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Multicomponent quantum Hall systems with internal degrees of freedom provide a fertile ground for the

emergence of exotic quantum liquids. Here we investigate the possibility of non-Abelian topological order

in the half-filled fractional quantum Hall (FQH) bilayer system driven by the tunneling effect between two

layers. By means of the state-of-the-art density-matrix renormalization group, we unveil “finger print” evidence

of the non-Abelian Moore-Read Pfaffian state emerging in the intermediate-tunneling regime, including the

ground-state degeneracy on the torus geometry and the topological entanglement spectroscopy (entanglement

spectrum and topological entanglement entropy) on the spherical geometry, respectively. Remarkably, the phase

transition from the previously identified Abelian (331) Halperin state to the non-Abelian Moore-Read Pfaffian

state is determined to be continuous, which is signaled by the continuous evolution of the universal part of the

entanglement spectrum, and discontinuities in the excitation gap and the derivative of the ground-state energy.

Our results not only provide a “proof-of-principle” demonstration of realizing a non-Abelian state through

coupling different degrees of freedom, but also open up a possibility in FQH bilayer systems for detecting

different chiral p−wave pairing states.

PACS numbers: 73.43.-f,71.10.Pm,73.21.-b

I. INTRODUCTION

When two-dimensional electron systems subject to a strong

magnetic field, electron-electron interactions can drive tran-

sitions into a series of remarkable quantum states of mat-

ter, dubbed as fractional quantum Hall (FQH) effect1,2. The

FQH effect is an example of the topological state of matter3,

providing a spectacular platform for anyonic statistics in

two-dimension: the emergent excitations carry fractionalized

quantum numbers and obey Abelian2 or non-Abelian quan-

tum statistics4–6. Among them, the non-Abelian FQH ef-

fect is expected to form the substrate for topological quan-

tum computation7, thus is of great importance. Albeit vigor-

ous research efforts8–13, to date convincing experimental ev-

idence of non-Abelian FQH states are still rare, with ν =
5/2 and 12/5 as two prominent examples realized in single-

component FQH systems. Compared to single-component

systems, multicomponent FQH systems with extra degrees

of freedom offer additional tunable parameters and allow the

observation of richer quantum phase diagrams14–18. The in-

ternal degrees of freedom correspond to realistic experimen-

tal circumstances, for example, layers, subbands or spins in

GaAs quantum wells (QWs)19–23, spins or valleys in graphene

or AlAs, which lead to effective multilayers separated by

layer distance d with electrons’ tunneling t⊥ between layers

(Fig. 1). Two most notable examples of the multicomponent

FQH effects are the observation of quantized Hall plateaus at

total filling factors νT = 1/2 and νT = 1 in double QW and

wide QW systems. The νT = 1 state23 is believed to favor

a symmetry-breaking state with spontaneous interlayer phase

coherence, which induces a remarkable exciton condensation.

The νT = 1/2 state19–22 has turned out to be more interest-

ing and controversial, as it can be an Abelian Halperin FQH

state, but also be a possible platform for realizing non-Abelian

anyonic statistics, which has been pursued persistently in the

past.16–18,24–31

In this paper, we consider a two-component FQH system

with Ne electrons (as illustrated in Fig. 1) described by the

following realistic Hamiltonian containing essential informa-

tion relevant to experiments:

H =

Ne
∑

i<j

[V↑↑(|ri↑ − rj↑|) + V↓↓(|ri↓ − rj↓|)] +
Ne
∑

i,j

V↑↓(|ri↑ − rj↓|) +Ht , (1)

where we label two layers by index σ ∈ {↑, ↓} and the posi-

tion of the i-th electron in layer σ by riσ . V↑↑(r) = V↓↓(r)
is the Coulomb potential in a single layer with finite width w,

and V↑↓(r) is the interlayer Coulomb interaction incorporat-

ing finite interlayer separation d. Ht is the electron tunnel-

ing of strength t⊥ between two layers. For numerical con-

venience, we choose the lowest Landau level (LLL) orbital

basis to do the second quantization of the above Hamilto-

nian (see Appendix A for details), where the tunneling term

can be written as Ht = −t⊥
∑Ns−1

m=0 (c†m,↑cm,↓ + c†m,↓cm,↑).

Here c†m,σ(cm,σ) is the creation (annihilation) operator of an

electron in the LLL orbital m of layer σ, and Ns is total
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number of orbitals in each layer. We focus on the total fill-

ing νT = Ne/Ns = 1/2 throughout this work, and use the

magnetic length ℓ and the Coulomb energy e2/ℓ as the units

of length and energy respectively, where −e is the electron

charge.

In limits of the spatial separation d → 0 and d → ∞, the

bilayer ground states at νT = 1/2 are compressible because

either the single-layer limit (d → 0) or the two-isolated-layer

limit (d → ∞) can be well understood by the “composite

Fermi liquid” (CFL) theory32. In the intermediate regime

d ∼ 2 − 6, the incompressibility of the system is observed

in various experiments19–22. However, its precise origin is

still a long-standing subject. Numerical simulations33–36 have

confirmed that the Abelian (331) Halperin state dominates

at vanishing interlayer tunneling (t⊥ = 0)14. Remarkably,

through uncovering the underlying pairing nature of the (331)
Halperin state24,25, it has been suggested that the tunneling ef-

fect may drive the system into a non-Abelian phase16–18,26–31,

which motivates intensive efforts36–40 to establish its exis-

tence. However, previous numerical studies, primarily utiliz-

ing exact diagonalization on small system sizes, are still too

limited to reach a consensus. For instance, the only evidence

of a non-Abelian phase was obtained by simply comparing the

Coulomb ground state with the trial wavefunction38. On the

contrary, subsequent studies even suggest that the CFL39 and

the (331) Halperin state36 may still dominate at finite tunnel-

ing. Taken as a whole, to date, the possibility of realizing a

non-Abelian state through coupling different degrees of free-

dom or tuning experimental relevant interactions remains elu-

sive for the νT = 1/2 bilayer system, which urgently calls for

revisiting this problem using state-of-the-art techniques41–45.

In this article, we uncover the nature of quantum states and

determine the phase diagram for the FQH bilayer system at

νT = 1/2 by means of large-scale density-matrix renormal-

ization group (DMRG)41–45 and exact diagonalization (ED)

calculations. The system turns out to host two different in-

compressible liquid phases: one is the Abelian (331) Halperin

state, and the other is the non-Abelian Moore-Read (MR)

Pfaffian state, as identified by their different ground-state de-

generacies on torus geometry. Remarkably, we demonstrate

that they share the same topological entanglement entropy,

but have different characteristic entanglement spectra on the

spherical geometry. Furthermore, we identify a continuous

phase transition between these two FQH phases driven by

varying the tunneling strength t⊥, reflected by the smooth

evolution of the ground-state energy, and discontinuities of the

excitation gap and the derivative of the ground-state energy.

Intriguingly, our fingerprint evidence leads to two conclusions

related to existing theories and experiments. First, the MR

Pfaffian state can indeed be obtained by coupling different de-

grees of freedom. Although such a possibility was predicted

about 20 years ago16–18,24–27, convincing and comprehensive

evidence directly from a microscopic description was missed

until our work. Second, the previously found FQH νT = 1/2
plateau in single wide QW experiments19,21,22, where the tun-

neling strength is taken to be considerable, is most likely to

be captured by the MR Pfaffian state and in favor of a non-

trivial px + ipy pairing mechanism. By reducing the effec-
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FIG. 1. A schematic diagram for the FQH bilayer system. Both dou-

ble QW and single wide QW systems can be mapped to a bilayer

system, where electrons interact with each other through intralayer

interaction Vσσ and interlayer interaction Vσσ, and the electron tun-

neling t⊥ is tunable between two separated layers.

tive tunneling (through tuning electron density), the system

undergoes a transition from the non-Abelian MR Pfaffian to

the weak p-wave pairing (331) Halperin state, while the Hall

conductance keeps unchanged. Thus, the νT = 1/2 bilayer

system provides a promising platform for realizing different

px + ipy pairing physics through coupling different degrees

of freedom46–48 within experimentally attainable parameters.

We believe our work paves the way for future research re-

alizing new classes of non-Abelian states in realistic bilayer

systems. Specific measurements for identifying the bilayer

non-Abelian state in experiments are also discussed.

II. ENERGY SPECTRUM

We first investigate the torus geometry with periodic bound-

ary condition, where different topological states can be distin-

guished by their ground-state degeneracies. At filling factor

νT = 1/2, apart from a two-fold degeneracy coming from the

center-of-mass motion, there can be additional degeneracy oc-

curring due to the multicomponent or the topological nature of

the state, which is four-fold for the (331) Halperin state, and

three-fold for the MR Pfaffian state5. Here we will inspect the

low-energy spectrum as a function of the tunneling strength

using DMRG.

In Fig. 2(a), we show the results for Ne = 12 electrons

obtained by DMRG at layer width w = 1.5 and layer dis-

tance d = 3.0, where the degeneracy due to the center-of-

mass motion has been excluded. When the tunneling is weak

(t⊥ < 0.04), we identify the multiplet of four ground states

in the spectrum as a signal of the (331) Halperin state. With

the increasing of the tunneling strength, the four-fold ground-

state degeneracy is gradually destroyed. One state with mo-

mentum K = 0 (marked as red cross) is being gapped out for

sufficiently large t⊥, leaving other three states in the ground-

state manifold. Importantly, we find a region (t⊥ > 0.04)

where the correct three-fold MR Pfaffian degeneracy is visi-

ble, despite a finite energy splitting among the three ground

states. Here we would like to point out, working on the larger

system sizes is the key to reach this exciting result. In the sys-

tem size Ne < 12, one energy state from K 6= 0, π comes

down and eventually forms a gapless branch in the low en-
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FIG. 2. (a) Energy spectra as a function of the tunneling strength

t⊥, obtained on a square torus with Ne = 12 electrons by DMRG.

Different momentum sectors are labeled by different symbols. We

highlight the ground-state degeneracy by boxes. Here we only show

two lowest energy levels in K = 0 (red cross, orange star) and K =
π (black square, navy diamond) sectors, and one lowest energy level

in other momentum sectors. Due to the C4 symmetry on the square

torus, one ground state in the K = 0 sector (orange star) has the

nearly the same energy with one in the K = π sector (black square).

The dashed line marks the level crossing between the ground state

in the K = 0 sector (red cross) and high excited states, indicating

a quantum phase transition. All calculations are performed at layer

distance d = 3.0 and layer width w = 1.5.

ergy spectrum (Appendix Sec. E), which prevents previous

work39 from reaching a positive conclusion of the three-fold

MR Pfaffian degeneracy.

III. ENTANGLEMENT SPECTROSCOPY

To uncover the topological nature of different quantum

phases, we move to the spherical geometry, and perform the

entanglement-based diagnosis. This geometry is commonly

used for accessing larger systems as the unique ground state

(selected by the finite-size shift, see Appendix A) on the

sphere facilitates the computation task. We analyze the topo-

logical entanglement entropy (TEE)49,50 and the entanglement

spectrum (ES)51 in different tunneling regimes with different

ground-state degeneracies on the torus, and demonstrate that

they accurately match the predictions for the (331) Halperin

state and the MR Pfaffian state in the weak- and intermediate-

tunneling regime, respectively. Importantly, all characteriza-

tions of phases are robust and stable for various system sizes

[from Ne = 14 to 24 (see Appendix Sec. C)].

A. Topological Entanglement Entropy

The entanglement entropy of a bipartite quantum state

|Ψ〉AB is defined as SA = −TrρA ln ρA, where ρA =
TrB(|Ψ〉〈Ψ|) is the reduced density matrix of the subsystem

A. For a gapped topological order in two-dimension, the area

law SA = α|∂A|−γ holds, where |∂A| is the boundary length

of the subsystem A, and the TEE γ is related to the total

quantum dimension D by γ = lnD49,50. Since D contains

the information about quasiparticles, the TEE can determine

whether a topological phase belongs to the universality class

of a given topological field theory.

We make two identical single cuts, each applied to one

sphere in our bilayer system, to divide all Landau level or-

bitals into two parts. The subsystem A contains 2lA Landau

level orbitals in total (lA consecutive orbitals in each northern

hemisphere). For partitions with different lA, since the bound-

ary length of the cut is proportional to
√
lA, we expect the area

law SA(lA) = α
√
lA−γ. Figs. 3(a) and 3(d) show the numer-

ically calculated orbital-cut entanglement entropy SA(lA) as

a function of
√
lA for tunneling strength t⊥ = 0.03 and 0.10

at layer width w = 1.5 and layer distance d = 3.0. First of

all, the approximately linear part of S(lA) shows a negative

intercept in the limit of lA → 0, indicating a nonzero TEE.

Through the finite-size scaling (red line) based on the raw data

of Ne = 22, we extract the TEE as γ ≈ 1.119 ± 0.143 and

γ ≈ 1.031±0.074 for t⊥ = 0.03 and t⊥ = 0.10, respectively.

Interestingly, the (331) Halperin state and the MR Pfaffian

state share the same theoretical value of TEE – they have the

same total quantum dimension D =
√
8, despite hosting dif-

ferent types of quasiparticles [the (331) Halperin state hosts

8 different Abelian quasiparticles, while the MR Pfaffian has

4 Abelian and 2 non-Abelian quasiparticles]. Indeed, both of

our extracted results are very close to each other, in agreement

with the expectation γ = ln
√
8 ≈ 1.037 (blue dashed line).

Although the definite Abelian or non-Abelian nature cannot

be determined by TEE, the observation of a nonzero TEE sig-

nals the topologically non-trivial state in the finite-tunneling

regime.

B. Orbital Entanglement Spectrum

The orbital ES, defined as the spectrum of − ln ρA, en-

codes the information of edge excitations51,52 and has been

widely used to identify the emergent FQH phase in a mi-

croscopic Hamiltonian51,53,54. For various single-layer FQH

states, including the Laughlin, Moore-Read51 and Read-

Rezayi states53,54, the ES has a universal low-energy struc-

ture mimicing the pertinent edge excitation spectrum, which is

separated from the high-energy non-universal part by a finite

ES gap. In our bilayer νT = 1/2 system, different candidates

host distinct edge excitations, so we anticipate to distinguish

them by the orbital-cut ES. Very recently, the orbital ES diag-

nosis was also extended to bilayer 1/3 + 1/3 systems55,56,

albeit there is no signal of non-Abelian states in such sys-

tems with pure Coulomb interaction (without artificially tun-

ing pseudopotential parameters).

Edge excitations of a specific FQH state are character-

ized by the degeneracy pattern of the spectrum when plot-

ted versus appropriate quantum numbers, for example, the

angular momentum Lz on the sphere. The edge of the

(331) Halperin state can be described by two chiral boson

fields (Appendix D ), thus the corresponding edge excitation

spectrum exhibits degeneracy in angular momentum sectors
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∆Lz = 0, 1, 2, 3, · · · as (Appendix B)57

even : 1, 2, 7, 14, · · · ,
odd : 2, 4, 10, 20, · · · ,

where two sequences are distinguished by the even (odd) num-

ber of electrons, and ∆Lz = Lz −Lz,min with Lz,min the an-

gular momentum where no edge excitations occur. The edge

excitations of the MR Pfaffian state, composed of a Majo-

rana fermion mode and a charged boson mode (Appendix D),

should follow the degeneracy pattern (Appendix B)58

even : 1, 1, 3, 5, · · · ,
odd : 1, 2, 4, 7, · · · .

In contrast, the CFL state does not develop a gapless “edge”

spectrum separated from other spectrum by a gap due to its

compressible nature.

In Figs. 3(b,c) and 3(e,f), we show the DMRG obtained ES

for t⊥ = 0.03 and 0.10 at layer width w = 1.5 and layer dis-

tance d = 3.0. At weak tunneling t⊥ = 0.03, we find that

the low-lying ES levels exactly match the degeneracy patterns

of the (331) edge spectrum in the first four ∆LA
z sectors, i.e.,

1, 2, 7, 14 for evenNA and 2, 4, 10, 20 for oddNA, whereNA

and ∆LA
z are the number of electrons and the angular mo-

mentum in the subsystem A, respectively. Those low-lying

levels are separated from higher ones by a large “entangle-

ment gap”. At stronger tunneling t⊥ = 0.1, the low-energy

ES clearly displays the degeneracy patterns of the MR Pfaffian

edge spectrum, i.e., 1, 1, 3, 5 for even NA and 1, 2, 4 for odd

NA. Different low-lying ES structures provide compelling ev-

idence that the ground state undergoes a transition from the

(331) Halperin phase to the MR Pfaffian phase by tuning t⊥.

As shown in Fig. 4 (a), with the increase of tunneling t⊥,

some ES levels belong to the (331) Halperin state can be con-

tinuously gapped out. After a new entanglement gap ∆1 is

well-developed (t⊥ > 0.05), the desired ES structure for MR

Pfaffian state appears, perfectly matching the prediction that

one branch of Majarona fermion mode can be continuously

gapped out by the tunneling effect (Appendix Sec. D).

IV. QUANTUM PHASE TRANSITION AND PHASE

DIAGRAM

To uncover the nature of the quantum phase transition

driven by t⊥, we study the evolutions of the ground state and

the lowest excited state on the spherical geometry, which have

different total angular momenta Lz . We choose fixed layer

width w = 1.5 and layer distance d = 3.0 in these calcula-

tions. In Fig. 4(b), we first investigate how the ground-state

energy E0 varies with t⊥. Although E0 smoothly changes

with t⊥, we find a discontinuity in ∂2E0/∂
2t⊥ around tc1⊥ ≈

0.037. The singularity becomes sharper by increasing the

system size, indicating a second-order phase transition in the

thermodynamic limit. In Fig. 4(c), we show the excitation gap

as a function of t⊥, defined as the energy difference between

the first excited state and the ground state [∆exc = E1(Lz 6=
0) − E0(Lz = 0)]. ∆exc remains finite for all t⊥, consistent
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FIG. 3. (a,d) The entanglement entropy S(lA) for (a) the (331)
Halperin state and (d) the MR Pfaffian state as a function of

√
lA.

The open circles were discarded in the extrapolation because they ei-

ther represent very small subsystems violating the area law or suffer

from the finite-size saturation effect (shaded by grey). The linear ex-

trapolated γ in both cases are in agreement with the predicted value

ln
√
8 (blue dashed line). (b,c,e,f) The low-lying orbital ES of (b,c)

the (331) Halperin state and (e,f) the MR Pfaffian state, with even

or odd electrons in the half-cut subsystem. The countings matching

the degeneracy patterns given in the text are labeled by red. All cal-

culations are performed at system size Ne = 22 with layer width

w = 1.5, layer distance d = 3.0, and tunneling strengthes (a-c)

t⊥ = 0.03 for the (331) state and (d-f) t⊥ = 0.10 for the MR Pfaf-

fian state.

with the incompressible nature of the ground state. Interest-

ingly, the excitation gap develops a peak around tc2⊥ ≈ 0.04.

This upward cusp is related to a level-crossing between the

lowest excited state and higher energy levels36,37. These ob-

servations lead to two remarks here. First, our calculations

support that the transition detected by the ground state and the

lowest excited state occurs almost simultaneously (tc1⊥ ≈ tc2⊥ ).

Second, our results indicate that the ground state evolves con-

tinuously from the (331) Halperin phase to the MR Pfaffian

phase, while the excited state with quasihole or quasiparticle

excitations changes discontinuously near the phase boundary.

Compared with the spherical geometry with zero genus

where we can only reach one topological sector related to the

“highest density profile” (see Appendix Secs. B and D 2), the

torus geometry with access to all topological sectors provides

a full picture of the gap closing and the continuous phase tran-

sition. As shown in Fig. 2, the energy gap relative to the (331)
manifold closes around t = tc⊥ with one K = 0 state in the

(331) manifold being continuously gapped out without any

level crossing in the low-energy spectrum (also see discus-

sion below). To sum up, our findings provide evidence of the

continuous transformation between two triplet pairing states,

which was predicted 20 years ago16,17,24,25.

Intriguingly, the continuous phase transition between the
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FIG. 4. The continuous phase transition from the (331) Halperin

state to the MR Pfaffian state as a function of t⊥ on the sphere. (a)

Evolution of ES versus t⊥. The expected levels for the MR Pfaf-

fian state are labeled by red, and redundant levels originally from

the (331) Halperin state are labeled by green. ∆∆LA
z

measures the

entanglement gap of the MR Pfaffian state in the ∆LA
z sector. We

consider the half-cut subsystem with even number of electrons for

Ne = 18. (b) Partial derivative ∂2E0/∂
2t⊥ as a function of t⊥ for

different system sizes Ne = 14 (red), 16 (blue) and 18 (green). Inset:

Evolution of the ground-state entropy with t⊥. (c) The excitation gap

∆exc as a function of t⊥ for various system sizes. All calculations

are performed at layer width w = 1.5 and layer distance d = 3.0.

(331) Halperin state and the MR Pfaffian state can be

understood16 from several perspectives. In Appendix Sec. D,

in addition to the wave-function equivalence, we propose

two independent perspectives to understand the transition in

the bulk and on the edge, respectively. First, by the per-

turbation theory, we construct a low-energy effective model,

which clearly shows that, at least in the thin-torus limit30,47,

the system can indeed undergo a continuous phase transition

(with the same critical behavior as the transverse field Ising

model59) when the tunneling t⊥ increases, and one state in

the ground-state manifold is gapped out, thus changing the

ground-state degeneracy from the (331) type to the MR Pfaf-

fian type. We believe this conclusion is still true when the

system adiabatically deforms from the thin-torus limit to the

square torus. Second, starting from the edge theory of the

(331)Halperin state described by two chiral bosons (with total

central charge c = 2)60,61, we find that the interlayer tunneling

tends to produce a Majorana neutral mode carrying c = 1/2
in addition to the usual c = 1 bosonic charge mode29,62, thus

reaching the edge theory of the MR Pfaffian state. There-

fore, from the viewpoints of the wave-function equivalence,

the bulk theory in the thin-torus limit, and the effective edge

theory, a continuous phase transition is allowed between these
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FIG. 5. The phase diagram of the FQH bilayer at νT = 1/2 in

terms of the layer distance d and tunnelling strength t⊥, obtained

from Ne = 18 on the sphere with layer width w = 1.5. The con-

tinuous phase transition from the (331) Halperin state to the MR

Pfaffian state is labeled by dashed line, while the solid line marks the

transition between the (331) Halperin state and a possible CFL.

two triplet pairing FQH states17,25.

At last, we present a quantum phase diagram for the FQH

bilayer system at νT = 1/2, as functions of experimentally

relevant parameters d and t⊥ in Fig. 5. Different phases and

their phase boundaries are determined by the entanglement

spectrum based on the Ne = 18 data on the sphere. We

find three different phases: the (331) Halperin phase, the MR

Pfaffian phase, and the compressible CFL phase. When t⊥ is

small and d is relatively large, two layers are effectively de-

coupled with each at ν = 1/4 (in the d → ∞ limit) and the

ground state is a well-known CFL. At small t⊥, the ground

state is in the (331) Halperin phase, then a phase transition to

the MR Pfaffian state occurs at t⊥ ∼ 0.04 − 0.07 (depend-

ing on the value of d). The intermediate tunneling regime

t⊥ ∼ 0.05−0.1 has larger excitation gap as shown in Fig. 4(c),

where the MR Pfaffian state is most likely to be observed ex-

perimentally (Appendix Sec. F). Interestingly, the maximal

excitation gap in the intermediate tunneling regime [Fig. 4(c)]

qualitatively agrees with the experimental observation21. This

also supports that MR Pfaffian state is more robust in the

intermediate-tunneling regime while the (331) Halperin state

is stable in the weak-tunneling regime. In addition, we point

out that, even though the MR Pfaffian phase is shown to be re-

markably robust in the intermediate-tunneling regime, we are

less certain about the fate of the state in the strong-tunneling

limit (t⊥ → ∞) (see Appendix Sec. E 2) due to other compet-

ing phases.

V. CONCLUSION

In this work, we use density-matrix renormalization group

and exact diagonalization techniques to study a fractional

quantum Hall (FQH) bilayer system at total half-filling. In the

phase diagram in terms of the experimentally accessible pa-

rameters (layer separation d, interlayer tunneling t⊥, and layer

width w), we find two different incompressible phases: the

Abelian (331) Halperin phase in the weak-tunneling regime

and the non-Abelian Moore-Read (MR) Pfaffian state for the

intermediate tunneling strength, as identified by the ground-
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state degeneracy on the torus geometry and the topological

entanglement-based diagnosis on the spherical geometry. The

results on different geometries are consistent with each other

and give similar phase boundaries. We also establish that the

transition between these two phases is continuous, which ver-

ifies the theoretical conjecture that a continuous phase tran-

sition is allowed between two triplet pairing states17,25 with

distinct quasi-particle excitations. Our work clearly demon-

strates that for realistic two-component FQH systems, the

non-Abelian MR Pfaffian state is indeed a stronger candi-

date than the Abelian (331) Halperin state in the intermediate-

tunneling regime.

We believe that our work will motivate experimental ac-

tivities searching for the non-Abelian phase in bilayer struc-

tures at total half-filling. Some existing theoretical propos-

als can be used to identify the corresponding edge physics

experimentally52,63,64. For example, the quasiparticle tunnel-

ing conductance acrossing quantum point contacts allows the

extraction of the dimensionless interaction parameter g, which

reflects the topological order in the bulk and can be directly

compared with the theoretical expectations of g = 1/4 for

the MR Pfaffian state and g = 3/8 for the (331) Halperin

state10,13. Another approach is to probe the edge density fluc-

tuation when the sample is coupled to a nearby quantum dot64.

Furthermore, the measurement of drag Hall conductance in

double QWs can be performed to identify different phases.

The (331) Halperin state has the quantized Hall drag conduc-

tance, while the MR Pfaffian state has a strong density fluctua-

tion with non-quantized Hall drag conductance (see Appendix

F). On the theoretical sides, our work, with combined DMRG

and ED methods, also paves the way for future studies of other

multicomponent systems with the aim to search for more ex-

otic FQH states.

Note added.— After the completion of this manuscript,

we noticed experimental evidences of an incompressible one-

component state at ν = 1/265,66.
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Phys. Rev. B 82, 075302 (2010), URL http://link.aps.

org/doi/10.1103/PhysRevB.82.075302.
40 J.-S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), URL

http://link.aps.org/doi/10.1103/PhysRevB.

91.195119.
41 S. R. White, Phys. Rev. Lett. 69, 2863 (1992), URL http:

//link.aps.org/doi/10.1103/PhysRevLett.69.

2863.
42 N. Shibata and D. Yoshioka, Phys. Rev. Lett. 86, 5755

(2001), URL http://link.aps.org/doi/10.1103/

PhysRevLett.86.5755.
43 A. E. Feiguin, E. Rezayi, C. Nayak, and S. Das Sarma, Phys. Rev.

Lett. 100, 166803 (2008), URL http://link.aps.org/

doi/10.1103/PhysRevLett.100.166803.
44 J. Zhao, D. N. Sheng, and F. D. M. Haldane, Phys. Rev. B

83, 195135 (2011), URL http://link.aps.org/doi/10.

1103/PhysRevB.83.195135.
45 M. P. Zaletel, R. S. K. Mong, F. Pollmann, and E. H. Rezayi,

Phys. Rev. B 91, 045115 (2015), URL http://link.aps.

org/doi/10.1103/PhysRevB.91.045115.
46 J. C. Y. Teo and C. L. Kane, Phys. Rev. B 89, 085101

(2014), URL http://link.aps.org/doi/10.1103/

PhysRevB.89.085101.
47 A. Vaezi and M. Barkeshli, Phys. Rev. Lett. 113, 236804

(2014), URL http://link.aps.org/doi/10.1103/

PhysRevLett.113.236804.
48 Y. Zhang and X.-L. Qi, Phys. Rev. B 89, 195144 (2014), URL

http://link.aps.org/doi/10.1103/PhysRevB.

89.195144.
49 A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404

(2006), URL http://link.aps.org/doi/10.1103/

PhysRevLett.96.110404.
50 M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006), URL http://link.aps.org/doi/10.1103/

PhysRevLett.96.110405.
51 H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101,

010504 (2008), URL http://link.aps.org/doi/10.

1103/PhysRevLett.101.010504.
52 X.-G. Wen, Advances in Physics 44, 405 (1995).
53 W. Zhu, S. S. Gong, F. D. M. Haldane, and D. N. Sheng, Phys.

Rev. Lett. 115, 126805 (2015), URL http://link.aps.

org/doi/10.1103/PhysRevLett.115.126805.
54 R. S. K. Mong, M. P. Zaletel, F. Pollmann, and Z. Papić, ArXiv
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Appendix A: Computational Methods

1. Fractional Quantum Hall Bilayer Hamiltonian

In a perpendicular external magnetic field, electrons moving in two spatial dimensions occupy highly-degenerate orbitals in

each Landau level. When the magnetic field is strong, we can assume that electrons are spin-polarized (in experiments, the

Zeeman energy is order of Kelvin, which is indeed much larger than the reported energy gap) and their dynamics is restricted to

the orbitals in the lowest Landau level (LLL). Under these circumstances, the Hamiltonian of a fractional quantum Hall (FQH)

bilayer system can be written as

H=

Ns−1
∑

{mi}=0

∑

σ=↑,↓
V σσ
m1,m2,m3,m4

c†m1σc
†
m2σcm3σcm4σ

+

Ns−1
∑

{mi}=0

∑

σ=↑,↓
V σσ̄
m1,m2,m3,m4

c†m1σc
†
m2σ̄cm3σ̄cm4σ

−t⊥
Ns−1
∑

m=0

∑

σ=↑,↓
c†m,σcm,σ̄, (A1)

where Ns is the total number of LLL orbitals in each layer, c†m,σ(cm,σ) is the creation (annihilation) operator of an electron

in the LLL orbital m of layer σ(σ̄) =↑ (↓), ↓ (↑), and t⊥ describes the tunneling strength between two layers. V σσ
m1,m2,m3,m4

and V σσ̄
m1,m2,m3,m4

are matrix elements of the intralayer and interlayer interaction, respectively, which can be computed by the

standard second-quantization procedure once we adopt a specific geometry for the system. In the following, we give the details

on the torus geometry and spherical geometry that we use in the main text.

2. Torus Geometry

The advantage of the torus geometry is its nonzero genus, which allows us to distinguish different topological orders by their

ground-state degeneracies.

We consider Ne electrons moving on two rectangular tori with a perpendicular magnetic field. Each torus, corresponding

to a layer, is spanned by L1 = L1ex and L2 = L2ey , where ex and ey are fixed Cartesian unit vectors, and L1 and L2

are lengths of the two fundamental cycles of the torus. Required by the magnetic translation invariance, the number of fluxes

Nφ penetrating each torus, which is equal to the number of orbitals Ns in one Landau level per layer, must be an integer

Ns = Nφ = L1L2/(2πℓ
2). The total filling fraction in two layers is then defined as νT = Ne/Nφ = Ne/Ns. In the following,

we set the magnetic length ℓ = 1 as the length unit. In the Landau gauge A = Bxey , the basis of LLL single-particle states can

be taken as ψσ
j (xσ, yσ) =

(

1√
πL2

)
1

2 ∑+∞
n=−∞ ei 2π

L2
(j+nNs)yσe−

1

2
[xσ− 2π

L2
(j+nNs)]

2

, where (xσ, yσ) is the coordinate in layer σ

and j = 0, 1, · · · , Ns − 1 is the orbital momentum. Then the standard second-quantization procedures give

V σσ′

m1,m2,m3,m4
= δmodNs

m1+m2,m3+m4

1

4πNs

+∞
∑

q1,q2=−∞
δmodNs

q2,m1−m4
Vσσ′ (qx, qy)e

− 1

2
(q2x+q2y)ei

2πq1
Ns

(m1−m3), (A2)

where qx = 2πq1
L1

, qy = 2πq2
L2

, and V σσ′

(q) is the Fourier transform of the interaction in real space.

The detailed form of Vσσ′ (q) depends on the theoretical model of our bilayer FQH system. In this work, we consider

Coulomb-interacting electrons in double quantum wells, each of which is described by an infinite square well with width w and

separated from each other by distance d. Then we have

Vσσ(q) =
1

q

3qw + 8π2

qw − 32π4(1−e−qw)
q2w2(q2w2+4π2)

q2w2 + 4π2
(A3)

for the intralayer interaction, and

Vσσ̄(q) =
1

q
e−qd (A4)

for the interlayer interaction. For simplicity, we ignore the non-zero layer width in the interlayer interaction. The non-zero

layer-width just quantitatively modifies the effective layer distance, which should not change intrinsic physics shown in the main
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text. For physical setting, we force the condition d > w in the calculations. These choices can well describe the experimental

setups in GaAs/AlAs systems.

The magnetic translation invariance in two directions on the torus geometry allows us to label each many-body eigenstate of

the Hamiltonian (A1) by a two-dimensional momentum (K1,K2). In our exact diagonalization calculation, we utilize the full

symmetry (K1,K2). However, in the DMRG calculation, we only use one quantum number K2 (relabeled as K), which is the

total orbital momentum of the system.

3. Spherical Geometry

Compared with the torus geometry, spherical geometry has zero genus, thus we cannot distinguish different topological orders

by their ground-state degeneracies. However, the unique ground state and a single edge per layer for the orbital cut liberate us

from the complicated ground-state superposition and edge mode combination that may happen on the torus, thus making the

spherical geometry a particularly suitable platform for the entanglement spectroscopy.

We use Haldane’s representation of the spherical geometry67. In our bilayer FQH system, Ne electrons are confined on the

surfaces of two spheres. Each sphere, corresponding to a layer, contains a magnetic monopole of strength Q. The total number

of magnetic fluxes through each spherical surface is quantized to be an integer Nφ = 2Q. The basis of LLL single-particle

states can be taken as ψσ
j (uσ, vσ) =

√

(2Q+1)!
4π(Q+j)!(Q−j)!u

Q+j
σ vQ−j

σ with orbital angular momentum j = −Q,−Q + 1, · · · , Q,

thus there are Ns = Nφ + 1 = 2Q + 1 orbitals in the LLL. (uσ, vσ) is the spinor variable in layer σ with u = cos(θ/2)eiφ/2

and v = sin(θ/2)e−iφ/2, where θ and φ are the spherical coordinates. The total filling fraction in two layers is defined as

νT = Ne/(Nφ + S) = Ne/(Ns + S − 1), where S is a finite-size shift on sphere. Please note that both the (331) Halperin state

and Moore-Read Pfaffian state live in S = 3. Standard second-quantization procedures lead to

V σσ′

m1,m2,m3,m4
= δm1+m2,m3+m4

1

2

2Q
∑

l=0

Vσσ′

l [2(2Q− l) + 1]

(

Q Q 2Q− l
m1 −Q m2 −Q 2Q− (m1 +m2)

)

×
(

Q Q 2Q− l
m4 −Q m3 −Q 2Q− (m3 +m4)

)

, (A5)

where m1,2,3,4 = 0, 1, · · · , 2Q,

(

. . .

. . .

)

is the Wigner 3− j symbol, and Vσσ′

l is the Haldane’s pseudopotential parameter of

the interaction. For simplicity, we just use the LLL pseudopotential parameters on an infinite plane obtained by

Vσσ′

l =
1

(2π)2

∫

Vσσ′ (q)Ll(q
2)e−q2d2q, (A6)

where Ll is the Laguerre polynomial, and Vσσ′ (q) is given by Eqs. (A3) and (A4).

The symmetry that we use in our calculation is the conservation of the total orbital angular momentum Lz on the sphere.

4. Density-Matrix Renormalization Group

In the main text, our calculations are based on the unbiased density-matrix renormalization group (DMRG) algorithm41–44.

The technical details about DMRG in momentum space have been reported in our previous studies44. There, it has been shown

that, for the single-layer ν = 1/3 Laughlin state and the ν = 5/2 Moore-Read Pfaffian state, DMRG can get reliable results with

very high accuracy in much larger systems than the limit of exact diagonalization. Now, we find that DMRG also has excellent

performance in our bilayer FQH system on the torus and spherical geometry. We have obtained the ground state for the spherical

(toroidal) system up to Ne = 24 (Ne = 12) electrons by keeping up to 12000 states, which leads to a truncation error smaller

than 3× 10−5 in the final sweep. We also emphasize that, for the calculations on the torus geometry, since we need to track two

ground states in each momentum sector simultaneously, the fully converged results are limited to Ne = 12. Compared with the

torus geometry, the calculations on the spherical geometry can reach systems as large as Ne = 24 within controlled accuracy.

Appendix B: The Counting of Edge Excitations

1. Moore-Read Pfaffian State

Here we analyze the degeneracy pattern of the edge excitation spectrum of the fermionic Moore-Read (MR) Pfaffian state. Our

analysis is based on root configurations68 on the sphere, which are also equivalent to configurations in the thin-torus limit69,70.
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The degeneracy of the MR Pfaffian edge excitations is the same as the number of root configurations that satisfy a specific

generalized exclusion rule, i.e., no more than 2 fermions in 4 consecutive orbitals.

In Tables I and II, we count the root configurations that satisfy this rule. We start from the initial root configuration without

edge excitations, for example, 1100110011|0000, which is just the root configuration of the MR Pfaffian state itself. “|” indicates

the right edge, which is open so electrons can hop across to form edge excitations. The root configurations with edge excitations

must have larger angular momentum Lz than the initial one. We list all of them in terms of their relative angular momentum

∆Lz to the initial root configuration, for which ∆Lz = 0. Note that root configurations and their counting are different for even

number (Table I) and odd number (Table II) of electrons.

TABLE I. In this table, we count the root configurations of the MR Pfaffian edge excitations with even Ne. The counting is 1, 1, 3, 5, · · · in

the ∆Lz = 0, 1, 2, 3, · · · sector.

∆Lz = 0 ∆Lz = 1 ∆Lz = 2 ∆Lz = 3

1100110011|0000 1100110010|1000 1100110010|0100 1100110010|0010
1100110001|1000 1100110001|0100
1100101010|1000 1100101010|0100

1100101001|1000
1010101010|1000

TABLE II. In this table, we count the root configurations of the MR Pfaffian edge excitations with odd Ne. The counting is 1, 2, 4, 7, · · · in

the ∆Lz = 0, 1, 2, 3, · · · sector.

∆Lz = 0 ∆Lz = 1 ∆Lz = 2 ∆Lz = 3

110011001|0000 110011000|1000 110011000|0100 110011000|0010
110010101|0000 110010100|1000 110010100|0100

110010011|0000 110010010|1000
101010101|0000 110001100|1000

101010100|1000
101010011|0000

1010101010101|0000

The counting of edge excitations given above is saturated only in the thermodynamic limit. In finite systems, we can only

observe part of them. For example, in Table II, the root configuration 1010101010101|0000 in the ∆Lz = 3 sector requires at

least 7 electrons in the system. So this excitation cannot be observed in smaller system sizes.

We can also count the edge excitation modes from the effective edge Hamiltonian. The edge excitation of the MR Pfaffian

state contains one branch of free bosons and one branch of Majorana fermions (Also see Appendix Sec. D 2) with either periodic

or antiperiodic boundary conditions. For free bosons plus antiperiodic Majorana fermions (which corresponds to the ground

state on the sphere), the excitation spectrum is described by the Hamiltonian58,71

HAP
edge =

∑

m>0

[Eb(m)b†mbm + Ef (m− 1/2)c†m−1/2cm−1/2], (B1)

where b and b† (c and c†) are standard boson (fermion) creation and annihilation operators, Eb(m) [Ef (m)] is the dispersion

relation of bosons (fermions) and the total momentum operator is defined as K =
∑

m>0[mb
†
mbm+(m− 1/2)c†m−1/2cm−1/2].

The degeneracy of the edge excitations is the same as the number of energy levels in each K sector, and depends on the

parity of the number of fermions (−1)F , F =
∑

m>0 c
†
m−1/2cm−1/2. For even F , the counting is 1, 1, 3, 5, 10, · · · at ∆K =

0, 1, 2, 3, 4, · · · ; while for odd F , the counting is 1, 2, 4, 7, 13, · · · at ∆K = 0, 1, 2, 3, 4, · · · . Here ∆K is defined as K −K0

whereK0 is the lowest momentum (K0 = 0 for even F and K0 = 1/2 for odd F ). One can see that this method reaches exactly

the same counting as that obtained by root configurations.

2. (331) Halperin State

In bilayer FQH systems, it is convenient to consider the orbital m in the upper layer and the orbital m in the lower layer

as a site with four possible occupations: 0 (no electrons), ↑ (one electron in the upper layer), ↓ (one electron in the lower
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layer), and 2 (two electrons, one in each layer). In this site basis, the root configuration of the (331) state on the sphere is

XX00XX00 · · ·XX00XX30, where XX ≡ (↑↓ + ↓↑)/
√
2 is the triplet between two nearest neighbour sites. The root

configurations of the (331) state and its edge excitations obey the following generalized exclusion rule: (1) there is no more

than one electron in three consecutive orbitals within each layer; (2) the configuration of 2 is forbidden; (3) electrons on two

nearest neighbour sites must form the triplet XX . Some configurations, for example XX02, XX0XX,XX ↑, XX ↓, XX0 ↑
, XX0 ↓, ↑↑, ↑ 0 ↑, ↓↓, ↓ 0 ↓ violate this generalized exclusion rule, thus they cannot appear in the root configurations. With

this generalized exclusion rule, we can count the root configurations of the (331) edge excitations, as shown in Tables III and

IV. Again, the root configurations and their counting are different for even number (Table III) and odd number (Table IV) of

electrons.

TABLE III. In this table, we count the root configurations of the (331) edge excitations with even Ne. The counting is 1, 2, 7, 14, · · · in the

∆Lz = 0, 1, 2, 3, · · · sector. We also give the pseudospin quantum number Sz = (N↑
e −N↓

e )/2 for each root configuration.

∆Lz = 0 ∆Lz = 1 ∆Lz = 2 ∆Lz = 3

XX00XX00XX|000 (Sz = 0) XX00XX00 ↑ 0| ↓ 00 (Sz = 0) XX00XX00 ↑ 0|0 ↓ 0 (Sz = 0) XX00XX00 ↑ 0|00 ↓ (Sz = 0)

XX00XX00 ↓ 0| ↑ 00 (Sz = 0) XX00XX00 ↓ 0|0 ↑ 0 (Sz = 0) XX00XX00 ↓ 0|00 ↑ (Sz = 0)

XX00XX000X|X00 (Sz = 0) XX00XX000 ↑ |0 ↓ 0 (Sz = 0)

XX00 ↑ 0 ↓ 0 ↑ 0| ↓ 00 (Sz = 0) XX00XX000 ↓ |0 ↑ 0 (Sz = 0)

XX00 ↓ 0 ↑ 0 ↓ 0| ↑ 00 (Sz = 0) XX00 ↑ 0 ↓ 0 ↑ 0|0 ↓ 0 (Sz = 0)

XX00XX00 ↑ 0|0 ↑ 0 (Sz = 1) XX00 ↓ 0 ↑ 0 ↓ 0|0 ↑ 0 (Sz = 0)

XX00XX00 ↓ 0|0 ↓ 0 (Sz = −1) XX00 ↑ 0 ↓ 00X|X00 (Sz = 0)

XX00 ↓ 0 ↑ 00X|X00 (Sz = 0)

↑ 0 ↓ 0 ↑ 0 ↓ 0 ↑ 0| ↓ 00 (Sz = 0)

↓ 0 ↑ 0 ↓ 0 ↑ 0 ↓ 0| ↑ 00 (Sz = 0)

XX00XX00 ↑ 0|00 ↑ (Sz = 1)

XX00 ↑ 0 ↓ 0 ↑ 0|0 ↑ 0 (Sz = 1)

XX00XX00 ↓ 0|00 ↓ (Sz = −1)

XX00 ↓ 0 ↑ 0 ↓ 0|0 ↓ 0 (Sz = −1)

TABLE IV. In this table, we count the root configurations of the (331) edge excitations with odd Ne. The counting is 2, 4, 10, · · · in the

∆Lz = 0, 1, 2, · · · sector. We also give the pseudospin quantum number Sz = (N↑
e −N↓

e )/2 for each root configuration.

∆Lz = 0 ∆Lz = 1 ∆Lz = 2

XX00XX00 ↑ |000 (Sz = 1/2) XX00XX000| ↑ 00 (Sz = 1/2) XX00XX000|0 ↑ 0 (Sz = 1/2)

XX00XX00 ↓ |000 (Sz = −1/2) XX00 ↑ 0 ↓ 0 ↑ |000 (Sz = 1/2) XX00 ↑ 0 ↓ 00| ↑ 00 (Sz = 1/2)

XX00XX000| ↓ 00 (Sz = −1/2) XX00 ↓ 0 ↑ 00| ↑ 00 (Sz = 1/2)

XX00 ↓ 0 ↑ 0 ↓ |000 (Sz = −1/2) XX00 ↑ 00XX|000 (Sz = 1/2)

↑ 0 ↓ 0 ↑ 0 ↓ 0 ↑ |000 (Sz = 1/2)

XX00XX000|0 ↓ 0 (Sz = −1/2)

XX00 ↑ 0 ↓ 00| ↓ 00 (Sz = −1/2)

XX00 ↓ 0 ↑ 00| ↓ 00 (Sz = −1/2)

XX00 ↓ 00XX|000 (Sz = −1/2)

↓ 0 ↑ 0 ↓ 0 ↑ 0 ↓ |000 (Sz = −1/2)

Appendix C: Additional Results of Entanglement Spectra

An artificial edge is produced by the orbital cut of the whole system into two parts. The low-lying entanglement spectrum

(ES) mimics the edge excitation spectrum of one subsystem across the cutting edge. Thus the counting structure in the ES can be

predicted by applying the analysis in Appendix Sec. B to that subsystem, whose initial root configuration is the corresponding

subsystem part of the root configuration of the whole system. Here we show the ground-state orbital ES in the MR Pfaffian

phase of our bilayer FQH system for various system sizes Ne = 16, 18, 20, 22 and 24 (Fig. 6). One can see that the leading
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ES counting at all system sizes always displays 1, 1, 3 (1, 2, 4) for even (odd) number of electrons in the half-cut subsystem,

matching the predictions in Tables I and II. For Ne = 20, we observe a relatively small entanglement gap, which might be

attributed to that this system size is “aliased” to another possible FQH state at ν = 4/7 on the sphere. If we go to larger systems

likeNe = 22 and 24, the entanglement gap becomes stronger again. Here, the low-lying ES structure is robust against finite-size

effect, providing a fingerprint of the non-Abelian MR Pfaffian nature of the ground state.
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FIG. 6. The low-lying orbital ES for various bilayer system sizes Ne = 16, 18, 20, 22, 24 at the tunneling strength t⊥ = 0.10, layer width

w = 1.5 and layer distance d = 3.0, with even (top) or odd (bottom) number of electrons in the half-cut subsystem. The levels whose counting

is consistent with the MR Pfaffian edge excitations proposed in Tables I and II are labeled by red. ∆LA
z = LA

z − LA
z,min, where LA

z,min is the

total angular momentum of the subsystem A without edge excitations.

We also track the evolution of the ground-state orbital ES as a function of the tunneling strength t⊥. In Fig. 7, we show the ES

by varying t⊥ from 0.02 to 0.10 at layer width w = 1.5 and layer distance d = 3.0. In the weak-tunneling regime (t⊥ < 0.04),

the leading ES counting matches the expectation of the (331) Halperin state in Tables III and IV. Remarkably, with increasing

t⊥, some levels in angular momentum sectors ∆LA
z ≥ 1 are being continuously gapped out. For example, at t⊥ = 0.05, the

gap between the lowest level and the second lowest level in the ∆LA
z = 1 sector becomes visible, indicating the MR Pfaffian

ES is developing. The fact that some edge modes in the ES of the (331) Halperin state are continuously being gapped out with

increasing the tunneling strength t⊥ is consistent with the effective edge theory described in Appendix Sec. D 2.
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FIG. 7. The low-lying orbital ES of Ne = 18 for different tunneling strength t⊥ at layer width w = 1.5 and layer distance d = 3.0, with

even number of electrons in the half-cut subsystem. The levels whose counting is consistent with the MR Pfaffian edge excitations proposed

in Tables I and II are labeled by red. The green levels match the (331) edge excitations proposed in Tables III and IV at small t⊥, but are

continuously gapped out with increasing the tunneling strength. ∆LA
z = LA

z − LA
z,min, where LA

z,min is the total angular momentum of the

subsystem A without edge excitations.
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Appendix D: Theoretical Consideration

In this section, we review several different theories to understand the relation between the non-Abelian MR Pfaffian state and

the Abelian (331) Halperin state. First, with the help of Cauchy identity, we show that the antisymmetrized (331) Halperin wave

function leads to the MR Pfaffian wavefunction. Second, by including the tunneling effect, it is plausible to reach the edge theory

of the MR Pfaffian state from that of the (331) Halperin state via gapping out one branch of Majorana fermion from the neutral

mode. Third, working in the thin-torus limit, the quantum phase transition from the (331) Halperin state to the MR Pfaffian

state can be captured by an effective one-dimensional transverse-field Ising model, which helps us to elucidate the nature of the

transition.

1. Model Wave Function

It has been a long time since the discovery of the exact equivalence24,25 between the MR Pfaffian wave function4 and the

antisymmetrized (331) Halperin wave function14. Specifically, the MR Pfaffian wave function can be written as (we discard the

Gaussian exponential factor hereafter)

ΨMR =
∏

i<j

(zi − zj)
2Pf

(

1

zi − zj

)

, (D1)

where zi’s are two-dimensional coordinates of electrons, and Pf(Mij) = A(M12M34 · · ·MN−1,N) with A the antisymmetriza-

tion operator. The (331) Halperin wave function is

Ψ331 =
∏

i<j

(z↑i − z↑j )
3
∏

k<l

(w↓
k − w↓

l )
3
∏

m,n

(z↑m − w↓
n), (D2)

where z↑i ’s and w↓
i ’s are coordinates of electrons in the top and bottom layers denoted by the pseudospin indices ↑ and ↓,

respectively. It is important to note that the (331) Halperin wavefunction can be analytically cast in to a paired form

Ψ331 =
∏

i<j

(xi − xj)
2 det

[ 1

z↑i − w↓
j

]

with the help of the Cauchy identity24

∏

i<j(z
↑
i −z↑

j )
∏

k<l(w
↓
k−w↓

l )
∏

m,n(z
↑
m−w↓

n)
= det

[

1

z↑
i −w↓

j

]

, where {xi} includes all z↑i ’s and w↓
i ’s. Then,

a further antisymmetrization precisely produces the MR Pfaffian wavefunction (up to a constant normalization factor), leading

to

ΨMR = AΨ331. (D3)

2. Effective Edge Theory

Another efficient way to investigate the possible transition between the (331) Halperin state and the MR Pfaffian state is the

effective edge theory. The key idea is that, starting from the (331) edge theory described by two chiral boson fields [central

charge c = 2 in conformal field theory (CFT)], the tunneling effect between two layers tends to replace one boson field by a

Majorana fermion field carrying c = 1/2, while the other c = 1 boson field is remained.

More precisely, we start from the edge theory of the (331) Halperin state. The gapless excitations are confined to two edges

of the droplet, described by the action61

Sedge =
1

4π

∫

dtdx[KIJ∂tuI∂xuJ − VIJ∂xuI∂xuJ ]

and the Hamiltonian

Hedge =
1

4π

∫

dtdxVIJ∂xuI∂xuJ . (D4)

The matrix KIJ which characterizes the topological properties of the (331) Halperin state has the form of

K =

(

3 1

1 3

)

. (D5)
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uI(t, x) (I = 1, 2 corresponding to two layers) are chiral bosonic fields describing two edge currents along the x−direction,

which satisfy the equal-time commutation relation

[uI(t, x), uJ (t, x
′)] = iπKIJsgn(x− x′). (D6)

The matrix VIJ which contains the information of interactions between the edges has the form of

V =

(

v g

g v

)

, (D7)

where we require g2 < v2 so V is positive definite.

Hedge in Eq. (D4) can be simplified by an orthogonal transformation on the chiral bosonic fields

(

u1
u2

)

=

( √
2 −1√
2 1

)(

φc
φn

)

, (D8)

leading to

Hedge =
1

4π

∫

dtdx[vc(∂xφc)
2 + vn(∂xφn)

2]. (D9)

We refer to the new bosonic fields φc and φn as the charged and neutral edge mode, respectively29,62. φc is related to the total

electric charge on the two edges with velocity vc = 4(v + g), while φn is related to the difference between two edges with

velocity vn = 2(v − g). In terms of the new fields, the commutators are now independent:

[φc(t, x), φc(t, x
′)] = iπsgn(x− x′), [φn(t, x), φn(t, x

′)] = iπsgn(x − x′), [φc(t, x), φn(t, x
′)] = 0. (D10)

Next we assume that electrons can tunnel between two edges, and the tunneling Hamiltonian takes the form of

Htunnel = −t⊥
∫

dtdx[ψ̂†
1ψ̂2 + h.c.], (D11)

where ψ̂I=1,2 are the electron operators and satisfy the usual fermionic anti-commutation relation. The relationship between the

electron operators ψ̂I and the chiral boson fields uI(t, x) is60

ψ̂†
1 = ηeiu1(t,x) = ηei(

√
2φc−φn),

ψ̂†
2 = ηeiu2(t,x) = ηei(

√
2φc+φn), (D12)

where we have used Eq. (D8) and η is a constant depending on the cutoff. Then, the total Hamiltonian can be expressed as

H = Hedge +Htunnel = Hc +Hn,

Hc =
1

4π

∫

dtdxvc(∂xφc)
2,

Hn =
1

4π

∫

dtdx[vn(∂xφn)
2 − t′⊥(e

2iφn + h.c.)],

where t′⊥ is a constant proportional to t⊥. One can see that the tunneling only appears in the neutral mode Hamiltonian Hn.

The next important step is to fermionize Hn by a Dirac fermion field ψD ≡ 1√
2π
eiφn , which can be further decomposed in

terms of two chiral Majorana fermion fields χi=1,2
29 by ψD = 1√

2
(χ1 + iχ2). Finally, we have

Hn = − i

2

∫

dtdx[(vn − t′′⊥)χ1∂xχ1 + (vn + t′′⊥)χ2∂xχ2], (D13)

where t′′⊥ is a rescaled tunneling strength. Now two majorana fields are decoupled with different velocities modified by the

tunneling. The key observation is, when the condition vn − t′′⊥ = 0 is satisfied, one Majorana field χ1 vanishes, leading to

H =

∫

dtdx[− i

2
(vn + t′′⊥)χ2∂xχ2 +

1

4π
vc(∂xφc)

2]. (D14)

Physically, it means one majorana mode can be completely gapped out with the help of the tunneling effect. The remaining edge

theory includes a chiral boson (charged mode, φc) with central charge cφ = 1, and a chiral Majorana fermion (neutral mode,

χ1) with central charge cχ = 1/2. Thus, the total central charge of remaining system is ceff = cφ + cχ = 1 + 1/2, which is

consistent with the expectation of the MR Pfaffian state.
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3. Effective Theory in the Thin-Torus Limit

In this section, we study the quantum phase transition from the (331) Halperin state to the MR Pfaffian state driven by the

interlayer tunneling from a different perspective. That is, we will derive an effective theory for the underlying quantum phase

transition in the thin-torus limit30,68–70. Unlike the effective edge theory, such kind of effective theory is constructed for the bulk

and is expected to describe how the ground-state manifold evolves from the (331) degeneracy to the MR Pfaffian degeneracy.

Recall that the interaction matrix elements V σσ′

m1,m2,m3,m4
on the torus only depends on m1 −m3 and m1 −m4 [Eq. (A2)].

This allows us to reformulate the translation invariant interaction Hamiltonian in Eq. (A1) as

Hint =
∑

σ,σ′=↑,↓

Ns−1
∑

i=0

∑

r,s

Uσσ′

r,s c
†
i+s,σc

†
i+r,σ′ci+s+r,σ′ci,σ. (D15)

Since the single-particle LLL wave function on the torus ψσ
j (xσ , yσ) =

(

1√
πL2

)
1

2 ∑+∞
n=−∞ ei 2π

L2
(j+nNs)yσe−

1

2
[xσ− 2π

L2
(j+nNs)]

2

is localized along xσ = 2πj/L2, the separation of two consecutive orbitals, or the overlap between ψj and ψj+1, is controlled

by a single parameter κ = 2π/L2. In the thin-torus limit L2 ≪ 1 or κ≫ 1, the overlap between two adjacent Landau orbitals is

negligible, thus the system can be viewed as a one-dimensional chain. Because the magnitude of Uσσ′

r,s ∝ e−κ2(s2+r2)/2 decays

exponentially when κ→ ∞, the dominated interaction Hamiltonian in the thin-torus limit is69,70

Hint =
∑

σ,σ′

∑

i

′
∑

r

Uσσ′

r,0 n
σ
i n

σ′

i+r, (D16)

where nσ
i = c†i,σci,σ, and

∑′
r means r = 0 is excluded if σ = σ′. Uσσ′

r,0 can be treated perturbatively with the increase of r.
The thin-torus interaction (D16) only includes exponentially decaying electrostatic terms. Once we truncate it at short ranges,

the ground states at a fixed filling fraction have simple charge-density-wave patterns, i.e., the thin-torus configurations of the

corresponding FQH states. Here we give the solutions for the (331) Halperin state (Table V) and the MR Pfaffian state (Table VI)

[For the MR Pfaffian state, we need a similar thin-torus analysis of its three-body parent Hamiltonian rather than (D16)], labeled

by their momentum quantum numbers (K1,K2) (see Appendix Sec. A 2) on the torus. Actually they are quite similar to each

other, except that the (331) Halperin state takes layer indices and has one more configuration 0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ −0 ↓ 0 ↑
· · · 0 ↓ 0 ↑ in the (K1,K2) = (0, 0) sector. As we will analyze in the next section Appendix Sec. E 2, strong tunneling favors

the symmetric basis c†m,s = 1√
2
(c†m↑ + c†m↓). Therefore, 0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ −0 ↓ 0 ↑ · · · 0 ↓ 0 ↑ vanishes at strong

tunneling, because both 0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ and 0 ↓ 0 ↑ · · · 0 ↓ 0 ↑ are mapped to 0101 · · ·0101 in the effective single-

component orbitals under the symmetric basis. Other three thin-torus configurations of the (331) Halperin state are mapped

to 0101 · · ·0101, 1100 · · ·1100 + 0011 · · ·0011 and 1100 · · ·1100 − 0011 · · ·0011, respectively, which exactly matches the

thin-torus configurations of the MR Pfaffian state. This means, at least in the thin-torus limit, interlayer tunneling is indeed a

mechanism that can induce the quantum phase transition from the (331) Halperin state to the MR Pfaffian state.

TABLE V. The thin-torus configurations of the (331) Halperin state, expressed in the bilayer FQH site basis (see Appendix Sec. B 2). Here we

neglect the center-of-mass degeneracy caused by the translation of each configuration.

Thin-torus configuration (K1,K2)

0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ −0 ↓ 0 ↑ · · · 0 ↓ 0 ↑ (0, 0)

0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ +0 ↓ 0 ↑ · · · 0 ↓ 0 ↑ (π, 0)

XX00 · · ·XX00 + 00XX · · · 00XX (0, π)

XX00 · · ·XX00− 00XX · · · 00XX (π, π)

TABLE VI. The thin-torus configurations of the MR Pfaffian state, expressed in the single-component FQH orbital basis. Here we neglect the

center-of-mass degeneracy caused by the translation of each configuration.

Thin-torus configuration (K1,K2)

0101 · · · 0101 (π, 0)

1100 · · · 1100 + 0011 · · · 0011 (0, π)

1100 · · · 1100 − 0011 · · · 0011 (π, π)
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Now we start to build an effective bulk theory for the phase transition. We truncate the interaction Hamiltonian (D16) at

r = 2, and add the tunneling term, leading to the total Hamiltonian as

H = H0 +H1 +Ht,

H0 =
∑

i,σ

Uσσ
1,0n

σ
i n

σ
i+1 +

∑

i,σ

Uσσ̄
0,0n

σ
i n

σ̄
i ,

H1 =
∑

i,σ

Uσσ
2,0n

σ
i n

σ
i+2 +

∑

i,σ

Uσσ̄
1,0n

σ
i n

σ̄
i+1 +

∑

i,σ

Uσσ̄
2,0n

σ
i n

σ̄
i+2,

Ht = −t⊥
∑

i

c†i,↑ci,↓ + h.c.. (D17)

We take H1 +Ht as perturbation and construct an effective Hamiltonian in the degenerate ground-state manifold of H0.

Note that all configurations that can be related to 0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ by spin flips belong to the degenerate ground-state

manifold of H0. For these configurations, if we introduce a new basis |+〉i ≡ [0 ↑]i, |−〉i ≡ [0 ↓]i for a unit cell of two

consecutive orbitals, and define σx
i = |+〉i〈−|+ |−〉i〈+|, σz

i = |+〉i〈+| − |−〉i〈−|, we can reach an effective Hamiltonian

Heff = −Jx
∑

i

σx
i + Jz

∑

i

σz
i σ

z
i+1 (D18)

up to the first-order perturbation, with effective coupling Jx ∼ t⊥ and Jz ∼ (Uσ,σ
2,0 − Uσ,σ̄

2,0 )/2. Heff is nothing but the

widely studied one-dimensional transverse field Ising model, which hosts two gapped phases59. The ground states are doubly

degenerate for Jx < Jz , while there is only a unique Z2 symmetric ground state for Jx > Jz . And the two different phases are

separated by a quantum critical point at Jx = Jz (at zero temperature)59. In the Jx/Jz → 0 limit, the two ground states are

|+〉|−〉 · · · |+〉|−〉 = 0 ↑ 0 ↓ · · · 0 ↑ 0 ↓ and |−〉|+〉 · · · |−〉|+〉 = 0 ↓ 0 ↑ · · · 0 ↓ 0 ↑, which exactly match the (331) thin-torus

configurations with (K1,K2) = (0, 0) and (π, 0) up to a superposition. In the Jx/Jz → ∞ limit, the unique ground state is

polarized in the x−direction with the form of
∏

i
|+〉i+|−〉i√

2
= 0 → 0 → · · · 0 → 0 → with →≡↑ + ↓, which exactly matches

the MR Pfaffian thin-torus configuration with (K1,K2) = (π, 0). This effective model indicates that the (331) configuration

with (K1,K2) = (0, 0) can indeed be continuously gapped out by increasing the tunneling t⊥. To numerically verify the above

picture, we calculate the energy spectrum of the one dimensional transverse Ising model in Fig. 8. We find that, for a finite

system, one of lowest energy states (labeled by red cross) is continuously gapped out by increasing Jx, and the excitation gap at

Jx = Jz does not vanish (please also see the comments below). These features are very similar to what we find in Fig. 2 (main

text).

In addition, all configurations that are related to ↑↓ 00 · · · ↑↓ 00 by simultaneously flipping two nearest neighbor spins also

belong to the degenerate ground-state manifold of H0. For these configurations, we can introduce a new basis |+〉i ≡ [↑↓
00]i, |−〉i ≡ [↓↑ 00]i for a unit cell of four consecutive orbitals, and define σx

i = |+〉i〈−|+ |−〉i〈+|, σz
i = |+〉i〈+| − |−〉i〈−|.

The second-order perturbation leads to an effective Hamiltonian Heff = −Jx
∑

i σ
x
i with Jx ∼ 2t2⊥/U

σσ
1,0 . Therefore, there is

no phase transition and the ground state is always
∏

i
|+〉i+|−〉i√

2
= XX00 · · ·XX00. The same conclusion also holds for those

configurations that are related to 00 ↑↓ · · · 00 ↑↓ by simultaneously flipping two nearest neighbor spins. Therefore, the (331)
degeneracy in the (0, π) and (π, π) sectors cannot be changed by the tunneling.

We have clarified that the (331) Halperin state and the MR Pfaffian state is separated by a quantum critical point and the

ground-state degeneracy can be reduced from four-fold to three-fold. To further elucidate the “topological” property of this phase

transition, we refer to the fermionic representation of the transverse field Ising model. After the Wigner-Jordan transformation,

one-dimensional transverse field Ising model can be mapped to Kitaev chain model. Thus, we reach an intriguing connection

here: the quantum phase transition from the (331) Halperin state to the MR Pfaffian can be understood as a transition from the

weak p−wave pairing regime to the strong p−wave pairing regime. The same statement was predicted years ago17, where Read

and Green derived it by setting up the BCS effective quasiparticle Hamiltonian and Bogoliubov transformation. Here, we reach

the same conclusion through the perturbation theory in the thin-torus limit. In our approach, the nature of transition becomes

transparent through mapping the bilayer system to an exactly solvable model.

We would like to end this section by a comment on the validity of the thin-torus consideration. As shown above, the mapping

in the thin-torus limit to an effective one-dimensional transverse Ising chain indeed provides a natural understanding of the

continuous phase transition from the (331) state to the MR state which occurs in our two-dimensional bilayer system. However,

whether such an effective one-dimensional model can capture other features of the original system is unknown. For example,

the excitation gap of the one-dimensional transverse Ising model should close at Jx = Jz in the thermodynamic limit59. On the

contrary, we did not observe an obvious decay of the excitation gap with the system size at the critical t⊥ (Fig. 4). However, we

still cannot rule out the possibility that our bilayer system is also gapless at the transition point in the thermodynamic limit.
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FIG. 8. Energy spectra of the one-dimensional transverse field Ising model as a function of parameter Jx/Jz . Here, the calculation is performed

on a spin chain with 18 sites. It is clear that, as increasing Jx, one ground state is continuously gapped out (labeled by red cross).Please note

that the evolution of the low-energy spectrum versus Jx is very similar to that in our bilayer FQH system [Fig. 2(a)]. Dotted line indicates the

transition point predicted by analytic result. Please see Ref.59 for detailed analysis of the transition in Ising model.

Appendix E: Energy Spectra from Exact Diagonalization

1. Bilayer System

In the main text, we show the energy spectra of Ne = 12 on the torus obtained by DMRG. Here we would like to present

the torus energy spectra of smaller systems that can be reached by exact diagonalization (ED). In our bilayer FQH system, the

Hilbert space grows very fast with the increase of the system size, so ED calculations are strongly limited.

In Fig. 9, we show the energy spectra of Ne = 8 and 10 as a function of the tunneling strength. For Ne = 8, with increasing

the tunneling strength, one state in the momentum sector K = 1 comes down and eventually forms a gapless branch in the

low-energy spectrum. A similar situation occurs also for Ne = 10. This is the main reason that previous studies ruled out the

possibility of the MR Pfaffian state on the torus39. Moreover, in Fig. 9, the energy spectra at small tunneling even fail to develop

stable four-fold ground-state degeneracy of the (331) Halperin state. Therefore, we believe that ED calculations suffer from

finite-size effect too strongly to demonstrate the MR Pfaffian physics.
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FIG. 9. Energy spectra as a function of tunneling t⊥ on a square torus with Ne = 8 (left) and 10 (right) electrons obtained by exact

diagonalization. Different momentum sectors are labeled by different symbols. All calculations are performed at layer width w = 1.5 and

layer distance d = 3.0.
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FIG. 10. Energy spectra in the strong-tunneling limit for (left) Ne = 12 and (right) Ne = 16 on the square torus obtained by ED. Energy

eigenstates are labeled by a
√

K2
1 +NeK2

2 (in unit of 2π/Ns), where (K1,K2) is two-dimensional momentum (see Appendix Sec. A). The

three-fold ground-state degeneracy in (0, π), (π, 0), (π, π) are labeled by red squares. All calculations are performed at layer distance d = 3.0
and layer width w = 1.5.

2. Effective Single-component Systems in the Strong-tunneling Limit

We can reformulate the bilayer FQH system in a new single-particle basis defined by c†m,s = 1√
2
(c†m↑ + c†m↓) and c†m,as =

1√
2
(c†m↑ − c†m↓), where c†m,s (c†m,as) creates an electron in the symmetric (antisymmetric) orbital m between two layers. In this

picture, the tunneling term becomes diagonal as −t⊥
∑Ns−1

m=0 (c†m,scm,s − c†m,ascm,as). Therefore, in the strong-tunneling limit

t⊥ → ∞, the degrees of freedom in the antisymmetric basis are frozen, thus we can view the bilayer system as an “effective”

single-component system in the symmetric basis with an average interaction 1
2 (Hintralayer +Hinterlayer). This greatly simplifies

the problem and makes Ne = 12 and 16 accessible in ED.

In Figs. 10, we show the energy spectra ofNe = 12 and 16 in this strong-tunneling limit on the torus obtained by ED. There are

three ground states in (K1,K2) = (0, π), (π, 0), (π, π). We have one remark on the ED calculation. In the strong-tunneling limit,

since the system is effectively single-component, there is an exact particle-hole symmetry in the half-filled lowest Landau level

(while this symmetry is explicitly broken in weak or intermediate tunneling regime of bilayer FQH systems). An conventional

view is that, there should be another copy of the MR Pfaffian degeneracy in the energy spectrum contributed by the particle-hole

conjugate of the MR Pfaffian state, i.e., the anti-Pfaffian state72,73. For finite-size systems, two copies (and states in each copy)

are split and their eigenstates are symmetric and antisymmetric linear combinations of the MR Pfaffian and anti-Pfaffian states.

Apparently, Fig. 10 shows that splitting between the symmetric and antisymmetric combinations is not negligible, indicating

that the ED calculation still suffers from strong finite-size effect in the strong-tunneling regime. However, we should emphasize

that our main conclusion focuses on the intermediate-tunneling regime based on DMRG.

Appendix F: Experimental Setup

1. Related Experimental Parameters

In this section, we briefly review some details of quantum Hall experiments in double quantum well and single wide quantum

well systems. In these systems, several physical quantities are tunable in experiments, including the interlayer separation d
(in unit of ℓ), interlayer tunneling strength t⊥ (in unit of e2/ℓ), and the layer width of a single quantum well w (in unit of ℓ).
Different samples can be constructed with different values of d and w. Tunneling strength is determined by the height of the

potential barrier between two layers in double quantum well systems or the single-particle wavefunction overlap in single wide

quantum well systems. Tuning the parameters can be achieved by varying the electron density ρ, which leads to the change of

the effective ℓ at a fixed filling ν via the relation ρ = ν/2πℓ2. This allows d/ℓ, w/ℓ and t⊥/(e2/ℓ) to be tuned continuously in

a single sample.

To illustrate the typical parameter range that can be accessed, we show the parameters in several experiments at νT = 1/2, as

shown in Table F 1. In double quantum well systems20, it is possible to vary d in the range 2 ∼ 4, while the interlayer tunneling

t⊥ can be suppressed to ∼ 0.01. The width of individual layers in this case is less than d. On the other hand, in wide quantum

wells, the effective layer distance can be varied from 2.0 to 8.022, and the tunneling strength t⊥ typically varies between 0.0 and
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Experiment d/ℓ t⊥/(e
2/ℓ) w/ℓ

Suen et al., Ref. 19 and 21 4.5 - 7.0 0.04-0.10 2.4-2.5

Eisenstein et al., Ref. 20 2.4 -3.6 0.01 1.8

Shabani et al., Ref. 22 5.0-8.0 0.05-0.16 2.8-3.2

TABLE VII. Typical parameter values for several existing quantum Hall experiments at νT = 1/2. The estimation of layer separation d (in

unit of magnetic length ℓ), quantum well layer width w (in unit of ℓ), and tunneling strength t⊥ [in unit of Coulomb energy e2/ℓ] are taken

from self-consistent calculations22.

0.2. For systems where FQH can be observed, the estimated layer width w is typically much smaller than d.

2. Related Experimental Measurements

We briefly discuss the experimentally related observations. First of all, we emphasize that the evolution of excitation gap

∆exc with tunneling strength t⊥ is qualitatively consistent with the experimental observations. As shown in Fig. 11(left), by

tuning the effective tunneling strength t⊥, the measured quasiparticle excitation gap ∆exc develops an upward cusp behavior.

Compared with our results in Fig. 4(c) in the main text, we conclude that the presence of a maximum in excitation gap in the

existing experiment21 is a direct signal of the phase transition from the (331) Halperin state to the MR Pfaffian state.

Next, we propose several methods to distinguish the (331) Halperin state and the MR Pfaffian state in experiments. First, the

(331) Halperin state has a quantized drag Hall conductance σxy
drag = − e2

8h , but the drag Hall conductance of the MR Pfaffian

state is not quantized. Therefore, we can measure σxy
drag to distinguish them. If there are separate electric contacts in two

different layers, and the electric current δI↑ is forced to flow in the top layer (also called the driving layer), a measurable voltage

drop δV↓ will be induced in the bottom layer (called the drag layer). On the other hand, one can also measure the tunneling

current jt ∝ 〈Sx〉 = 1
Nφ

∑

i〈c
†
i,↑ci,↓ + h.c.〉 to distinguish these two states. For the (331) Halperin state, the tunneling current

between two layers should be small and sensitive to the change of the tunneling strength, as shown in Fig. 11(right). On the

contrary, the tunneling current keeps finite and almost does not change for the MR Pfaffian state. Moreover, the (331) Halperin

state and the MR Pfaffian state can also be distinguished by measuring the particle number fluctuation 〈N2〉 = 〈δN2〉/Ne =
〈(N↑ − Ne/2)

2〉/Ne = 〈(N↓ − Ne/2)
2〉/Ne in each layer. Since electrons are confined in two layers in the (331) Halperin

state, the particle number fluctuation should be strongly suppressed. But a large particle number fluctuation is expected for the

MR Pfaffian state due to the tunneling effect, as shown in Fig. 11(right).
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FIG. 11. (left) The experimental observed quasiparticle excitation gaps ∆exc (in unit of Kelvin) versus the tunneling strength t⊥. The data is

obtained from Ref. 21. (right) The tunneling current and particle number fluctuation of each layer as a function of t⊥ with layer width w = 1.5
and layer separation d = 3.0, which can be used to distinguish a two-component state from a single-component state.


