valence band indices. Next, assume

that the phonon of interest is an optical mode (α = O) near the Γ-point with negligible group

velocity (~ω~kp,O ≃ Ep,O when kp ≈ 0). Further assume that the electron distribution is

given by Fermi-Dirac statistics (f ◦

e ) and that the electron density of states (De) near valence

and conduction band edges are identical. Finally, note that the total scattering rate involves

a summation over kp as well as ke. That is, Eq. (6) gives the rate at which a particular

phonon mode (kp, α) scatters with all of the electrons, while the total rate considers the

scattering of a particular polarization (α) with all of the electrons.

These summations and the δ-function are transformed into an integral over the electron

energy using two electron density of state (De) functions representing the initial and final

density of states. Through this procedure2, the ratio of inter- to intraband phonon absorption
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events is quantified as

γ̇intere−p

γ̇intrae−p

=
{

∫ Ep,O−∆Ee,g

0

dEeDe(Ep,O −∆Ee,g − Ee)De(Ee)

× [f ◦

e (−Ee −∆EF,v)− fe(Ep,O −∆Ee,g −Ee +∆EF,c)]
}

/
{

∫

∞

0

dEeDe(Ee)De(Ee + Ep,O)

× [f ◦

e (Ee +∆EF,c)− f ◦

e (Ee +∆EF,c + Ep,O)

+ f ◦

e (−Ee − Ep,O −∆EF,v)− f ◦

e (−Ee −∆EF,v)]
}

, (7)

where ∆EF,v = EF − Ee,v and ∆EF,c = Ee,c − EF are the energy differences between the

valence (Ee,v) and conduction (Ee,c) band edges and the Fermi level (EF). Note that the

intraband scattering rate includes both hole and electron contributions.

Figure 4 shows the importance of intraband scattering for the dispersionless bands of

graphene (De ∝ |Ee|) as predicted by Eq. (7). Note that adding dispersion (e.g., De ∝

|Ee|
1/2) to the bands increases the density of the low-energy states relative to the high-

energy states. Thus, it decreases the relative importance of the intraband scattering events,

and Fig. 4 provides conservative results.

Despite this, it shows that the interband interactions dominate when Ep,O ≫ kBT , unless

the Fermi level moves extremely close to the band edges or the band gap approaches the

phonon energy. For Ep,O/kBT < 10, however, the intraband scattering events begin to

compete with generation events. For Ep,O/kBT < 5 the intraband scattering events dominate

the generation events, regardless of the band gap or amount of doping.

In this study, it is assumed that at least one of these three cases hold. Typically, an

excited electron population produces the hot optical phonon population as it relaxes. Thus,

the first conditions is met. Moreover, the second conditions is always met when the figure

of merit is evaluated for a Γ-point phonon, as it is here. Finally, the third condition can be

met under certain conditions, even at 300 K, as outlined by Fig. 4. Thus, this assumption

is typically reasonable.

B. Phonon-phonon coupling

The p-p coupling arises from the anharmonicity of the crystal, and it is typically dom-

inated by the three-phonon interactions30: up-conversion, where two low-energy phonons
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combine to create a single high-energy phonon, and down-conversion, where a high-energy

phonon scatters with and creates two low-energy phonons. The three-phonon coupling arises

from the third-order derivatives of the crystal energy (Ψ).31 Thus, the matrix element for

the interaction between three phonons is

M
kpk

′

pk
′′

p

αα′α′′ =
∑

ijk

∑

xyz

(
~

2mimjmkωkp,αωkp
′,α′ωkp

′′,α′′

)3/2Ψxyz
ijk ǫ

xi
kp,αǫ

yj
k′

p,α
′′ǫ

zk
k′

p,α
′′δkp,k′

p±k′′

p
, (8)

where ǫxi
kp,α

is the polarization of the phonon mode in the x direction for atom i, Ψxyz
ijk is

the partial derivative of the crystal energy for the displacement of atoms i, j, and k in

directions x, y, and z, and the δ-function conserves momentum during up- (−) and down-

conversion (+). Note that the dynamical matrix describing the phonon modes arises from

the second-order derivatives of the crystal energy.

The rate of down-conversion [γp−p(kp, α)] resulting from this interaction follows from the

FGR. For a zone-center phonon mode, the FGR gives32

γ̇p−p(Γ, α) =
2π

Nkp
′

∑

α′α′′k′

p

|M
Γk′

p−k
′

p

αα′α′′ |2δ(ωΓ,α − ωk′

p,α
′ − ωk′

p,α
′′)(f ′

p + f ′′

p + 1), (9)

where fp is the phonon occupation. The occupation terms indicate that down-conversion

is enhanced the hotter the cell becomes and the less energetic the final states are. Thus,

down-conversion is reduced when the optical phonon mode is much more energetic than the

thermal energy and, again, Ep,O ≫ kBT is desired.

C. Phonon-defect coupling

Defects in a crystal, e.g., the B and N atoms in h-C:BN, act as scattering centers for the

phonons of the ideal crystal. In general, a defect can have a different mass than the atoms in

the ideal crystal, or it can change the interatomic force constants. These variations lead to

local changes in the atomic displacement and the frequency of this displacement, creating a

scattering center. Moreover, the variations are typically random, rather than ordered, such

that the momentum conservation enforced in the e-p and p-p couplings do not apply here.

That is, only energy is conserved in the phonon-defect coupling.33

The matrix element which arises from a change in mass, e.g., when isotopes are distributed

13



throughout the crystal, is34

Mp−i,αα′(kp,kp
′) = [x(1 − x)(

δm

m
)]1/2ωkp,α

∑

i

|ǫi∗
kp,α · ǫi

k′

p,α
′ |, (10)

where x is the disorder parameter, i.e., the probability an atom at site i has mass m+ δm,

and m is the average mass. From the FGR, the rate of isotopic scattering becomes

γ̇p−i,α(kp) =
π

2Nkp
′

∑

kp
′,α′

|Mid,αα′(kp,kp
′)|2δ(ωkp,α − ωkp

′,α′). (11)

However, this interaction element does not account for changes to the inter-atomic force

constants, and it is difficult to derive a satisfactory and reasonable matrix element which

includes the complete effects a cluster of BN atoms has when substituted into graphene.

Thus, instead of the perturbation approach used for the previous scattering mechanisms, a

Green’s function approach is taken.34,35

In this approach, the phonon spectral function [Akpα(ω)] is evaluated, and its full-width

at half-maximum is the scattering rate. The spectral function is given by

Akp,α(ω) = −
1

π
Im[Gkp,α(ω)] (12)

Gkp,α(ω) = 〈ǫkp,α|
2ω

(ω + iζ)2 −D
|ǫkp,α〉, (13)

where D is the ab initio dynamical matrix of the h-C:BN crystal, ǫkp,α are the normalized

eigenvectors of the dynamical matrix of the ideal graphene crystal, and ζ is a small, positive

number.

IV. TIGHT BINDING MODEL

Before proceeding onto the ab initio analysis, it is useful to determine the expected results.

Here, a simple tight binding model is presented in order to determine how the sublattice

symmetry effects the band structure and electron-phonon coupling.

The tight binding (TB) model assumes each electron in the crystal is tightly bound to the

ions in that crystal and that the remaining electron interactions are comparatively small.

Thus, the Hamiltonian (HTB) is

HTB =
∑

m

Hat,m +∆H, (14)
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where Hat,m is the isolated atomic Hamiltonian of atom m and ∆H represents the remaining

interactions of the crystal, with Hat,m ≫ ∆H . Thus, the electron wavefunctions (ψ) are built

using a linear combination of Bloch functions (Φmn) based on the atomic orbitals (φmn) which

satisfy Hat,mφmn = ǫmnφmn, where ǫmn is the energy of the nth orbital for atom m. That is,

ψke(r) =
∑

mn

βmnΦmn (15)

Φmn =
1

N1/2

∑

l

φmn(r −Rlm)e
ike·Rlm , (16)

where βmn is the weight of each Bloch function, which combines the atomic orbitals of each

atom at location Rlm in the l = 1, 2, ..., N unit cells.

The tight-binding approach has been been widely and successfully used to model the band

structure of graphene.36–38 A simple model which accurately reproduces the band structure

near the Fermi surface assumes that the bonding sp2 orbitals (s, px, and py) form the deep

valence and energetic conduction bands (σ and σ∗ bands), while the remaining pz orbitals

form the near-Fermi band structure (π and π∗ bands). Moreover, it assumes that these two

sets of orbitals do not interact. Thus, the basis is safely constrained to a single pz orbital

per atom, i.e.,

ψnke(r) = |ke〉 =
∑

m

βmΦm =
1

N1/2

∑

l

pz,m(r −Rlm)e
ike·Rlm . (17)

Further, it assumes these atomic orbitals are orthogonal, such that 〈pz,m|pz,m′〉 = δm,m′ and

〈ke
′|HTB|ke〉 = ǫkeδke

′,ke
. (18)

Finally, it assumes ∆H only contains the interactions between the orbital centered on one

atom and the ionic potential of its nearest neighbor ions (ϕion,m′), i.e.,

〈pz,m′|∆H|pz,m〉 =

∫

drpz,m′(r −Rm′)ϕion,m(r)pz,m(r −Rm) = −ϕh, (19)

when m and m′ are nearest neighbor atoms. Otherwise, the integral is zero. ϕh, the hopping

integral, describes the tendency for an electron to hop from one atomic orbital to its nearest

neighbor.

It follows from Eqs. (17 and 18) that the 2 × 2 matrix formed by Hij = 〈Φi|HTB|Φj〉

has eigenvalues ǫ±
ke

and eigenvectors β± = (β1, β2), which represent the valence (−) and

conduction bands (+). That is,

H − ǫkeI = 0, (20)
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where I is the identity matrix. The diagonal elements of H capture the self energy (ǫi) of

the atomic orbitals, while the off-diagonals capture the hopping strength (ϕh) modified by

a phase-factor (γ), i.e.,

H =

[

ǫ1 ϕhγ(ke)
ϕhγ

∗(ke) ǫ2

]

. (21)

The phase-factors capture the effects of the geometry on the Bloch waves, i.e.,

γ =
∑

exp(ike · δi), (22)

where δi is a vector connecting nearest-neighbors, as shown in Fig. 3(a). That is, δ1 =

a(0, 31/2/3, 0), δ2 = δ1 − a1, and δ3 = δ1 − a1 − a2 connect an atom on one sublattice

with its nearest neighbors, where a is the lattice constant and a1 = a(1, 0, 0) and a2 =

a(−0.5, 31/2/2, 0) are the vectors defining a hexagonal unit cell.

H has eigenvalues (describing the electron bands)

ǫ±
ke

=
1

2
{ǫ1 + ǫ2 ± ϕh[12ϕ

2
h + (ǫ1 − ǫ2)

2 + 8ϕ2
h(2 cos

κe,x
2

+ cos
31/2κe,y

2
+ cos 31/2κe,y)]

1/2},

(23)

and eigenvectors (describing the electron wavefunctions)

β±

1 = 1

β±

2 =
2ǫ±

ke
− ǫ1

2t(1 + 2 exp iκe,x

2
cos 31/2κe,y

2
)
, (24)

where the + (−) denotes a value associated with the conduction (valence) band.

A. Results

In graphene, and in the other Group IV hexagonal materials, both atoms in the unit cell

are identical, such that ǫ1 = ǫ2. Under this symmetry, the conduction and valence bands are

degenerate (no band gap) and the electron has zero effective mass near these Dirac points

(at K and K′), as shown in Fig. 5. This leads to many of the remarkable material properties

in graphene. In addition, the TB model predicts that both of the Bloch functions contribute

equally to the conduction and valence band wavefunctions throughout the BZ (|β±

1 | = |β±

2 |).

That is, the wavefunction is spread equally between all pz orbitals, regardless of ke and ǫ
±

ke
.
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FIG. 5. (a) The band structure (ǫ±) and (b) fraction of the electron wavefunction composed

by atomic orbitals centered on atoms in one of the two sublattices (|β±

i |/
∑

|β±

i |) and resulting

overlap (I±
ke,ke

′) of the valence (-) and conduction(+) bands with (—) and without (--) sublattice

symmetry. In a symmetric crystal like graphene, no gap exists and the valence- and conduction-

band wavefunctions overlap. In a non-symmetric crystal like h-BN, a band gap opens, the valence

and conduction bands collapse into atomic orbitals centered on different sublattices, and the overlap

between them vanishes at the band edge, proscribing the e-p interaction.

The symmetry between the two sublattices creates these phenomena. As there is no

energy cost associated with an electron moving from one set of orbitals to the other, the

electrons are not localized to one set of orbitals. Thus, the wavefunction is a mix of both

atomic orbitals. Moreover, the electrons are free to and always do move throughout the

lattice.

However, when the symmetry between the two atomic sites is broken, such that ǫ1 6=

ǫ2, the degeneracy between the conduction and valence bands is lifted, a band gap opens

(∆Ee,g = ϕh|ǫ1−ǫ2|), and the electrons gain an effective mass at K and K′ (the former Dirac

points and the new band edge). Furthermore, the wavefunction at the valence (conduction)

band edge collapses into the Bloch wavefunction composed of the less (more) energetic

atomic orbitals, as shown in Fig. 5(b).

This wavefunction collapse is most intuitively understood through an excitation picture.
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Consider a valence electron at band edge in an asymmetric crystal, which is given just enough

energy to surmount the band gap, scatter into the conduction band, and leave a hole behind.

As this electron has no energy remaining to move about the crystal (no kinetic energy), it

must be localized to one of the two sets of atomic orbitals. Likewise, the hole it leaves behind

has no kinetic energy and must also be localized. It is intuitive that the hole (electron) is

localized to the set of orbitals with less (more) self-energy. Then, as these excitations gain

kinetic energy, i.e., move through the crystal, they must also become delocalized. Therefore,

their wavefunctions must mix with the previously unoccupied orbitals.

This has important consequences on the interband e-p coupling in asymmetric crystals.

Consider the interband interaction element from Eq. (4) for a Γ-point

Mep,α,+,−(ke,Γ) ∝ 〈ke,+|
∂ϕe

∂dΓ,α
|ke,−〉. (25)

Assuming that ∂ϕe/∂dkp,Γ is relatively constant throughout the cell, the interaction element

is proportional to the overlap between the initial and final electron wavefunction (I±
ke,ke

′)

Mep,α,+,−(ke,Γ) ∝ 〈ke,+|ke,−〉 = I±
ke,ke

′. (26)

Using Eqs. (17 and 18), the TB overlap integral is

I±
ke,ke

′ =
∑

i

|β
+

i ||β
−

i |, (27)

where β
±

i is the normalized β±

i . Thus, the collapse of the conduction and valence wavefunc-

tions into orthogonal atomic orbitals prohibits the e-p interaction at, and weakens it near,

the band edge (K and K′). Throughout most of the BZ, however, the TB overlap integral

remains near unity, as shown in Fig. 5.

V. AB INITIO RESULTS

The tight-binding model makes several key assumptions, e.g., that changes to the overlap

integral dominate changes to the e-p interaction and that the two sets of atomic orbitals

are orthogonal. Therefore, it remains crucial to test its predictions. Here, the ab initio

simulation of graphene, h-BN, h-C:BN, and graphene/BN is used for this purpose and in

an effort to find and characterize a suitable pV material. Therefore, the TB model predicts

that γ̇e−p → 0 as ∆Ee,g → Ep,O, but remains unaffected as ∆Ee,g → 0.
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A. Methods

The density functional theory (DFT) and density functional perturbation theory (DFPT)

calculations are done using Quantum Espresso39, the local density approximation (LDA)

for the exchange-correlation functional, norm conserving pseudopotentials generated by the

Martins-Toullier method40, and a plane-wave basis with a 55 Ry cut-off frequency. A 30×30

ke-mesh is used for graphene, h-BN, and h-C/BN crystals, while a 9× 9 ke-mesh is used for

the 4× 4 h-C:BN supercells (32 atoms) and a 6 × 6 ke-mesh is used for the larger h-C:BN

supercells. Phonon properties are calculated on a 15×15 kp mesh for graphene and h-C/BN

and at the Γ-point of the h-C:BN crystals.

A lattice constant of 2.43 Å is used for all structures: While h-BN has a slightly larger

lattice constant than graphene, a less than 6% concentration of BN should have a negligible

impact on overall lattice constant. The graphite inter-layer spacing of 3.22 Å is used for

the h-C/BN simulations. All structures are surrounded by at least 12 Å of vacuum. Before

further calculation, the atoms are relaxed within the crystal until all force components

converge to within 10−6 Ry/Å and the energy converges to within 10−8 Ry.

B. Electron and Phonon properties

Following these methods, the electron band gap and band structure are calculated for h-

C, h-BN, a variety of h-C:BN crystals, and the three ideal h-C/BN stacking configurations.

Then, the phonon properties are calculated h-C, h-BN, and for those h-C:BN and h-C/BN

crystals which have a band gap in the range of interest [∆Ee,g ∈ (0, Ep,O)].

1. Band gap

A variety of the simulated h-C:BN and all h-C/BN crystals have band gap that lies

in range of interest, i.e., ∆Ee,g < Ep,O, as shown in Fig. 6. In particular, the ordered h-

C48(BN)1,o has a band gap extremely close to the optical phonon energy, while the disordered

h-C28(BN)2,d has an extremely small band gap. The h-C70(BN)1,o, h-C68(BN)2,o, and the

h-C/BN structures have band gaps spaced across 0.20Ep,O < ∆Ee,g < 0.8Ep,O. Thus, this

collection of crystals enables a reasonable investigation of the e-p coupling in tuned graphene.
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FIG. 6. The band gap of h-C:BN and h-C/BN for variations in the BN concentration. The

band gap tends to increase as the concentration increases, particularly when the B and N atoms

are substituted into different sublattices (ordered h-C:BNo), as previously predicted.23 Conversely,

the band gap widens slowly with the disordered substitution of BN onto random sublattices (h-

C:BNd). The experimental results24 show that the gap widens even more quickly than in h-C:BNo.

Regardless, a few of the simulated crystals meet the primary pV condition: Ep,O > ∆Ee,g.

As discussed in Sec. IIA, the ordered placement of B and N atoms onto separate sub-

lattices (h-C:BNo) maximizes the band gap, while their disordered placement (h-C:BNd)

minimizes the band gap. Indeed, the band gap of h-C:BNo approaches the maximum value

predicted by Nascimento et al., as shown in Fig. 6.23 However, the band gap of the h-C:BNo

crystals remains well below the experimental trend.24 Indeed, experimental results suggest

that only a 2% BN concentration is required to tune the band gap of h-C:BN to its optical

phonon mode (200 meV), while h-C:BNo requires a BN concentration of 5% to reach 200

meV in these simulations. This is likely due to the underestimation of the band gap within

DFT-LDA simulations.

The h-C/BN structures, in contrast, diverge from both previous ab initio and experimen-

tal results.25,26 This is expected: as discussed in Sec. II B, the real crystal forms a Moire

superlattice, not the ideally stacked configurations simulated here. In these configurations,

a boron atom (AB-B), nitrogen atom (AB-N) or both (AA) interact with one sublattice per

atom, rather than interacting equally with both sublattices (as in the superlattice). Thus,

a band gap opens. As the highly electronegative nitrogen interacts more strongly with the
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graphene layer than boron does, the AA stacking opens the largest band gap (both boron

and nitrogen interact with the graphene), the AB-N stacking opens a moderate band gap

(only nitrogen interacts with the graphene), and the AB-B stacking opens the smallest band

gap (only boron interacts with the graphene).

2. Electronic Dispersion

Unsurprisingly, the electronic band structures of the three h-C/BN bilayers strongly re-

semble the superposition of the single layer h-C and h-BN band structures, as shown in

Fig. 7(a) and (b). Indeed, the in-plane, electron-ion interactions are much stronger than

the cross-plane Van der Waals interactions. However, these small interactions do lift the

symmetry between the graphene sublattices, such that a small band gap opens and the band

edge gains dispersion at the K and K′ points, as predicted by the TB model.

The electronic band structure h-C:BN primarily resembles that of graphene. Note the

limited dispersion in the π bands between the K and M points and the similarities between

the σ bands near Γ, as displayed in Fig. 7(c). However, the π bands are depressed throughout

the BZ and gain slight dispersion between Γ and K, among other substantial changes. Most

importantly, a small band gap opens and the band edge gains dispersion, as predicted.

Indeed, the TB model accurately predicts the qualitative features of the h-C:BN and h-

C/BN π bands near the Fermi level.

3. Phonon density of states

The h-C/BN phonon density of states (Dp) very nearly equals the linear combination of

the h-C and h-BNDp, as shown in Fig. 8. While the asymmetry has important consequences

for the electron band structure, the sp2 bonds largely determine the phonon properties, and

these bonds are nearly unaffected by the change in symmetry. Indeed, the only phonon

features affected by the opening of the band gap are those which arise as a result of the

strong e-p coupling in graphene and vanish as a result of this coupling weakening. For

example, the Kohn anomaly of the TO phonon mode at K and K′ (A′

1 mode) should weaken

when the band gap opens, as the phonon no longer connects two points on the Fermi surface.

However, accurately capturing this anomaly within DFT-LDA is difficult.10 Therefore, the
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FIG. 7. The electronic structure of (a) h-C and h-BN, (b) h-C/BN, and (c) h-C48(BN)1,o. The band

structure of h-C/BN strongly resembles the superposition of the h-C and h-BN band structures.

The band structure of h-C48(BN)1,o, although complicated by the band-folding, resembles that of

h-C. However, the π bands are less energetic and have some dispersion throughout the BZ. Note

the narrow band gap formed in h-C:BN and h-C/BN and the large band gap of h-BN.

similarity between the phonon density of states in h-C, h-BN, and h-C/BN is both expected

and produced.

Due to the computational requirements, calculating the dynamical matrices of h-C:BN

for a grid of kp points is unrealistic. With such a small collection of force constants, Fourier

interpolation only captures some features of the density of states (DOS) well. These features

strongly resemble the Dp in pure graphene, as expected for such a small concentration of BN.

However, some differences are certain to exist, due to the differences in mass and harmonic

force constants between B, C, and N atoms. The failure to capture these features would be

particularly troubling if the p-p coupling were to be calculated for h-C:BN. However, such

a calculation is already precluded by the large number of atoms, as discussed in Sec. VC2.

Moreover, the spectral functions of h-C:BN suggest that the disturbance is minimal when
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the BN concentration is below 6%, as discussed in Sec. VC3.

C. Phonon interactions

The interaction of the E2g phonon mode, i.e., the 198 meV Γ-point LO mode, with

electrons, acoustic phonons, and defects is considered in this section, using the equations

discussed in Sec. III.

1. Electron-phonon coupling

The interband electron-phonon scattering rate given in Eq. (6) requires the valence and

conduction band structures (Eke,i) and the interaction matrix elements [Mep,α,i,j(ke,kp)].

The matrix elements are evaluated within DFPT on the ke-mesh given in Sec. VA, while the

band structures are collected from an additional, non-self-consistent electronic calculation

on a dense ke-mesh (180×180 for h-C and h-C/BN and 18×18 for h-C:BN). Then, the band

structure and matrix elements are linearly interpolated onto a fine 2000×2000 ke-mesh and
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FIG. 9. Ab initio (a) Interband e-p coupling and (b) e-p scattering rate in h-C, h-BN, h-C/BN,

and h-C:BN for the zone-center, LO phonon mode. The BZ and high symmetry points are shown,

along with the ring for which energy is conserved (δE). Also shown are two TB models: TB 1,

which uses a scaled overlap integral [Eq. (27)] as the e-p matrix element; and TB 2, which assumes

the matrix element is independent of the band gap. The scattering rate is approximately halved

when h-C is doped with BN. However, the e-p coupling remains strong at the K and K′ points,

regardless of the asymmetry and band gap. Therefore, γ̇e−p is nearly independent of ∆Ee,g until

∆Ee,g ≃ Ep,O, at which point the number of states available for interband transitions vanishes.

The TB 2 model predicts this trend.

the integration [Eq. (6)] is carried out using a Lorentzian δ-function with 20 K of smearing,

as in Phonovoltaic II.2

The ab initio interband electron-phonon coupling strength of the Γ-point LO phonon is

shown in Fig. 9(a), where it is scaled by the relative area of the supercell (Ω/Ωh−C, where

Ωh−C is the area of the graphene unit cell). The e-p coupling in graphene has a few notable

features. First, the coupling vanishes near the Γ-point (between the σ and σ∗ bands). In

Phonovoltaic II2, this result is used to suggest that the transformation from sp2 to sp3
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hybridization destroys the e-p coupling in graphame (h-C:H). Second, the e-p coupling is

relatively strong at the Dirac points. As the collection of energy conserving transitions form

a small ring around these points (K and K′), this enables fast γ̇e−p. Both h-C:BN and

h-C/BN exhibit these two features, as shown in Fig. 9(a).

This is unexpected: the TB model predicts that the conduction and valence band-edge

wavefunctions are comprised of a different and orthogonal set of atomic orbitals, such that

the e-p coupling should vanish at the K points, as discussed in Sec. IV. This is particularly

unexpected in h-C/BN, where the h-BN substrate primarily effects the sublattice symmetry

of the h-C layer, without substantially affecting the local properties. A partial explanation

of this discrepancy comes from the assumption of orthogonality in the TB model: That

is, the overlap integral is at least equal to the overlap of the nearest neighbor orbitals

(I±
ke,ke

≥ 〈pz,1|pz,2〉). Therefore, if the orbitals centered on one atom overlap substantially

with those centered on the nearest neighbor, the overlap integral remains substantial, even

as ∆Ee,g → Ep,O.

Two tight-binding models of the interband e-p scattering rate are derived in order to

examine this behavior and determine the γ̇e−p(∆Ee,g) trend. Both models use the TB

band structure [Eq. (23)] and the FGR integration presented in Eq. (6). However, they

use different matrix elements. The first model (TB 1) uses the TB overlap integral [Eq.

(27)] as the matrix element, while the second model (TB 2) assumes the matrix element is

independent of the asymmetry. The scattering rate predicted by either model only depends

on ∆Ee,g/Ep,O, and not on the individual parameters: Ep,O, ϕh, ǫ1, and ǫ2. Therefore, these

models are fit to the ab initio results by setting Ep,O = 198 meV and then scaling γ̇e−p to

minimize the error between the predictions and the h-C, h-C:BN, or h-C/BN results.

As shown in Fig. 9(b), the TB 1 model predicts a steady decrease in γ̇e−p with increasing

∆Ee,g, while the TB 2 model predicts that γ̇e−p is relatively independent of ∆Ee,g until

∆Ee,g → Ep,O, at which point it vanishes. Indeed, the increasing dispersion at the valence

and conduction band edges compensates almost exactly for the increasing band gap, such

that the number of energy conserving transitions remains nearly constant as the band gap

increases. When ∆Ee,g → Ep,O, however, the number of energy conserving transitions

vanishes quickly, such that γ̇e−p → 0. The ab initio results agree extremely well with the

TB 2 model. Indeed, the e-p coupling is nearly independent of the band gap in both h-C/BN

and h-C:BN.
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However, the e-p scattering rate in h-C:BN is half of that in graphene. Interestingly, this

is not a function of the asymmetry: Note that the scattering rate in h-C/BN nearly equals

that in graphene, regardless of the band gap (and thus the magnitude of the asymmetry).

Moreover, note that the weakest e-p coupling occurs in h-C28(BN)2,d, which has the smallest

band gap and least asymmetry. As this crystal has the highest BN concentration, it is likely

that the effects of the BN pairs on the local electron behavior41 weaken the e-p coupling.

While the asymmetry – symmetry axis provides a useful tool with which to predict the band

gap, dispersion, and trend in γ̇e−p(∆Ee,g), it is incapable of predicting the e-p coupling itself,

particularly in a complex tuned-graphene crystal like h-C:BN.

2. Phonon-phonon coupling

The ab initio calculation of the p-p coupling remains impossible for h-C:BN, due to the

computational demand involved in gathering the third-order energy derivatives. Thus, it

is calculated only for h-C/BN and h-C. This enables an investigation of the effects the

sublattice asymmetry has on the p-p interaction.

The third-order force constants are evaluated on a 9×9 kp mesh within Quantum Espresso

using the 2n + 1 formula.42 These are then Fourier interpolated onto a 200× 200× 1 mesh

of kp points. Then, the integration in Eq. (9) is carried out using a Lagrangian δ-function

with 50 K smearing, as in Phonovoltaic II.2

The results for h-C and h-C/BN are presented in Fig. 10. The h-C results agree well with

DFT-LDA calculations performed by Bonini et al.11 Although the LA-TA mode is found to

contribute less to the rate of down-conversion, the overall rate is nearly identical. Indeed, the

electron-phonon and phonon-phonon scattering rates evaluated here for graphene combine

to reproduce the experimental E2g phonon lifetime43, as in [11].

Moreover, the p-p coupling in h-C is nearly unaffected by the disruption of the sublattice

symmetry caused by the adjacent h-BN layer. The primary difference is the slight suppres-

sion of the LA-TA pathway. For the same reasons that the phonon density of states remains

essentially unchanged in the graphene layer, the phonon-phonon scattering rate also remains

unchanged. That is, the sp2 bonds primarily dictate the phonon behavior, and the electrons

involved in these bonds are nearly unaffected by the h-BN substrate.

However, similar arguments are less convincing when applied to the h-C:BN crystals for
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FIG. 10. (a) The p-p coupling in the first BZ, (b) down-conversion pathways, (c) down-converted

phonon energy distribution, and (d) down-conversion rates in h-C and h-C/BN. (a), (b), and

(c) combine to show the momentum and energy of the acoustic phonon modes produced during

down-conversion of the LO phonon. These results show that the p-p coupling is nearly unaffected

by the disruption of the sublattice symmetry, such that the down-conversion rate of h-C/BN

approximately equals that in graphene.

which a p-p calculations remain impossible. While the phonon density of states in these

crystals strongly resembles that in pure h-C, there are un-resolved and rough areas of the

Dp which may hide the contributions of the BN pairs. Moreover, the literature lacks a close

examination of the phonon lifetimes in h-C:BN. The closest study uses MD to calculate the

phonon-phonon lifetime in h-C|BN heterostructures with 50% BN.44 The lifetime of most

optical phonon modes remains unaffected by the heterostructures. However, there is a dip in

the lifetime of some optical phonon modes around 200 meV when the distance between h-C

and h-BN interfaces grows. That is, these results show that even at 50% BN concentration,

the phonon-phonon coupling is not necessarily enhanced by the addition of BN, but by the
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period of the h-C|BN heterostructure. While definitive results remain elusive, the phonon-

phonon scattering rate in pure graphene is used to characterize the phonovoltaic performance

of an h-C:BN pV cell.

3. Phonon-defect coupling
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FIG. 11. (a) Spectral function and (b) defect scattering rate for h-C:BN. While the rate of scattering

is negligible at a low BN concentration, it increases substantially with the BN concentration.

However, only a small BN concentration is required to tune the band gap to the optical phonon

energy.24

As the phonon spectral function only requires evaluation of the harmonic force constants,

it remains feasible to calculate the phonon-defect scattering in h-C:BN. First, the DFT-

LDA dynamical matrices are collected for pure graphene and for h-C:BN. Then, the ideal

graphene dynamical matrix is diagonalized in order to gather the phonon eigenvectors, and

a Lanczsos method is used to evaluate Gkp,α(ω) [Eq. (13)].35 Next, the spectral function is

evaluated according to Eq. (12). Finally, a Lorentzian function is fit to Akp,α(ω), and the
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scattering rate is given by the full-width at half-maximum of that Lorentzian.34

The results, presented in Fig. 11(a), show that only a few peaks exist in the spectral

function near the optical phonon energy. Therefore, the optical phonon does not have many

defect modes with which to scatter. Indeed, the predicted scattering rate is negligible at

sufficiently low concentration. In contrast, the isotopic scattering rate predicted by Eq. (11)

is comparable to the rate of down-conversion and would severely impact the phonovoltaic

performance, even at a 5% BN concentration. However, as the decrease (increase) in mass

for a boron (nitrogen) atom is compensated by weaker (stronger) force constants, the defect

scattering rate of the E2g mode remains negligible below 6% BN, which is sufficient to tune

the band gap to the optical phonon energy. Indeed, experimental results suggest only 2%

BN is required to open a 200 meV band gap.24 Therefore, phonon-defect scattering is not

important in a h-C:BN phonovoltaic.

Additionally, these results support the use of the h-C phonon-phonon down-conversion

rates when evaluating a h-C:BN phonovoltaic. That is, if the spectral function has multiple,

substantial peaks, it indicates that the perturbed lattice substantially affects the phonon

dispersion and density of states. This, in turn, indicates that the anharmonic terms and

resulting γ̇p−p could be effected by the BN dopants. However, at low BN concentration, the

spectral function exhibits very few off-center peaks. Therefore, it remains likely that the

γ̇p−p in h-C:BN nearly equals that in h-C.

VI. GRAPHENE:BN PHONOVOLTAICS

With the ab initio band gap (0 < ∆Ee,g < Ep,O), phonon energy (nearly constant at 198

meV), and scattering rates (assuming γ̇p−p remains constant, as discussed in Sec. VC2), the

pV figure of merit and efficiency are evaluated according to Eqs. (1) - (3). Here, the diode

equations described in Phonovoltaic I1 are used to calculate the fill-factor, decreasing heat

flux, and resulting efficiency. Figure 12 presents these ab initio results and the predicted

phonovoltaic performance. In addition, the TB 2 e-p coupling model discussed in Sec. VC1

is used to predict the performance of h-C:BN for 0 ≤ ∆Ee,g ≤ Ep,O.

As shown, a h-C68(BN)2,o pV cell can achieve a figure of merit around 0.6 and an efficiency

around 0.4ηC. This is a substantial improvement on the previous study2, which found that

h-C:H pV cells had a negligible figure of merit and efficiency. More importantly, it is a
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FIG. 12. (a) The optical phonon scattering rates of h-C, h-BN, h-C/BN, and h-C:BN and (b)

resulting h-C:BN performance metrics. The TB 2 model (Sec. VC1) is used to model the γ̇e−p

trends and interpolate performance between the ab initio h-C:BN results. While the incorporation

of BN in h-C disrupts its strong e-p coupling, γ̇e−p remains much faster than γ̇p−p until ∆Ee,g →

Ep,O. Moreover, the defect scattering rate remains negligible in comparison to both γ̇e−p and γ̇p−p.

Thus, the γ̇∗e−p in h-C:BN remains near 0.75 and ZpV nearly reaches 0.7 at ∆Ee,g = 181 meV. As

the non-equilibrium between optical phonon population and cell increase (ηC → 1), the fill factor

of the cell increases, and the efficiency (ηpV ) approaches the figure of merit (ZpV) times the Carnot

limit (ηC), as shown using the color gradation (Sec. IA).

substantial improvement on a typical thermoelectric generator: if the thermoelectric figure

of merit is ZT = 1 and ηC = 0.5, then its efficiency is only ηTE ≈ 0.2ηC, half of the pV

efficiency. Moreover, the TB 2 e-p coupling model predicts that a properly tuned h-C:BN

pV cell achieves ZpV ≈ 0.7, as shown in Fig. 12. Note that h-C/BN does not make a a

good pV material, as the ideally stacked bilayers simulated here do not represent the Moire
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superlattice that h-C/BN forms (See Sec. II B).

Finally, note that asymmetry neither decreases the e-p coupling strength (as discussed in

Sec. VC1) nor increases the p-p coupling strength (as discussed in Sec. VC2). However,

the substitution of BN into graphene does decrease the e-p coupling strength. Therefore,

other tuned graphene materials may exceed the h-C:BN figure of merit, particularly when

asymmetry is the primary mechanism by which the band gap is tuned. For example, when

a strong electric field is applied to bilayer graphene, it lifts the sublattice symmetry without

significantly disturbing the lattice. Therefore, it may reach an even higher ZpV than h-C:BN

does.

VII. CONCLUSIONS

The promise of the pV cell is summarized and the difficulties in finding and designing

a promising material are discussed. Tuned graphene remains the most promising material

candidate, as graphene has an energetic optical phonon mode (200 meV) that exhibits strong

e-p coupling and weak p-p coupling. Phonovoltaic II2 showed that hydrogenating graphene

(to produce graphame) can be used to tune the band gap of graphene to the optical phonon

energy, but it also showed that doing so substantially weakens the e-p coupling.

Here, the e-p coupling of tuned graphene is investigated within the context of a tight-

binding (TB) model in order to explore this result and discover if tuned graphene can succeed

in a pV cell. The TB models shows that disrupting the sublattice symmetry in graphene in

order to open a band gap also weakens the e-p coupling near the (former) Dirac points.

An ab initio investigation of substitutional and layered h-C:BN compounds is carried

out in order to investigate this prediction, open and tune the band gap of graphene, and,

most importantly, find and describe a material with a high ZpV. All of these goals are

accomplished. That is, the band gaps of a various h-C:BN compounds are evaluated within

DFT-LDA and a variety of h-C:BN cells are found with a band gap smaller than Ep,O.

The ab initio e-p coupling calculations show that the TB overlap model (TB 1) is very

conservative as ∆Ee,g → Ep,O: The e-p coupling remained substantial near the band edge

in the h-C:BN simulations. Moreover, the phonon density of states in h-C is only slightly

affected by the incorporation of BN and the p-p coupling remains unchanged, at least in

the layered h-C/BN structures. Thus, h-C:BN can reach a high ZpV when the band gap is
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appropriately tuned.

Indeed, h-C68(BN)2,o achieves a phonovoltaic figure of merit greater than 0.6. From pre-

vious analytical models, this implies that a h-C68(BN)2,o pV cell achieves at least 20% of the

Carnot limit. Moreover, at a Carnot limit of 50% and cell temperature of 300 K (600 K opti-

cal phonon temperature), a h-C68(BN)2,o pV cell can reach an efficiency around 20%, nearly

doubling the efficiency of a thermoelectric generator (ZT = 1) under the same conditions.

Furthermore, an updated TB e-p coupling model (TB 2) predicts that an appropriately

tuned h-C:BN crystal can reach ZpV ≈ 0.7.

Thus, the promise of tuned graphene is realized through the substitution of BN into

graphene. Moreover, the TB model and ab initio results suggest that h-C:BN is not unique in

this regard. Provided the sublattice symmetry of a tuned graphene material is manipulated

to open a gap between 150 and 200 meV, that material should achieve similar or even higher

ZpV and ηpV.

With a suitable material candidate identified, the next theoretical challenges in pV re-

search include the following: the identification and modeling of an appropriate phonovoltaic

system, including the optical phonon source (e.g., a pV cell harvesting phonons produced

from the Joule heating in an adjacent graphene cell), and the identification of alternate

materials (e.g., a graphene bilayer under an electric field). The experimental challenges

include the following: the production of a high-quality h-C:BN crystal with a tuned band

gap, the verification of the predicted e-p and p-p coupling strengths, and, most importantly,

the demonstration of the pV effect.
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