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We study nonlinear magneto-optical responses of metals by a semiclassical Boltzmann equation
approach. We derive general formulas for linear and second order nonlinear optical effects in the
presence of magnetic fields that include both Berry curvature and orbital magnetic moment. Ap-
plied to Weyl fermions, the semiclassical approach (i) captures the directional anisotropy of linear
conductivity under magnetic field as a consequence of an anisotropic B? contribution, which may
explain the low-field regime of recent experiments; (ii) predicts strong second harmonic generation
proportional to B that is enhanced as the Fermi energy approaches the Weyl point, leading to large
nonlinear Kerr rotation. Moreover, we show that the semiclassical formula for the circular photo-
galvanic effect arising from the Berry curvature dipole is reproduced by a full quantum calculation

using a Floquet approach.

I. INTRODUCTION

The wavefunction of a single electron moving through
a crystal has several geometric properties whose impor-
tance in insulators is well known. The most celebrated
example is the Berry phase derived from Bloch states.
It gives a gauge field in momentum space that under-
lies topological phases ranging from the integer quantum
Hall effect to topological insulators. These phases are
characterized by topological invariants that can be ex-
pressed as integrals of Berry gauge fields; even in ordinary
insulators, similar integrals describe important physical
quantities such as electric polarization™? as well as the
magnetoelectric response® 6.

In metals, the Berry gauge field is known to give an ad-
ditional term (the “anomalous velocity”) in the semiclas-
sical equations of motion that describe the motion in real
and momentum space of a wavepacket made from Bloch
states. The anomalous velocity was originally discussed
in the context of the anomalous Hall effect in magnetic
metals such as iron. The semiclassical equations can be
derived systematically to linear order in applied electric
and magnetic fields, under certain assumptions that we
review more fully in Section IT below. In several cases,
such as the anomalous Hall effect” and the gyrotropic
or “transport limit” of the chiral magnetic effect®?, the
semiclassical approach (SCA) fully reproduces the results
obtained from quantum-mechanical calculations based on
the Kubo formula.

The focus of this paper is the semiclassical theory of
nonlinear properties of metals that are currently active
subjects of experimental and theoretical investigation.
One motivation is that systematic quantum-mechanical
derivations that capture all contributions to a given
nonlinear order in applied fields have not as yet been
achieved. An example we consider is the chiral anomaly,
which in a solid is a particular type of angle-dependent
magnetoresistance with an enhanced electrical conduc-
tivity along the direction of an applied magnetic field.
This effect has been argued to exist based on lineariza-

tion near isolated Dirac or Weyl singularities, but the les-
son of the past few years of work on the chiral magnetic
effect is that it can be dangerous to treat the singularities
solely and without including all effects at a given order.
We derive a semiclassical formula for magnetotransport
in the weak-field regime of this problem, and discuss that
including all terms gives an answer distinct from that in
other recent work, which may explain experimental ob-
servations on a Dirac semimetal in this regime!®-!1,

The semiclassical equations of motion for an electron

wavepacket in a metal are!'?
.1 :
r= ﬁvkek —k x ﬂ, (la)
hk = —eE — er x B. (1b)

One new contribution compared to the version in older
textbooks'? is from the Berry curvature in momentum
space,

Q = —Im[(Viug| X |Vieuw)], (2)

and another is from the orbital magnetic moment contri-
bution to the energy dispersion: €, = € — my, - B where
Hy|ug) = €} |ug) with B = 0 and the orbital magnetic
moment is

my, = — g Im{(Viewe| x (Hy — )| Viur)].  (3)
(We note that we adopt the convention e > 0.)

These equations conserve the properly defined volume
in phase space and give an intuitive approach to many
observable properties of metals. However, the SCA can
make erroneous predictions if used outside the regime of
its validity. To illustrate this point we present, in Section
II, the predictions of semiclassical and fully quantum the-
ories of a fundamental nonlinear response in metals with
low symmetry - the photogalvanic effect (PGE)!4 6. The
term “photogalvanic” refers to the generation of a dc cur-
rent by a time-varying electric field, with amplitude pro-
portional to the square of the applied field. The PGE is



distinguished from a conventional photovoltaic response
by the dependence of the dc current on the polarization
state of the electric field. For example, in the the circu-
lar PGE (CPGE) the direction of the dc current reverses
when the polarization state of the time-varying field is
changed from left to right circular. Using the SCA the
CPGE has been shown to have a Berry-phase contribu-
tion!” in 2D and more recently in 3D'® systems such as
Weyl semimetals.

In Section IT we show that the previous semiclassical
predictions for the CPGE can be derived in a fully quan-
tum theory by using the Floquet approach'®. We first
derive the Berry curvature formula for CPGE in the case
of two band and then generalize the derivation to the
cases with many bands. This indicates that the CPGE
provides a good example where the nonlinear effects that
follow from semiclassical equations are exactly what is
obtained from a full quantum derivation, which was pre-
viously only known in the linear case. We also show that
in this same limit in which interband terms are neglected,
there is close quantitative relation between CPGE and
second-harmonic generation (SHG).

In sections III we derive semiclassical formulas for a
variety of nonlinear effects. In particular, we systemati-
cally study nonlinear magneto-optical effects by incorpo-
rating the orbital magnetic moment, which has not been
discussed previously. We show that magnetic fields mod-
ify the nonlinear Hall effect via the orbital moment of
Bloch electrons. In section IV, we apply our semiclassical
formula to magneto-transport of Weyl/Dirac semimetals
and study the angle-dependent magnetoresistance. We
find that there exist contributions of opposite sign from
orbital magnetic moment and Berry curvature in addition
to the contribution of the chiral anomaly. The angular
dependence that we obtain by taking into account all the
contributions at the same order in the SCA is compared
with recent magnetotransport experiments'®!!. Section
V applies the semiclassical formulas to nonlinear Kerr ro-
tation (polarization rotation of SHG signals with applied
magnetic fields) of Weyl semimetals. Since isotropic Weyl
fermions with linear dispersion support no intraband con-
tribution to SHG in the absence of magnetic fields, in-
traband contributions to SHG in such Weyl semimetals
are linear in B, which leads to nonlinear Kerr rotation
in general. We show that Weyl semimetals can exhibit
giant nonlinear Kerr rotation in the infrared regime as
the Fermi energy approaches to Weyl nodes. Section VI
summarizes some remaining issues and open problems.

II. NONLINEAR OPTICAL EFFECTS AND
FLOQUET APPROACH

In this section, we first review formulas for the nonlin-
ear Kerr rotation and CPGE. Previous works based on
SCA showed that those nonlinear optical effects are de-
scribed by a geometrical quantity, i.e., Berry curvature
dipole!®. We give an alternative derivation for those for-

mulas based on fully quantum theoretical treatment by
applying Floquet formalism for a two-band system.

A. Geometrical meaning of nonlinear optics in the
semiclassical approach

In previous semiclassical works'”'8, it has been shown

that the intraband contributions to SHG and CPGE have
a geometrical nature that are described by Berry curva-
tures of Bloch wave functions. The SHG is the second
order nonlinear optical effect that is described by nonlin-
ear current responses j(2w)e 2t as

j((12w) = UabchEca (4)

when the external electric field is given by
E(t) = Ee ™! + E*e™t, (6)

Nonlinear Hall effect in Ref.'® refers to a transverse cur-
rent response that is described by o4, with a # b. Sim-
ilarly, the CPGE is the second order nonlinear optical
effect in which dc photocurrent of (%) is induced by cir-
cularly polarized light as

i(0) = UabchE:. (7)

a

In a time reversal symmetric material, these nonlinear
response tensors o are given by

B e3T
Oabe = Gadcm
when the frequency w is much smaller than the resonant
frequency for optical transitions (i.e., the intraband con-
tribution). Here, €, is the totally antisymmetric tensor,
fo is the Fermi distribution function, and we used the no-
tation [dk] = dk/(27)¢ with the dimension d.

We focus here on the case of a 3D material'® but
have adopted slightly different notations for E(t) and
j from those in Ref.!®, which resulted in a modified
expression for ¢ above. While these nonlinear effects
are Fermi surface effects because one obtains oy, o
€ade [ [dK](Dyfo)Qha by integrating by parts, they can be
also understood as currents carried by electrons in the
Fermi sea with anomalous velocity originating from the
Berry curvature dipole. )

The way that the anomalous velocity (k x ) of elec-
tron wave packets driven by an external electric field
leads to CPGE and SHG is schematically illustrated in
Fig. 1. Circular polarized light induces circular motion
of the wave packet in momentum space [Fig. 1(a)]. In
the Berry curvature dipole, the anomalous velocities in
regions with > 0 and 2 < 0 add, which results in
dc current. Similarly, linearly polarized light induces an
oscillation of wave packet as shown in Fig. 1(b). The
driven wave packet exhibits anomalous velocities in the y
direction that oscillate twice in the driving period, which
results in SHG.

[amp@os.  ®



(a) k (b) Y

FIG. 1. Semiclassical picture of CPGE and SHG induced
by a Berry curvature dipole. The distribution of Berry cur-
vature in momentum space is indicated by the color scale,
with red region corresponding to €2, > 0 and blue region to
2, < 0. (a) CPGE arises from circular motion of the electron
wave packet in momentum space driven by circularly polar-
ized light. The dipole structure in (k) induces an anomalous
velocity (k x ) in the z direction denoted by green arrows.
(b) SHG arises from oscillation of electron wave packet driven
by linearly polarized light in the x direction. The Berry cur-
vature dipole leads to an anomalous velocity that undergoes
two oscillations in the y direction in one driving period. The
shown configuration of Berry curvature preserves Cs, point
group symmetry (which is present for typical polar crystals
that support CPGE and SHG), where the y-axis corresponds
to the polar axis and the yz-plane to the mirror plane.

B. Fully quantum mechanical derivation by
Floquet formalism

Systematic derivations for the nonlinear optical effects
including CPGE and SHG are presented in Sec. III by
using SCA for general cases with finite B. Before pro-
ceeding to general discussion with B, we study these
nonlinear optical effects from a fully quantum mechan-
ical treatment by using a two band model. The focus
of interest is whether the fully quantum mechanical ex-
pression coincides with the semiclassical formula. While
SCA partially includes high energy bands through €, it
does not necessarily capture all effects of the high energy
bands. Thus it is an interesting question whether the
geometrical formulas for CPGE and SHG hold even in
the fully quantum mechanical treatment. In the follow-
ing, we study the intraband contribution to CPGE and
SHG by applying the Floquet formalism and show that
the Berry curvature formulas is indeed exact in the fully
quantum mechanical treatment.

First we study a two band system periodically driven
by an external electric field by using the Floquet for-
malism (for details of Floquet formalism, see Refs.!%721).
When the original Hamiltonian of the two band system
is given by a Bloch Hamiltonian Hoyig(k), the time de-
pendent Hamiltonian of the system driven by E(t) =

Ee™ ™t + E*eit is given by

H(t, k) = Horig(k + eA(1)), 9)
_ E —iwt __ E iwt
At) = i—e i—e, (10)

which is periodic in time with ¢ — ¢ + 27/w. For such
periodically driven systems, the Floquet formalism gives
a concise description in terms of band picture as follows.
The Floquet formalism is, roughly speaking, a time-
direction analog of Bloch’s theorem for time-dependent
Hamiltonian H (t) that satisfies H(t+T) = H(t) with pe-
riod T'. Namely, in a similar manner to Bloch’s theorem,
the solution for the time-periodic Schrodinger equation,

LOY(t)
=S = Htw(o), (1)

is given by a time-periodic form

P(t) = e " he(t), o(t+T) = ¢(t), (12)

with the quasienergy e. By using the time-periodic
part of the wave function ¢(t), the time-dependent
Schrodinger equation is rewritten as

(ihdy + )6 (t) = H(D)(1). (13)

Since ¢(t) is periodic in time, we can perform Fourier
transformation of the both sides with

¢(t) — Zeiithdjm’ (14)

and obtain
(mhw + €)¢m = ﬁmn(ybn» (15)

- 1 T
Hypp = — / dte!™ Ut (). (16)
T Jo

Here H,,,, is time-independent, but has an additional ma-
trix structure spanned by Floquet indices m and n. Thus
the time-dependent Schrodinger equation effectively re-
duces to a time-independent one in the Floquet formalism
as,

Hrp = €g, (17)

where the Floquet Hamiltonian is given by
IR
(HF)mn = 7 / dte'"MmTIC H (#) — nhwbp,.  (18)
0

Floquet bands obtained by diagonalizing the Floquet
Hamiltonian Hp offer a concise understanding of the dy-
namics of a driven system in terms of an effective band
picture. We note that the energy spectrum of € shows a
periodic structure with Aw as a consequence of transla-
tion symmetry with respect to the Floquet index n. Thus
the quasienergy spectrum is essentially described within



the range —fw/2 < € < hw/2, which is an analog of “the
first Brillouin zone” in Bloch’s theorem.

Since we consider the case of driving frequency much
lower than the band gap, we can obtain the current ex-
pectation value by studying the Floquet band that is con-
nected to the valence band in the undriven system. In
order to do so, we use standard second order perturbation
theory for

Hp = Hy + Hy + Ho, (19)

where H; represents a term in the Floquet Hamiltonian
proportional to A*. The wave function up to the second
order in A reads

(Hl)mn

[¥n) = In) — Z ﬁ\"ﬂ
m;én m n
mz;é:n - Em2_ En - (ll(jm - En)2
(H1)mk(H1)kn

" ; (Ey — Ep)(Ey, — Ep) Im), (20)

where Hy|n) = E,|n). By applying the above formula to
the Floquet Hamiltonian Hg, we obtain Floquet states
|1} that describes the steady state under the drive of in-
cident light. The current responses in the steady state
are obtained from perturbed Floquet states that are con-
nected to the original valence bands. This treatment can
be justified when the frequency of incident light is much
smaller than the energy difference of valence and con-
duction bands. (When w satisfies conditions for optical
resonances, Floquet bands originating from valence and
conduction bands anticross each other. In this case, we
cannot naively determine occupation of resulting Floquet
bands, which requires considering the coupling to a heat
bath'?.)

By using the Floquet state |¢)) connected to the valence
band, the time dependent current in the steady state is
given by

Ja(t) = Y _{u[) (@ Walbne T (20)

where tr denotes the trace over the band index, m,n are
Floquet indices, and vy, is the current operator along the
a-direction is given by

o 1 g i(m—n)wt aH(t)
(Vo) mn = T /0 dte O (22)
In the following, we derive representative components of
nonlinear response tensor describing CPGE and SHG by
using the above method.
To study CPGE we consider a system subjected to the
left circularly polarized light in the zy plane, where the
electric field is given by

E(t) = E(eq +iey)e ! + E*(ey —iey)e™'.  (23)

In this case, the Floquet Hamiltonian is written as
Hp = Hy + Hy, (24)

(o = (" 0 b 25)

€c — NW
(H1)mn = —1A" (Vg — 10y)0mn—1 + 1A(Vz + 10y)dmn1,
(26)

where €,/. is energy of valence/conduction band, v; =
O0H,/0k; is the velocity operator for the static Hamilto-
nian, A = F/w, and we set e = 1, = 1 for simplicity.
Here we dropped the term H, proportional to A2 be-
cause it does not contribute to dc photocurrent which
is proportional to AA* and does not involve A% terms
in the end. Since we are interested in the second order
nonlinear current responses, it is sufficient to consider
the Floquet Hamiltonian with n = —2,...,2 by starting
with the unperturbed wave function [¥n;) = |ty n=0)-
Now we study dc current in the z-direction induced by
circularly polarized light for the steady state described
by the Floquet state in Eq. (20). The velocity operator
in the z-direction is written up to linear order in A as

Up = UgOpmn — 1A O, (Vg — 10y)dpmn—1
+ A0k, (Vg + 10y ) Omnt1- (27)

By using Eq. (21), we obtain the CPGE photocurrent
Jp = f[dk:]j;go) as

30 = {trl|v) ([va] b

n

_EP { Im[(Dh, Vo) ve (0 Jew + (U )uelOh, v )

w (61) - 60)2
hn[(vz)vC(vy)Cv][(vfﬂ)”v — (UI)CC] }
(28)

-7 (€v — 60)3

where we dropped higher order terms with respect to w
by focusing on the current response in the low frequency
limit. We note that the contributions proportional to
|E|? /w? vanish due to the time reversal symmetry (e.g.,
the TRS T' = K constrains Re[v] and Im[v] to be odd and
even functions of k, respectively), which is used when
going from the first line to the second line. In the case
of two band models, the Berry curvature is written as

~2Im[(va )ve(vy) o]
(€0 — €c)? ,

Q, = (29)

and the matrix elements of Oy, v; can be rewritten as

(akivj)vc = O, [(Uj)w] + (vj)vc [i(ai)v - i(ai)c]
+ (vi)ww, (30)

€y — €c



with (a;)y/c = (Uy/c|Ok, ). By using these formulas,
the CPGE photocurrent can be further reduced as

-(0) _ ‘E|2 9 Im[(vx)vc(vy)cv]
5O =42 é)k{ P }

E2
ol

(31)
The nonlinear conductivity tensor is obtained by equat-
ing the above expression and j, in terms of o and E(t)
[in Eq. (23)] given by

Jo = =040y | B> + 104y |E)? = —2i0..4|E]*.  (32)

Here we used antisymmetry of imaginary part of ¢ with
respect to the last two indices. This leads to

1
Trey = = / (k] 0.,

and reproduces the semiclassical formula for .., in
Eq. (8). We note that the factor 7/(1 —iwr) in the semi-
classical formula [Eq. (8)] is replaced by the factor i/w in
the above formula because the 7 — oo limit (clean limit)
is effectively taken in the Floquet perturbation theory.

Next we study SHG by using Floquet perturbation
theory and the two band model in a similar manner to
CPGE. We consider a system driven by linearly polarized
light in the z direction as E,(t) = Ee™ ™! + E*e'! and
the SHG in the y direction. The corresponding Floquet
Hamiltonian is given by

(33)

Hp = Hy + H, + H,, (34)

€y — NW 0
(HO)mn = ( 0 €e — nw) 5mn7 (35)
(H1>mn = (_iA*amnfl + 'LA(Sanrl) ) (36)

(H2)mn -

(4)? b A2
_ _ A _

(37)

We take [¢ini) = |ty,n=0) as the unperturbed wave func-
tion and keep the part of the Floquet Hamiltonian within
the range n = —2,...,2. The velocity operator along the
y-direction is given by

+ (—ZA*(smn,1 + ZA(Sanrl) (’9;% Uy

A* 2 A2
+ (—( 2) 5mn—2 + |A|25mn - 26mn+2> 8/11]7/
(38)

Uy = VyOmn

By using Eq. (21), we obtain the Fourier component of
27wt

the current J, = [[dk]j, proportional to e~ as

30 =Y e[ ) (16, nron

n

in[mgggﬂ

= i;@ka (39)

6’mn+2) 8/% Vg

Here we again used the fact that the contributions pro-
portional to E?/w? vanish due to the time reversal sym-
metry, and also dropped contributions with higher pow-
ers of w. The above expression indicates that the nonlin-
ear conductivity tensor oy, is written as

This again reproduces the semiclassical formula for oy,
in Eq. (8).

We can extend the above analysis based on the Floquet
formalism to general cases with many bands and obtain
the same Berry curvature dipole formula. We sketch the
derivation in the following (for details, see Appendix A).
We consider the general Floquet Hamiltonian under the
light irradiation which is given by

Hp = Hy + H, + H>,

(40)

(41)
with

i
where Hjy represents a static Hamiltonian with many
bands. By using the Floquet perturbation theory in
Eq. (20) and the expression for the current in Eq. (21),
we obtain the general expression for the nonlinear current
response as

- Z A A / [dk]

1
HQ = 5 le:AiAjaki’Uj,

(g
f(eg) (Ur)ng (Uz')gm(vj)mn

+n%:m(€n_€m_ _eg—em+w> en—(eg—|—2w)

+ Z f(en) (V) nm (Vr)mg (Vi) gn

o — (&g +w))(en = (em —w))

+ Z 2f(€n)(ak‘rakivj)nn:| )

(43)
with Fermi distribution function f(e) [where f(e,) = 1(0)
for occupied (unoccupied) states . When we expand the
current J,. with respect to w, the lowest order contribu-
tion in w is proportional to wA? in the presence of time
reversal symmetry. In the case of many bands, the Berry
curvature dipole for the nth band is written as

(n| Ok, H|m) (m|Oy, H|n)

(en —€m)? 7

Ok, Q2 = —2Im { (44)
where n runs over occupied bands and m runs over un-
occupied bands. By using this expression for the Berry
curvature dipole, it turns out that the lowest order con-
tribution of J,, proportional to wA? is written as



which reproduces the Berry curvature dipole formula
Eq. (8) for SHG in the case of many bands. Details of
the above calculation for many band cases are described
in Appendix A.

To summarize, we derived formulas for CPGE and
SHG in the sufficiently low frequency region in a fully
quantum mechanical way by using Floquet perturbation
theory. This reproduces the semiclassical formula with
Berry curvature dipole.

IIT. SEMICLASSICAL FORMULAS FOR
NONLINEAR OPTICAL EFFECTS

We study nonlinear optical effects in the presence of
magnetic fields using the SCA. Deriving semiclassical for-
mulas for nonlinear magneto-optical effects is motivated
in the following senses. First, it is theoretically interest-
ing to see how the orbital magnetic moment m, which is
angular momentum of wave packet and also of geomet-
rical origin, governs nonlinear optical effects and modi-
fies previous semiclassical results for B = 0 in Refs.!718.
Second, the obtained semiclassical formula for nonlin-
ear magneto-conductivity that includes all terms propor-
tional to B?FE is applicable to Weyl semimetals and may
explain directional anisotropy of magnetoconductivity of
Weyl semimetals recently reported in Ref.!%11 which we
perform in Sec. IV. Third, TR symmetric Weyl semimet-
als can support large nonlinear Kerr rotation. Intraband
contribution to SHG vanishes for B = 0 in TR symmetric
Weyl semimetals, and the SHG signal has a contribution
linear in B. Thus application of B may lead to giant
nonlinear Kerr rotation.

We derive semiclassical formulas for nonlinear
magneto-optical effects up to the second order in E. It
is convenient to rewrite the equations of motion (1) to
collect time derivatives on the left:

o1 ¢
7= 5 [Vier + B X Qi + - (Vier - ) B], - (46)
W = L[ -eE — SVyer x B eQ(E B)Qu], (47

= D e 7 k€k 7 k|5

D:1+%B-Qk. (48)
The charge density p and current density 3 are given by
p= e [lakDF, (19)
= e / (dK] (D + V. x ) . (50)

with [dk] = dk/(27), where the second term of j is
a contribution of magnetization current. We note that
the factor D arises from a field-induced change of the
volume of the phase space??. In the following, we focus
on the uniform system. In this case, the expression of
the current density reduces to

j= fe/[dk] (5 + %E x Q, + %(f:k -Q)Blf, (51)

where we used
Up = v — (1/R)Vi(m - B), (52)

with vy = (1/h)Vk€%

Now we focus on nonlinear responses driven by
monochromatic light with the electric field E(t) =
Ee ™t We consider current responses at orders F,
and E? as follows. We write the distribution function
in Fourier components as

f=fo+ fie ™ + foe™ 21, (53)

where fy is the unperturbed distribution function and
other terms appear in the presence of the electric field of
the incident light. The steady-state distribution function
is determined by the Boltzmann equation

df _ fo—f
a7

(54)

where

ﬁ:k.vkﬂatf. (55)
dt

This gives a recursive equation for the Fourier compo-
nents f;. By combining the Fourier components f; and
Eq. (51), we obtain nonlinear current responses in powers
of E. In the following, we apply the above SCA to the
linear current responses and the second order nonlinear
optical effects in the presence of magnetic fields.

A. Linear current responses

We first study the linear current responses with B. We
derive the semiclassical formula for the conductivity up
to the second order of B in terms of Berry curvature and
orbital magnetic moment.

The current response of the frequency w is obtained
from f; in Eq. (53). By equating terms proportional to
e~ in Eq. (55), we obtain

2
[—eE—%(E-B)Qk]-Vp o—iwflz—éy (56)
T
with V, = (1/h)Vy, where we dropped the term involv-
ing (Vier) x B because it is perpendicular to V,fo =
(1/5)(Vker)O. fo. This leads to

2

T SleE - (B B Vyfo (57)

h= 1—dwr D

Now the current response linear in F is given by

. er 1 (.. e .
Ji= 1 —dwr /Bz[dk}ﬁ{[vk * ﬁ(vk () B

2
X [—eE — %(E B - Vpfo + %E x Qkfo},
(58)



where fo = 0(Er — e — my - B) with the step function
O(x) = 0(x < 0),1(z > 0). This expression is reduced if
we focus on the case where the electric field FE is applied
along the ith direction and the system preserves the TRS
in the absence of magnetic fields. Specifically, we consider
terms up to o< B that are nonvanishing with the TRS by
expanding as 1/D ~ 1+ (e/h)B - €2, which leads to

eT

ji= / (k) {—vkeE(vg):0, f,
BZ

(E x Q)(m - B)o.fo}, (59)

1 —wr

Df\fb

with f} = 0(Er — €), i.e., a distribution function when
B = 0. Here we used the fact that 0,,,vp, 2,, and
m are odd under the TRS. The first term in the inte-
gral is the metallic conductivity, while the second term

J

gpr =57 /Bz[dk:}{ ~ CB- Ve fol)-e(vx - ) (B~ Q) B
60 e
[%E : Vk(afoa(e )m -B) - ﬁ(

7. (B B)[ - 8

In addition to terms that contribute isotropically to the
current density, there are several terms that contribute
to the current density specifically along B which results
in an anisotropic magnetoconductance if it is applied to
Weyl semimetals as we discuss in Sec. IV.

B. Second order nonlinear optical effects

We move on to the second order nonlinear optical ef-
fects which include SHG and photogalvanic effect. We
derive the general formulas which will be applied to
Weyl/Dirac semimetals in Sec. V.

We consider the SHG that is described by the current
response of the frequency 2w. By equating terms pro-

J

describes regular Hall conductivity linear in B (in con-
trast to anomalous Hall conductivity which is nonzero in
the absence of B). This second term indicates that the
orbital magnetic moment gives a semiclassic description
related to Landau level formation in the quantum limit.
We note that there is no B-linear contribution to the lon-
gitudinal conductivity o;; because the Onsager relation
constrains the conductivity as 0;;(B) = 0j;(—B) and the
longitudinal conductivity should be an even function of
B.

Next, we derive the formula for the longitudinal mag-
netoconductance. Its lowest order dependence on B is
quadratic due to the Onsager relation. The B? contri-
bution to the longitudinal current response is explicitly
written as

—eQ - Vi(m-B)B +¢e(B - Q)*vp, +

E-B)(Q - Vifo(")][e(vk - Q) B — e(B - Q)vg, — Ok (m - B)]

I fo(e° 1 0?
f((;(e )m - B)|vg — iE O] 20(2 )(m . B)Q]vk}.
(60)

[
portional to e~?*? in the Boltzmann equation (55), we
obtain

1 el f2

5[—6E - f(E -B)Q%] - Vpfi — 2iwfy = = (61)
which leads to

72 1

2= A ion) (1 = 2iwr) D?

x {[— : p}2f0~

eE — %(E B)y] -V
The second order current response of the frequency 2w is
given by

(62)

{18+ = (0 - Q) Blfa + 7 (Bo x )1}

BZ 72 1 e? 2
e/BZ e+ 7 (”’“ Bl A =2 D2 {[_eE ~ (BB V”} Jo
T 2
+ﬁExﬂkm%[—eE—%(E-B)Qk]~V,,f0}. (63)

Now we focus on the case of linearly polarized light

(

where the electric field is given by E(t) = Ee~“'e; (e;

(B - Q) Vi(m - B)



being the unit vector along the ith direction), and see
how the above general formula can be simplified in several
cases by assuming the TRS in the following. First, when
B =0, Eq. (63) reduces to

. —eT e?
jz(B = 0) = 1 —iwr BZ[dk]gEl (e,- X 8plﬂk)f0
(64)

This recovers the previously obtained semiclassical for-
mula Eq. (8) for SHG. The above expression clarifies
that the transverse component of the SHG is described

J

—67’2

(1 — iwr)(1 — 2iwr) /Bz[dk]e B {[_zvk(hB £

Ajz =

Here we used fo = f} + (m- B)0d.f§. The nonlinear Kerr
rotation arises from the component of Ajs perpendicular
to j2(B = 0) and encodes the information of the Berry
curvature € and the orbital magnetic moment m. We
note that the term (v - Q%) B vanishes in the case of
2D systems (where v, L Q). Finally, we consider the

by the Berry curvature dipole 0,,€2,. This Berry curva-
ture dipole contribution can be nonzero only when the
inversion symmetry is broken since inversion symmetry
constrains 2 = Q_p and causes cancellation of Berry
curvature dipole between k and —k'"'8. Second, we con-
sider the case when the magnetic field B is nonzero. The
application of B leads to rotation of polarization plane
of the SHG, which is known as nonlinear Kerr rotation
and is an important nonlinear optical effect. We study
the nonlinear Kerr rotation by keeping contributions up
to linear in B. We start with the case where E and B
are perpendicular to each other (E - B = 0). The modi-
fication Ajs in the first order of B reads

) — lV,c(m -B) + %(vk - Q) BO; f§ — (07 vi)(m - B)aefg} .

h
(65)

(

vanic effect in the presence of B. The photogalvanic effect
causes static dc current in the second order of E. The dc
component of the distribution function is also modified
in the second order of F as fo — fo+3 fo. The associated
Boltzmann equation is written as

g 2
case with E - B # 0. The further modification Agja (in dofo = [—eE* — E(E* -B)Qu] - Vo fi, (67)
addition to Aja) up to B linear term is given by T h
which is solved as
— er? 1 e? 2 2
AJ = - - —/ dk fEiQBi’Uk _ T * ¢ *
27 (1 —iwr)(1 — 2iwr) D2 BZ[ ] h / 0fo = 1_Z~WT[_6E _%(E - B)S2]
X [=20: - Vp0p, — (0p, ) - Vp|fp.  (66) e2
X [~eE — —(E - B)Sh]fo. (68)
Next we derive semiclassical formula for the photogal- This leads to dc photovoltaic current djg given by
J
. 1 e €,
0jo = *6/ [dk] { [vik — = Vi(m - B) + — (v - Q) B fo + - (Eg x Q) f1
BZ h h h
1 e 72 1 e? 2
=— - = -B)+ = - Qp)B]————={[-eE— —(E-B)Qg] -
[ {fon - 5Vutm B+ o Bl { B - BB} g
i Ex L E B)Q]Vf} (69)
h *1—iwrD ¢ ki Velog

where we write E* = E in the second line, for simplicity.
This expression is analogous to ja (i.e., SHG), and indi-
cates that the Berry curvature and the orbital magnetic
moment of the Bloch bands also govern the Hall angle of

dc photocurrent in the presence of an external magnetic
field B.

IV. ANGLE-DEPENDENT
MAGNETORESISTANCE

In this section, we study magnetoresistance by using
the SCA developed in the previous section. In partic-
ular, we focus on the current response J o< EB? and
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FIG. 2. Angle-dependence of longitudinal magnetoresistance (LMR) for Weyl semimetals derived from the semiclassical ap-
proach [Eq. (60)]. Blue lines are polar plots of the LMR [pzz(B) — pez(B = 0)]/pez(B = 0) as a function of the relative
angle 0 between E and B. We show angle-dependences of contributions to the LMR from (a) the Berry curvature, (b) the
orbital magnetic moment, (c) the interplay between the Berry curvature and the orbital magnetic moment, and (d) the total

angle-dependence of the LMR.

study how the Berry curvature and the orbital mag-
netic moment contribute to magnetoresistance in Weyl
semimetals, since the interplay of these two quantities
in transport properties of Weyl semimetals has not been
fully investigated except for a few studies®%23:24, The
obtained angle-dependence of magnetoresistance is com-
pared with recent magneto-transport experiments for
Dirac semimetals'%!!,

We consider the Hamiltonian for Weyl semimetals
given by
H =nupo - p, (70)

where vp is the Fermi velocity and n = £1 specifies the
chirality. In this case, the velocity operator, the Berry

curvature, the orbital magnetic moment are written as

v, = vpk, (71)
1 .

Q= —nﬁk, (72)
eVEp »

=-n—7>=>k 73

m = -k, (73)

for the conduction band, where k denotes the unit vector
along k.

Now we apply the semiclassics formula Eq. (60) for
the linear current response j; proportional to B2 to Weyl
semimetals and study the angle-dependent magnetoresis-
tance. First, we suppose that the electric field is applied
in the z-direction as F = Fe, where e, denotes the unit
vector along the z direction. In this case, the current



along the z-direction (j;), is given by

. 1 9 9 1 4 )
(]1)2 = m’r@ ’UFkFE + m’r@ ’UFB E (74&)
when E || B, and
(1)s = —re0phd E — — - retyp B2 (74b)
© 6n%h T 60m2h3 k2

when E | B (e.g. B | &), where we assumed 7w < 1.
Here, the first term is the isotropic dc conductivity and
the second term is an anisotropic correction which origi-
nates from the E - B term related to the chiral anomaly
in Weyl semimetals. The second term accounts for the
negative magnetoresistance (MR) when E || B, and the
positive MR when E | B. Thus the semiclassical theory
for the linear conductivity including effects of both €2 and
m captures the directional anisotropy of linear conduc-
tivity in the B field which is usually considered to be an
evidence of a Weyl fermion in transport measurements.
Next, we discuss the full angle dependence of the cur-
rent response in the magnetic field. When the electric
field is applied in the direction tilted by 6 from the direc-
tion of the magnetic field B, the longitudinal magneto
conductivity o(B) is given by
o(B)—o(B=0) —1+ 3cos?fe*B? -
(B =0) N 10 h2k% (75)

Equation (75) does not depend on the chirality of the
Weyl node nor in which band the chemical potential is
located. It shows that the magnetoresistance (MR) is
positive when E 1 B and it decreases to negative as
0 — 0. If we separately look at contributions to the
MR from the Berry curvature and the orbital magnetic
moment, we find that either the Berry curvature or the
orbital magnetic moment alone gives a negative magne-
toresistance (Figs. 2a and 2b), while the interplay be-
tween the Berry curvature and the orbital magnetic mo-
ment gives a positive magnetoresistance (Fig. 2c). As a
whole, Eq. (75) gives the angular dependences as shown
in Fig. 2d. We note that the anisotropic magnetoconduc-
tance in the semiclassics [Eq. (75)] is not solely described
by the contribution from the chiral anomaly. Specifically,
the contribution from the chiral anomaly which was dis-
cussed in Ref.?® is found in the term

—etr

h

/B RIS Vo) (00 ) (E-B)B (70

in Eq. (60) and gives a negative magnetoresistance in
Weyl semimetals. In contrast, there are several terms in-
volving the orbital magnetic moment which lead to con-
tributions of opposite signs.

A similar angular dependence of the magnetoresistance
to Eq. (75) in the weak field region have been observed in
magneto-transport experiments of Dirac semimetals!®!!.
In particular, Ref.'! reported that the sign change of the
MR occurs around 45° in the low B region for Dirac
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semimetal NagBi, which is consistent with our semiclas-
sical result shown in Fig. 2(d). We note that our cal-
culation for Weyl semimetals is also applicable to Dirac
semimetals with a mild assumption that the degenerate
energy bands having opposite chirality in Dirac semimet-
als are decoupled with each other.

Finally, we present estimates for the above nonlinear
conductivities derived for Weyl semimetals. The direc-
tional anisotropy of the linear conductivity is given by
the ratio of the two terms o B? and « B? in Eq. (74).
The anisotropy ratio amounts to 0.06(B/1 T)? for typi-
cal parameters vy = 3 x 10° m/s, Er = 10 meV for the
Weyl semimetal material, TaAs26-27.

V. NONLINEAR MAGNETO-OPTICAL
RESPONSES IN WEYL SEMIMETALS

In this section, we study the nonlinear optical re-
sponses of Weyl semimetals in the presence of magnetic
field. Specifically, we study the second harmonic genera-
tion and the nonlinear Kerr rotation with B, and discuss
that Weyl semimetals can support large nonlinear Kerr
rotation in the infrared regime.

First, we notice that the SHG is vanishing in the ab-
sence of magnetic fields when the Weyl fermion has linear
and isotropic dispersion as in Eq. (70). The contribu-
tion from the Berry curvature dipole to the SHG cancels
within the Weyl node after the k-integration. Thus, the
application of B is necessary in order that the SHG is
nonvanishing for isotropic Weyl fermions. In this sense,
the SHG with B in Weyl semimetals is a fundamen-
tal nonlinear optical effect which is related to monopole
structure in the momentum space via the orbital mag-
netic moment.

Now we consider the SHG of Weyl fermions in the
presence of the uniform magnetic field applied to the
z-direction [B = (0,0, B)] and study nonlinear current
response proportional to B. When the electric field is
perpendicular to B, e.g., E = (E,0,0), the nonlinear
current response is given by

. etvpB 9
s = (0.0 Gy, ¥ )

where we assumed 7w > 1 by focusing on the high fre-
quency regime. On the other hand, when the electric
field is applied in the z-direction [E = (0,0, E)] and is
parallel to B, there is additional contribution to SHG
from the E - B term related to the chiral anomaly of
Weyl fermions. In this case we obtain

2641}FB 2
jo = (0,0, —%—— 78
J2 ( P15 hBw2k (78)
This expression shows an enhancement of the SHG com-
pared to the case of E 1 B; the chiral anomaly enhances
the SHG. Since ja x k;l, the contribution to SHG pro-
portional to B becomes very large when the Fermi energy



is close to the Weyl point. This enhancement is a conse-
quence of divergence of Berry curvature and orbital mag-
netic moment near the Weyl point. In this regard, the
SHG of Weyl semimetals under B is tied to the monopole
physics in the momentum space described by Berry cur-
vature. In practice, these divergences are cut off by the
energy broadening due to the nonzero relaxation time 7.
This cutoff takes place around kp ~ 1/(vp7). In addi-
tion, there is another cutoff that depends on the strength
of the electric field E. Since semiclassical treatment for
Weyl fermions is only valid when eE7/h < kp (other-
wise interband effects become relevant because the shift
of wavenumber exceeds the Fermi wavenumber), the di-
vergence is also cut off around kp ~ eET/h.

The enhancement of SHG in Weyl semimetals can be
detected as a large Kerr rotation signal. In the case of
general band structure, the SHG can become nonzero
even for B = 0 if we include the effect of band bend-
ing, e.g., by introducing a k2 term in H. This nonzero
contribution to the SHG for B = 0 is, in general, not
parallel to the above B-linear contribution to the SHG.
Therefore, when the magnetic field is applied, the diverg-
ing B-linear contribution to SHG parallel to B leads to
large rotation of polarization angle of SHG, and hence,
large nonlinear Kerr rotation. Incidentally, we note that
when higher order terms with respect to k are present
in the Hamiltonian such as k2 terms, additional terms
having higher powers in kr arise in the current response
in Eq. (78). However, when the Fermi energy is close to
the Weyl point and kp is small enough, these corrections
become negligible.

Finally, we estimate of magnitude of the nonlinear
magneto-optical susceptibility which is given by x =
jo/(iw)eg E?. For the photon energy hw = 0.1 eV in the
infrared region, the nonlinear susceptibility is estimated
as |x| = 1500 x (B/1 T)pm/V from Eq. (78) by adopting
the parameters, vy = 3 x 10° m/s, and Er = 10 meV for
Weyl semimetal material TaAs. For comparison, GaAs,
which is the representative SHG medium, shows nonlin-
ear susceptibility of x ~ 500pm/V in the visible light re-
gion?®. Thus Weyl semimetals potentially support large
nonlinear Kerr rotation from the Fermi surface effect for
low photon energies. Since a recent optical measurement
in TaAs reported giant SHG signals in the visible light
region??, Weyl semimetals is considered to be interesting
nonlinear optical mediums in a wide range of frequency.

VI. DISCUSSION

We have studied CPGE and SHG in the low-frequency
limit from a fully quantum mechanical treatment by us-
ing Floquet perturbation theory. By doing so, we have
reproduced the expressions with Berry curvature dipole

J
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that were previously obtained from semiclassics. While
we focused on second order nonlinear optical effects in
this paper, the Floquet perturbation theory provides a
systematic way to study general nonlinear optical re-
sponses in the low-frequency limit. Thus it will be an
interesting issue to apply this method to other higher
order nonlinear optical effects and investigate their geo-
metrical meaning.

We have derived semiclassical formulas for the magneto
conductance and nonlinear magneto optical effects by
taking into account the orbital magnetic moment. There
is an effort to partially incorporate interband effects to
SCA?°. Applying this method to isotropic Weyl fermions
with linear dispersion does not lead to any correction to
our semiclassical formulas for magnetoconductance and
SHG derived in Sec. IV and Sec. V. However, in the
case of general band dispersion, the interband contribu-
tions will generate correction terms which are propor-
tional to some inverse powers of the energy band sep-
aration. Moreover, complete formulas for these nonlin-
ear optical effects can be derived by using a quantum
mechanical treatment. The quantum treatment may be
feasible for two band systems as we employed to deduce
quantum formula for CPGE and SHG, while it should
become very complicated in cases of a general number
of bands. In particular, it will be interesting to see how
the Berry curvature and orbital magnetic moment arise
in the quantum mechanical treatment, as is possible for
linear responses for an arbitrary number of bands®?, and
what the corrections from the semiclassical formulas look
like. These issues are left as future problems.

There exists another class of Weyl semimetals in which
Weyl points are created by applying magnetic fields
and breaking time-reversal symmetry artificially in cen-
trosymmetric crystals. Such creation of Weyl semimetals
with B field was recently reported in GdPtBi?!32, and
semiclassical analysis of magnetoresistance for those ma-
terials has been performed in Ref.?3. It would also be
interesting to apply our semiclassical formula to nonlin-
ear magneto-optical /transport properties in those field-
created Weyl semimetals.
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Appendix A: Derivation of the Berry curvature dipole formula for general bands

In this appendix, we apply the Floquet perturbation theory to systems with a general number of bands and derive
the formula for SHG in terms of Berry curvature dipole. The derivation proceeds in a similar manner to the two band
case presented in Sec. IIB, but with involving more band indices.

We consider the system irradiated with monochromatic light which is described by the time-dependent Hamiltonian,

H(t)=H(p+eA(t)) = H'+ H' + H*+--- = H+ Y (O, H)eAje ™"+ %(akiakj )e? A Aje= 2t 4o (A1)

where HY = H is the static Hamiltonian in the absence of the driving, and A(t) = Ae~™! is the vector potential.
For the time periodic Hamiltonian H(t), the Floquet Hamiltonian is defined by

T
0

with Floquet indices m an n. In the following, we adopt a simplified notation where we write contributions H i(t) to
the Floquet Hamiltonian Hr just by H".

The standard perturbation theory gives the wave function for the perturbed Floquet Hamiltonian Hp as

H1 HL HY HL H2
5; €7 ﬁé;h [(9 - 6m)(fn —€5) (ea—¢€3)?  €n— 69]
gF#n

where |n) is the unperturbed wave function satisfying H|n) = e;|n), and 7 labels the set of the band index and the
Floquet index. Here we note that H}-. = 0 in the present case. The explicit form of the wave function v, with the
band index n and any Floquet index (say, 0) is given by

l9)
(Ad)

where |n) denotes the static wave function with the band index n, €, denotes the static energy dispersion with the
band index n, and Oy, , = (m|O|n).

Now we consider the current response in the a-direction is given by

- (O HA) g ) ak ak HA A 2 (O, HA; ) g (O, HA)
) _|n>+ezen—(eg+w *’ Z S 9te 2 { (om0 (en — (e + 20))

n,g n,m,g

t)=—ed> flen) D {00[1¥0,0) (V.0 [Via] e 70, (A5)

where [, 0)) is the perturbed wave function with the band index n and the Floquet index 0, and m’, n" denote the
Floquet indices. The Fermi distribution function f(e) is given by f(e,) = 1 for occupied bands and f(e,) = 0 for
unoccupied bands. Since we consider the low-frequency limit where optical transition does not take place, we can
assume that the occupation of the perturbed states coincides with that of the unperturbed states. The operator v is
Floquet representation of the time-dependent velocity operator v(t) which is given by

1 P
(ﬁi)'rn’n/ = */ dtel(m - )thi(t) (AG)
T Jo
. 1 .
vi(t) =) + o 0]+ = H+ Y (Oh, 0k, H)eAje ™+ 5 (kO O H)e*Aj Aje™ @ ... . (A7)
J 4,J
For the real external field A(t) = Ae ™! + Ae™! we obtain the second-order current response J, along the

r-direction which is proportional to e~#?“? as
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Jp = —¢é ZAZ-Aj /[dk} Z

9%, 0 O, 0
x[;f<6n>%< o 1)+ 31 (en) T gl )
+Zen—e7:— o —)gfeﬁizwi (nl0k, Hlg) +3 o) 8 _){ng(a_kaiimg (9lon, i) (A8)
+f(€")%<n|akr8kglﬂg> + f(en)en(?kzeg)ng)<g|ak ak Hin)
+Zf (Ok, eg)+w) (8k2i)fjr;)<m|aer|g>+ if(en)<n|8kraki8ij|n> )

This expression can be rewritten as

5= =S Ay [0 5[ 3 (ten) = e MR 0 B T

€n — (€4 + 2w)
(G S _Ha)_ 0l )i B
+ Y1) = ) 000,11 |fg><ffi)ciH|n> (A9)
+Zf en) n\ak lrjr(|2>+<n;g?z H|—g><<iaf 5)n> Er—r ]

Since we are interested in the intraband effects in the low frequency limit (w much smaller than the bandgap), we
expand the current J, in terms of w as J, = J¢ + J! + J2 + ..., with J? oc w™ . The lowest order term in w is the
zeroth order term which is given by

TP == AiA, / [dk] >
1,7 n

X[Z L (fen) - Feg)) 105, Hlg) (910, Or, Hm) +i<€f(6n) _ fle) )<n\akTH\g><g|akiH|m><m|aij\n>

€, — €
g noe

m.g n — €m 6gfem 671,*69

(n|Ok, Ok, H|g)(g| Ok, H|n) n|3k H{m){m|0k, H|g){g|0k, H|n)

+ 37 en) — Fleg)) P Zf len — o) (en—m)

23 fle MM 0019 ) _QZ i Lol 1) i )
+>_ f(en)

(1|0, H|m)(m|Oy, H|n)(n|O, H|n) n|5'k Hn){n|0, H|g){g|Ok, H|n)
L,
+§6 f(en)<n|8krak18k7H|n> .

(en — em)? Zf T (o)

(A10)
Here Z; (Z;n ;) denotes the summation where the band index g (m, g) runs over those that do not set the denominator
to zero. We note that the 5th to 8th terms are obtained by setting one energy denominator to be 1/w and expanding
the other energy denominator up to w? in the 2nd and the 4th terms in Eq. (A9). In addition, the time reversal
symmetry, 7 = K, leads to the symmetry properties of the Hamiltonian and its eigenstates given by

H(k) = H(=k), e(k) = e(—k), n(k)) = (n(=k)]. (A11)

By using these properties that hold in the presence of the time-reversal symmetry, we find that the above expression
for JO vanishes in the zeroth order. Therefore, the lowest order term is actually the first order term J!.
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The first order term in w is written as

Jr=—*w ) AiA; /[dk] >
1,7 n

: (n|Ok, H1g) 9|0k, O, H|n) fleg) '\ (nlOk, H|g)(g|Ok, H|m){m|O, H]|n)
x [zg]((ﬂen) e T 22 ( e S ) e
+Z( ( ffeg) 2) <nlf9er|g><g|5kiff\m><m|8ij|n —4z/:f(€ )<n|3erlg><g|3k_iH|T;><n|3kjH|n>
€m)? (Eg €m) €n — € g (en —€)
(n|Oy, H o H O, H|n ’ 1|0, O, H o, Hn
A3 e 05 o100 HI 00 ) | S k0, O, Hla) 10
(Gn Gg) (en eg)
g g
7z/:f(en)<n|5k H|m><m\8_k H]n)(n|Ok, H|n) Zf nlf’)ijlm<n\8k_7~H|g><g|3mH|n>
- (en — €m)? (en =€)
_Z/:f(% (n| Ok, ff(l:”b)_(ﬂzike H_Igz (9]0k, H|n) Zf ﬂlakjfiemlﬁbl)@;(rflgl(gfkiﬂlw .
m,g n g n m n g n m
(A12)
By using the properties from the time reversal symmetry, this can be reduced as
Jr= 2% A;A; / [dk] > f(en)
%7 n
>{iﬂwm@ﬂM@&%ﬁwuai 1 (l0n Hlg) (510 Hlm)imior, Hin)
(en — €g) L m (en —€g)
(A13)

(110, H19)g10n, Hlm) o, Hln) <~ {nl0h, Hlg)g10k, Hln) (n}0k, Hin)
+Z (én — €m)? €y — €g _32 (€n — €4)3

*Z (n|Ok, Ok, H19){9| Ok Hn) Z’: <n8ij|m><m|5k,,ng>(9|3kiHn)] '

(€n —€g)? (€n — €g)(€n — €m)?

g

g9 m,g

Now let us consider the specific case relevant to the Berry curvature dipole formula. Namely we suppose that E is
applied along the z-direction and consider the current J in the y-direction:

Jy = —2c°wA, A, / [dK] Z flen)

/ (1|0, H|g)(g|Ok, 3k Hln) (n|Ok, H|g)(9|Ok, H|m){m|O, H|n)
D szg P (e e
(A14)
_32/: (n|Ok, H|g)(9|0k, H|n)(n|Ok, H|n) N Z 1 (1|0, H|g)(9|Ok, H|m)(m|0Ok, H|n)
B (€n — 69)3 g (€n — €m)? €n — €g

/

+§/: (n[Ok, O, H|g)(g|Ok, H|n) > (n|Ok, H|m)(m|0k, H|g)(g|Ok, H|n)

(€n — 69)2 (€n — eg)(fn —€m)?

g m,g
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The k-integral of the Berry curvature dipole €2, ,, for the nth band is explicitly written in many band systems as

[k 0.9, = =20, [ (dk) 1a0((@,nl0,m)) = 0. [1ak] S [(2.nlg)s10,m) ~ (0ynl) (glo.m)

_ (n|0.H|g){g|0yH|n) (n|0,H|g)(g|0H|n)
0. [ [ (n — )? (6w — )2 ]
_ 9 (n|0yH|g)(0:9|0:H|n) | (n|0yH|g)(9|0:0-H|n) (n|0yH|g){g|0xH|0zn) (9.1|0,H|g){g|0.H|n)
=2 /[dk] ; [ (€n —€9)? * (€n —€9)? - (€n — €g)? * (€n — €9)?
n|0, 0y H 0. H|n 1|0y H |0y O, H|n n|0yH 0. H|n
| B ) MO I |
— -2i [fay 3 [ADOL A | (100 Blala Gl o AW ), (011,
[ (nldyH|g)(gloxH|m)(m|d:H|n) (n|d,H|g)(g|dsH|m)(m|d.H|n)
> { (em—)en— ) (en—em)(en — )2
_ (n|9,H|m)(m|0,H|g)(g|0. H|n) N (n|0y H|g)(9|0xH|m)(m|0, H|n)
(€m — €n)(€n — €4)2 (€m — €g)(€n — €m)? ’

15)

where we have used the time reversal symmetry to simplify the expressions and the equation (n|0xm) = (n|v|m)/ (em
€n). We note that the region of the above k-integration can be any 7-symmetric region that includes both k and —k,
especially, the Fermi sea satisfying f(e,) = 1.

By using Eq.(A15), we finally obtain

T, = —2e%wA, A, / (k]S flen)

X[amszm +i<n|ayH|g><g|ach|n><n|agclﬁf|n> +i L (9, H19)(9|0. Hg) (9|0, H|n)

—2i (€n —€g)3 . (€n —€g)? €n — €
!
+Z 1 nlakyH|9><g\3ka|92><g|3ka|n> 3y <n|3kyH|9><g|3k1H\nS><n|3kaln> (A16)
€n — €y (en — €g) P (€n — €g)
(n|0yH|g){g|0zH|n
22 Oy TONAOHI (1), (02)g]
(en — €g)
=—ictwA, A, /[dk] 052,
This indicates that the nonlinear conductivity for the SHG is given by
ie?

Oyzz = o [dk] Z f(en)akzgz,na (A]-?)

which reproduces Eq. (45) in Sec. IIB and proves the Berry curvature dipole formula for SHG in general cases with
many bands.
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