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A variety of two-dimensional materials possess a band structure with an energy extremal ridge
along a ring in momentum space. Examples are biased bilayer graphene, and surfaces and interfaces
with a Rashba spin-orbit interaction where at low doping the carriers fill an annulus. This topological
feature causes an anomalous screening behavior, which we study using the Thomas-Fermi theory.
Specifically, reducing the doping is predicted to enhance the linear screening response, while at zero
doping the size of the screening cloud surrounding a Coulomb impurity is found to increase as the
cube root of the impurity charge.

PACS numbers: 71.70.Ej, 73.22.Pr, 73.21.-b, 73.20.Hb

Screening is an important manifestation of the
electron-electron interaction. Linear screening is usually
associated with the presence of an equilibrium density
of free charge carriers which can redistribute themselves
in response to weak external disturbances, thus reduc-
ing their effect. Screening ceases to be linear when the
perturbation is strong or the charge carriers are absent.
The efficiency of linear screening can be quantified by
the Debye screening length, which may be viewed as a
penetration depth for the electric field inside the mate-
rial. For instance, the electromagnetic shielding property
of good conductors is due to the screening length being
of atomic scale. It is expected that having more charge
carriers improves screening, so that the screening length
is a decreasing function of carrier concentration which is
indeed the case [1].

This paradigm of screening is based on three-
dimensional experience, but is partly challenged in two
dimensions: the electron gases found in some semicon-
ductor heterojunctions have a screening length which is
independent of the carrier density [2], while undoped and
unbiased bilayer graphene exhibits linear screening with
a well-defined screening length [3].

The goal of this paper is to show that when the disper-
sion law of quasiparticles has a degenerate ring of energy
extrema and the occupied states inhabit an annulus, the
dependence of the screening length on the carrier density
is anomalous: decreasing the doping decreases the screen-
ing length. This behavior is a consequence of the pseudo-
one-dimensional character of the zero-point motion in the
system brought about by the non-trivial topology of the
occupied states in momentum space. This conclusion af-
fects a large class of laboratory two-dimensional systems,
specifically surfaces, interfaces and heterojunctions with
Rashba spin-orbit interaction [4] and a variety of few-
layer systems [5]; a notable representative of the latter
group is biased bilayer graphene [6]. The only other ex-
ample of anomalous screening known to us is that of a
three-dimensional electron gas in a very strong magnetic

field [7]. We additionally argue that despite the anoma-
lous behavior of the screening length, materials with an
extremum ring in the band structure will undergo a tran-
sition into a Mott insulating state [8] upon decrease of
the carrier density. The effect of anomalous screening
also manifests itself in the non-linear regime, in the prop-
erties of the screening cloud surrounding Coulomb impu-
rity. We find a qualitatively stronger screening response
than that in the standard theory of screening in three
dimensions. This is unusual because it is expected on
general grounds that screening due to charges that are
free to move in all three dimensions should be more effi-
cient than in the case where the charges are confined to a
plane in three-dimensional space. We also discuss man-
ifestations of the three-dimensional version of the effect
and point out and explore its mapping onto the problem
of an atom in a strong magnetic field [9].
There is a number of experimentally verifiable impli-

cations of our results. Here bilayer graphene seems to
be the perfect system to study. The fact that its band
structure can be tuned between quadratic and annular
through the electric field effect [6] makes it the ideal
testbed for some of the consequences, for instance, those
regarding the Coulomb impurity problem.
Without loss of generality we assume that the quasi-

particles are the electrons that (in the regime of interest)
obey the Bychkov-Rashba (BR) dispersion law [10]

ε(k) =
~
2

2m
(k − k0)

2
(1)

where k is the two-dimensional wavevector, k = |k|, and
m is the electron effective mass. The dispersion law has
a degenerate minimum along a circle of radius k0 which
is somewhat tunable [4–6]. The level of doping will be
characterized by the chemical potential µ whose zero is
chosen at k = k0; the electrons are supplied by uni-
formly distributed donors. In the range of doping we
are interested in, 0 6 µ 6 ~

2k20/2m, all the momen-
tum states sandwiched between circles of inner radius



2

k1 = k0−
√

2mµ/~2 and outer radius k2 = k0+
√

2mµ/~2

are occupied, and higher energy BR bands [10] play no
role. While the dispersion law (1) adequately describes
the Rashba materials [4] within the stated range of dop-
ing, for few-layer substances [5] its range of applicabil-
ity is narrowed to the vicinity of its minimum k = k0.
Moreover, for the BR electrons the spectral degeneracy
is lifted by the spin-orbit interaction which may not be
the case for few-layer materials [5] where spin and/or val-
ley degeneracies may remain. In what follows the latter
possibility will be ignored in the interest of simplicity;
only a simple modification of numerical factors would be
needed for applications to a specific few-layer system.

The equilibrium density n(µ) and the chemical poten-
tial µ(n) of a non-interacting BR electron gas are given
by

n(µ) =

∫ k2

k1

2πkdk

(2π)2
=

k0
π

√

2mµ

~2
, µ(n) =

π2
~
2n2

2mk20
(2)

Even though the underlying electron system is two-
dimensional, the quadratic dependence of the chemical
potential µ on the particle density n is a signature of a
one-dimensional Fermi gas. This is a consequence of the
circle of minima in momentum space (1) and the under-
lying reason behind the effect of anomalous screening.

The macroscopic response of the BR system of inter-
acting electrons to the presence of external disturbances
can be studied using the Thomas-Fermi (TF) method
[11] which is known to be reliable in the long-wavelength
limit; it is also applicable in the regime where the screen-
ing is non-linear [1]. In order to provide a broader context
for comparison of our results with what is known, we be-
gin by outlining long-wavelength screening properties of
a generic two-dimensional electron gas.

The central object of the TF theory is the total poten-
tial ϕ(r) felt by an electron at a two-dimensional position
r which is due to the external potential ϕext(r) and to
the potential caused by the net local charge due to other
electrons of density n(r) and donors of density n0:

ϕ(r) = ϕext(r)−
e

κ

∫

n(r′)− n0

|r− r′| d2r′ (3)

where κ is the background dielectric constant. The inte-
gral is over the surface where the charge resides, but the
Coulomb interaction has three-dimensional form since
the fields extend into space.

The TF approximation is that eϕ mimics a local
change in chemical potential

eϕ(r) = µ[n(r)]− µ(n0) (4)

In the linearized theory of screening an approximation
n(r)− n0 = (e∂n0/∂µ)ϕ is made followed by the Fourier
transformation of Eq.(3). The outcome is an expression

for the wave vector dependent static dielectric function
of the two-dimensional electron gas [2]

ǫ(k) = κ
(

1 +
qs
k

)

, qs =
2πe2

κ

∂n0

∂µ
(5)

where q−1
s is the Debye screening length whose doping

dependence is captured by the inverse density of states
∂µ/∂n0. Several previously studied cases are now worth
examining:
(i) monolayer graphene: the band structure exhibits

the Dirac dispersion law (ε ∝ k). As the doping is re-
duced, the density of states decreases, leading to a screen-
ing length that diverges q−1

s ∝ µ−1 [12]. From the view-
point of three-dimensional experience this may be classi-
fied as ”normal” screening.
(ii) electron gases with a parabolic dispersion law

ε ∝ k2 (including unbiased bilayer graphene): the chemi-
cal potential is proportional to the doping with the result
that the density of states and screening length are inde-
pendent of the doping [2]. This may be viewed as an
example of ”marginal” screening.
(iii) For the BR electron gas, employing the expression

for the chemical potential (2), we find

q−1
s =

πb

2k20
n0 =

b

2

√

2mµ

~2k20
, b =

κ~2

me2
, (6)

where b is the Bohr radius for the material. Reduction
in doping decreases the screening length to ever smaller
values,which will dramatically increase the screening re-
sponse. This anomalous screening response is a conse-
quence of the pseudo-one-dimensional form of the den-
sity of states ∂n0/∂µ which in turn is due to the ring of
minima in the dispersion law (1). For the same reason a
BR quasiparticle exhibits unusual binding properties in
short-range and Coulomb potentials [13, 14]. This lin-
earized theory of screening is applicable for slowly vary-
ing external potentials satisfying the condition k ≪ qs.
The screening length cannot become arbitrarily small,

however. For sufficiently low doping the assumption that
the electrons are free to move inevitably breaks down. In
our theory this is hidden within the approximation of a
uniform distribution of donors by the neutralizing charge
background of density n0. The free-electron assumption
fails when the overlap of the wave functions of the elec-
trons that could be bound to neighboring donors gets
below a certain threshold value. This is expected to hap-
pen at a critical density nc given by the two-dimensional
version of the Mott criterion [8]:

nca
2 ≃ 1, a =

b

2 ln(k0b)
, ln(k0b) ≫ 1 (7)

where a is the localization length of the BR electron
bound to a singly-charged donor [14]. The energy scale
corresponding to the threshold concentration (7) is µc ≃
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(~2k20/m)(k0a)
−4, which is within the energy range where

the topology of occupied states is annular. Our theory
applies to the n > nc regime where conductivity is metal-
lic. For n < nc and low temperature the mechanism of
conductivity is thermal activation. At the Mott thresh-
old (7) the screening length (6) q−1

s ≃ b(ln(k0b)/k0b)
2

has atomic scale. However, it is possible that for very
short screening lengths the Mott transition may be re-
placed by a transition into some broken symmetry phase,
as discussed in the literature [15, 16].
The linear theory of screening generally breaks down

at zero doping (µ(n0 = 0) = 0), and then n(eϕ) implied
by Eq.(4) has to be substituted into Eq.(3). The outcome
is an integral equation encompassing various previously
studied systems, as follows:
(i) When n ∝ (eϕ)2 (the Dirac dispersion law), one re-

covers the non-linear TF theory of screening in undoped
monolayer graphene [17].
(ii) For undoped bilayer graphene (which has a

parabolic dispersion law) one finds n ∝ eϕ which gives an
”accidentally” linear theory of screening [3]; this system
is marginal.
(iii) For the BR electron system, Eq. (2) implies a

relationship between the electron density and potential

n =
k0
π

√

2meϕ

~2
. (8)

This leads to another non-linear TF equation

ϕ(r) = ϕext(r)−
k0
π

√

2e

κb

∫

√

ϕ(r′)d2r′

|r− r′| (9)

The same equation can be obtained by minimization of
the TF energy functional

E[n(r)] =
π2

~
2

6mk20

∫

n3(r)d2r − e

∫

ϕext(r)n(r)d
2r

+
e2

2κ

∫

n(r)n(r′)d2rd2r′

|r− r′| (10)

combined with the definition of the total potential (3)
and Eq.(8). The first term of the functional (10) is the
kinetic energy of the filled states, T , while the second
and the third are the interaction energy of the electrons
with the source, Ues, and the energy of the electron-
electron-interaction, Uee. Several useful exact relation-
ships (virial theorems) can be established between these
contributions when the external potential is that of a
point charge (ϕext = Ze/κr) by employing the extremal
property of the functional (10). Specifically, if n∗(r) is
the density minimizing the functional, we can consider
the effect on E of an small rescaling of the amplitude,
n∗ → (1 + γ)n∗(r), and position, n∗ → n∗[(1 + γ)r], and
then imposing the condition of extremum (∂E/∂γ)γ=0 =
0. This generates the identities 3T + Ues + 2Uee = 0
and 2T + Ues + 3Uee = 0. One of their consequences is

that the ground-state energy E0 receives contributions
in the ratio T : Ues : Uee = 1 : −5 : 1. Another conse-
quence is that the ground-state energy can be computed
from just one of the contributions into it, for example
E0 = T + Ues + Uee = 0.6Ues.

When the external potential is that of a point charge
mimicking a Coulomb impurity of charge Ze, we seek a
radially-symmetric solution to Eq.(9) in the form

ϕ(r) =
Ze

κr
F
( r

λ

)

, λ =
1

2

(

bZ

k20

)1/3

(11)

where λ is the characteristic length scale. The function
F (x) is subject to the boundary condition F (0) = 1 and
obeys the equation

F (x) = 1− 2

π
x

∫ ∞

0

√

F (x′)x′dx′
K

(

2
√
xx′

x+x′

)

x+ x′
(12)

where K(y) is the complete elliptic integral of the first
kind. Taking the x → ∞ limit in (12) we arrive at
the identity F (∞) = 1 −

∫∞
0

√

F (x)xdx which is inter-
nally consistent only if F (∞) = 0. Indeed, the phys-
ically acceptable F (∞) is either zero (complete screen-
ing) or a constant between zero and unity (a positively
charged ion). In the latter case, however, the integral
∫∞
0

√

F (x)xdx diverges which is in contradiction with
1 − F (∞) being finite. We conclude that the cloud of
BR electrons completely screens external charge; specif-
ically

∫∞
0

√

F (x)xdx = 1 which means that solution to
Eq.(12) decreases faster than 1/x3 at large x. Combining
Eqs.(11) and (8) we find an expression for the electron
density

n(r) =
Z

2πλ2

√

λ

r
F
( r

λ

)

(13)

which shows that the density distribution around impu-
rities of different Z is similar with a characteristic length
scale λ ∝ Z1/3. The characteristic energy scale of the
problem is Z2e2/κλ ≃ (e2/κ)(k20/b)

1/3Z5/3 which is also
the estimate for the total ionization energy (teh negative
of the ground-state energy). These resemble the proper-
ties of an atom in a very strong magnetic field [9], and are
very different from those for the regular TF atom where
characteristic length scale decreases with Z as Z−1/3 and
the total ionization energy behaves as Z7/3 [11]. How-
ever, the atom in a strong magnetic field differs from the
present situation in that the integration measures and
position vectors are three-dimensional.

The universal screening function F (x) describing the
electron cloud is a monotonically decreasing solution of
the integral equation (12). In order to gain a better un-
derstanding of its properties it is useful to rewrite Eq.(12)



4

by employing Landen’s transformation [18]

F (x) = 1− 2

π

∫ x

0

√

F (x′)x′K

(

x′

x

)

dx′

− 2

π
x

∫ ∞

x

√

F (x′)

x′
K

( x

x′

)

dx′ (14)

Let us assume for a moment that the electron cloud
(like the TF atom in a strong magnetic field [19]) has
a boundary at x = x0, i.e. F (x > x0) = 0. Evaluat-
ing both sides of Eq.(14) at x = x0 we then arrive at
the identity 1 = (2/π)

∫ x0

0

√

F (x′)x′K(x′/x0)dx
′ which

is consistent with the condition of complete screening
1 =

∫ x0

0

√

F (x′)x′dx′ only if x0 = ∞. We conclude that
the screening cloud does not have a boundary and for-
mally extends all the way to infinity, like its textbook
counterpart [11].
Eq.(14) is also a convenient starting point for series

expansion of F (x) about the origin

F (x → 0) = 1 + a2x+ a3x
3/2 + ... (15)

where the first two expansion coefficients are given by

a2 = −
∫ ∞

0

√

F (y)

y
dy, a3 = 2− 2

π

∫ 1

0

√
yK(y)dy ≈ 1.48

(16)
and the rest can be expressed in terms of the slope a2 =
F ′(0). The latter has a useful physical interpretation that
appears as the r → 0 limit of the potential (11) is taken:
ϕ(r → 0) = Ze/κr + a2(Ze/κλ) + ... where the second
term is the potential due to the electrons at the origin,
ϕe(0). Then the interaction energy of the electrons with
the source Ues = Zeϕe(0) (measured in Z2e2/κλ energy
units adopted hereafter) is the slope a2.
We found a solution to the non-linear singular inte-

gral equation (12) by making sequential modifications to
n(r), seeking the global minimum of the functional (10)
and inferring the screening function F (x) via Eq.(13).
We subsequently verified that the resulting F (x) satis-
fies the integral equation (12). Our variational solver
determines the three terms of Eq. (10) separately, giv-
ing T = 0.356, Ues = −1.802, Uee = 0.367, which are
consistent with the virial theorems; the value for F ′(0)
is not evaluated very accurately but is consistent with
the slope relationship a2 = Ues. For the ground-state
energy we find E0 = −1.079. The result for the screen-
ing function is shown in Figure 1. Numerical analysis
suggests that F (x → ∞) ∝ x−5. This is a qualitatively
stronger screening response than that in the standard
TF atom where the screening function falls of as 1/x3 at
x large [11]. The large distance behavior of the screen-
ing function establishes the upper bound in the range of
applicability of our theory (b/Z ≪ r ≪ (b/k20)

1/3Z4/3)
which is the scale beyond which there are only a few
electrons present; the lower bound is the same as that in
the regular TF theory [11]. The range of applicability of

FIG. 1. The screening function F (x), the solution to Eq.(12).

our theory is then Z ≫ max[1, (k0b)
2/7] which recovers

the exact quantum-mechanical description in the Z → ∞
limit [20].

The availability of materials combined with the abil-
ity to control k0 makes the two-dimensional structures
well-suited to test our predictions, but a similar anoma-
lous screening can occur in three dimensions. Generaliz-
ing Eq.(1) to a three-dimensional dispersion law that is
isotropic in momentum space, there would be a degener-
ate minimum along a spherical surface of radius k0. The
roton minimum in the excitation spectrum of superfluid
He4 [21] is an example. Rotons are known to attract each
other and form bound states for an arbitrarily weak two-
body attraction [22]. The one-dimensional character of
this binding effect has been recognized [23], thus lending
support to the idea of anomalous screening in a Coulomb
system. It is worth mentioning that it may be possible
to engineer roton-like dispersion laws in ultracold atomic
gases as discussed in the literature [24, 25].

Assuming the dispersion law (1) can be generated by
a three-dimensional crystal structure (and leaving veri-
fication of the conjecture for future study), we proceed
to conclusions. When all the momentum states within
a thin (0 6 µ ≪ ~

2k20/2m) spherical layer are occu-
pied, one would arrive at one-dimensional-like relation-
ships n ∝ µ1/2 and µ ∝ n2, resembling Eqs.(2). It is now
straightforward to realize that what in two dimensions
was referred to as an analogy with the problem of an
electron gas in a strong magnetic field becomes a map-
ping in three dimensions. Indeed, the three-dimensional
Debye screening length q−1

s ∝ (∂µ/∂n0)
1/2 [1] exhibits
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exactly the same anomalous n
1/2
0 behavior as that found

for the three-dimensional electron gas in a strong mag-
netic field [7]. Additionally, the electron cloud screening
a Z ≫ 1 impurity is predicted to have an edge [19]; the
size of the cloud scales as Z1/5 while the total ionization
energy behaves as Z9/5 [9].
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