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We construct a bosonic analog of a two-dimensional topological Dirac Semi-Metal (DSM). The low-energy

description of the most basic 2D DSM model consists of two Dirac cones at positions ±k0 in momentum

space. The local stability of the Dirac cones is guaranteed by a composite symmetry ZT I
2 , where T is time-

reversal and I is inversion. This model also exhibits interesting time-reversal and inversion symmetry breaking

electromagnetic responses. In this work we construct a bosonic version by replacing each Dirac cone with a copy

of the O(4) Nonlinear Sigma Model (NLSM) with topological theta term and theta angle θ = ±π. One copy

of this NLSM also describes the gapless surface termination of the 3D Bosonic Topological Insulator (BTI). We

compute the time-reversal and inversion symmetry breaking electromagnetic responses for our model and show

that they are twice the value one gets in the DSM case matching what one might expect from, for example, a

bosonic Chern insulator. We also investigate the stability of the BSM model and find that the composite ZT I
2

symmetry again plays an important role. Along the way we clarify many aspects of the surface theory of the

BTI including the electromagnetic response, the charges and statistics of vortex excitations, and the stability to

symmetry-allowed perturbations. We briefly comment on the relation between the various descriptions of the

O(4) NLSM with θ = π used in this paper (a dual vortex description and a description in terms of four massless

fermions) and the recently proposed dual description of the BTI surface in terms of 2+1 dimensional Quantum

Electrodynamics with two flavors of fermion (N = 2 QED3). In a set of four Appendixes we review some of

the tools used in the paper, and also derive some of the more technical results.

I. INTRODUCTION

Massless 2+1-d Dirac fermions are one of the most well-

studied systems in condensed matter physics. Such fermions

often appear in relativistic field theories1, but more impor-

tantly are known to be the low-energy description of the elec-

tronic structure some 2D materials, e.g., graphene2, and as the

effective theory of the surface states of time-reversal invariant

3+1-d topological insulators3. In fact, in the latter two con-

texts alone, there have been thousands of articles in the past

decade that discuss the properties of this fermion system.

The impetus for the intense focus on 2+1-d Dirac fermions

was the experimental discovery of graphene2. Years earlier4,5

it had been theoretically predicted that the electronic band

structure of graphene near the Fermi-level would be linear

dispersing, gapless cones, i.e., massless Dirac fermions. In-

deed, the unique signature of the Dirac fermions was quickly

confirmed in quantum Hall measurements on graphene2.

Graphene itself has four Dirac cones, two more than the min-

imum of two required to satisfy the Fermion doubling theo-

rem in 2+1-d systems with time-reversal invariance. This the-

orem implies that a 2+1-d material with time-reversal sym-

metry cannot harbor an odd number of gapless Dirac cones.

Hence, the system will have a semi-metallic nature with an

even number of point-like Fermi surfaces, and is often referred

to as a topological Dirac semi-metal (DSM). Remarkably, this

2+1-d (semi-)metal is relatively stable upon the requirement

of some additional constraints: (i) inter-cone scattering across

the Brillouin zone is suppressed (translation symmetry is suf-

ficient for non-interacting fermions), (ii) intra-cone gapping

terms are forbidden (minimally we need the composite sym-

metry of time-reversal combined with inversion), and (iii) the

system does not form a superconductor (we need to preserve

U(1)c). With these conditions the 2+1-d DSM forms a robust

topological semi-metal phase. Interestingly, if we relax con-

dition (ii) then the system will form a gapped insulator, but

will typically have an unusual electromagnetic response (e.g.,

a quantum anomalous Hall effect6 or a charge polarization7).

We can find examples of systems with an odd number of

massless Dirac cones as well. If we do not require time-

reversal symmetry then there exist 2+1-d lattice models which

have an odd number of Dirac cones, e.g., a Chern insula-

tor model tuned to the topological critical point represents

such a system6. On the other hand, there is another way to

avoid the Fermion doubling theorem while maintaining time-

reversal (T ). However, this requires something more drastic,

i.e., we can produce an odd number of 2+1-d Dirac cones,

and maintain T , by considering the surface of a 3+1-d T -

invariant (electron) topological insulator (TI). The non-trivial

Z2 3+1-d topological phase is known to have an odd num-

ber of massless Dirac cones on its surface with a characteris-

tic spin-momentum locking feature of the states on the Fermi

surface. Additionally, there must be at least one massless

Dirac cone located at a time-reversal invariant momentum in

the Brillouin zone. This is unlike the generic 2+1-d DSM for

which the Dirac cones can exist at arbitrary points in the Bril-

louin zone8 It is well-known that theories with an odd num-

ber of 2+1-d massless Dirac cones typically exhibit the parity

anomaly1, and there are usually subtle features that must be

carefully examined when considering the properties of such

systems.

More recently there have been rapid developments in un-

derstanding symmetry-protected topological (SPT) phases

with interactions9–26. One development in which we are
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particularly interested is the prediction that there could be

bosonic analogs of the electron topological insulators. Some

examples are the Bosonic Integer Quantum Hall Effect

(BIQHE)15,16,27–33 and the 3D T -invariant Bosonic Topologi-

cal Insulator (BTI) 17,18,22,34. The former is characterized by

its quantized Hall conductance, which must come in integer

multiples of 2e2/h, while the latter is characterized by a quan-

tized magneto-electric polarizability with a Θ-angle of 2π in-

stead of the usual value of π for the non-trivial phase of the

electron topological insulator35. These bosonic phases are not

topologically ordered, but they are SPTs that require interac-

tions to exist; at zeroth order the interactions serve to prevent

the system of bosons from forming a trivial Bose condensate.

Consider, for a moment, the 3+1-d BTI. In analogy to the

electron TI we expect the surface states to exhibit unusual

properties. Indeed, for one example, the surface theory can

exhibit an effectively 2+1-d T -breaking phase with a Hall

conductance of ±e2/h which is forbidden for a purely 2+1-

d BIQHE phase. To understand the properties of this exotic

surface state several equivalent representations of the surface

theory have been given in the literature: (i) a network model of

quasi-1D strips that are arrayed to form a surface and coupled,

(ii) a dual description of the surface bosonic theory in terms

of dual vortices, and (iii) an effective field-theory description

in terms of the O(4) Nonlinear Sigma Model (NLSM) with

a topological theta term with coefficient θ = π. All three of

these representations of the surface were discussed in Ref. 17.

The description in terms of the O(4) NLSM with θ = π was

also discussed in Ref. 36. Very recently, inspired by new de-

velopments in the description of the electron TI surface37–39,

a new dual description of the BTI surface in terms of 2 + 1-d

Quantum Electrodynamics with two fermion flavors (N = 2
QED3) was proposed40. This new dual description was then

derived in a coupled wires construction in Ref. 41. When any

one of these theories is tuned to criticality it represents a sur-

face state in a symmetry-preserving gapless phase.

In this article our goal is to develop a thorough understand-

ing of the surface of the 3+1d BTI, and then to subsequently

combine multiple copies of the theory to form a symmetry

preserving bosonic semi-metal state that can exist intrinsically

in 2+1-d without breaking some requisite symmetries. This

type of semi-metal represents the bosonic analog of a 2+1-

d DSM. We will present an effective theory for the bosonic

semi-metal and explore in detail the requirements for its sta-

bility, the resulting electromagnetic responses, and possibili-

ties for neighboring gapped phases with and without intrinsic

topological order. We then provide an explicit coupled wires

construction of this semi- metal model.

Our article is organized as follows: in Sec. II we give an

overview of our main results, and in Sec. III we review the

properties of the 2+1-d fermion Dirac semi-metal. Next, in

Sec. IV, we review some properties of the surface theory of the

3+1-d T -invariant BTI and provide new results and a synthe-

sis of previous work. In Sec. V we discuss our effective theory

for the 2+1-d bosonic semi-metal built from multiple copies of

the bosonic TI surface states, including the quasi-topological

electromagnetic response, and the stability/instabilities of this

critical state. In Sec. VI we derive a criterion for identifying

a gapless semi-metal phase from the value of its polarization

response. Finally, in Sec. VII we provide the details of the ap-

propriate wire bundles and couplings to generate the bosonic

semi-metal using a coupled-wire array. Following the conclu-

sions we have a set of detailed Appendixes that review some

of the technical tools used in the paper, and also contain ex-

plicit derivations of some of our more technical results.

II. MOTIVATION AND OVERVIEW OF RESULTS

In this section we provide additional background motiva-

tion, describe the logic behind our construction of a bosonic

analog of a topological DSM, and give an overview of our

results. Henceforth, we call such a system a Bosonic Semi-

Metal (BSM). Readers interested in the technical details of

the paper can refer to the specific sections for more informa-

tion. As mentioned above, the main goal of this paper is to

construct a model of gapless bosons in 2+1-d which shares

many of the properties of the minimal two-node DSM of free

fermions studied, for example, in Ref. 7. The main properties

we will be interested in are: (1) the electromagnetic response

of the system to perturbations which break time-reversal or

inversion symmetry, and (2) the perturbative stability of the

gapless, low-energy effective theory. As for any topological

semi-metal, translation symmetry is an important ingredient

as it prevents any scattering processes between the different

Dirac or bosonic “cones” (which are generically located at

different points in momentum space). Indeed, in our BSM ef-

fective theory, translation symmetry will forbid perturbations

which could drive the system into a gapped state with only a

trivial electromagnetic response.

Before we begin let us make a note about units. In this pa-

per we consider systems constructed from fermions or bosons

which all carry a single unit of electric charge e. For most of

the paper we work in units where e = 1, but will restore the

charge e in all final response formulas. We also take ~ = 1,

which means that the conductance quantum e2

h = 1
2π in our

units. We always express Hall conductances in units of e2

h .

We start out in Sec. III by reviewing the continuum descrip-

tion of the two-node DSM. We focus our review on the time-

reversal and inversion symmetry breaking electromagnetic re-

sponses of the DSM, and also the local (in momentum space)

stability of the Dirac cones in the DSM. If the DSM is per-

turbed by gap-inducing terms that break T or I then the re-

spective electromagnetic responses of the DSM take the forms

LT =
e2

4π
ǫµνλAµ∂νAλ (2.1a)

LI =
e

2π
ǫµνλBµ∂νAλ , (2.1b)

where Aµ is the potential for the external electromagnetic

field, and Bµ is another 3-vector field whose meaning is as

follows. The two Dirac cones of the DSM are located at dif-

ferent points in the Brillouin zone with a wave-vector differ-

ence of 2Bi (for simplicity we choose their locations to be at

k± = ±(Bx, By)), and the two cones are separated in energy
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by an amount 2Bt. The effective Lagrangian LT represents

a 2+1-d quantum Hall response with a Hall conductance of

1, while LI represents a charge polarization and orbital mag-

netization response whose precise meaning was discussed in

Ref. 7, and which we review in Sec. VII. We note that we

have suppressed a sign in these terms that tracks the nature of

the inversion or time-reversal breaking.

Typically point-node semi-metals are unstable in 2+1-d un-

less extra symmetries are imposed. The stability of the DSM

is due in part to the translation symmetry of the system. This

symmetry prevents scattering processes between Dirac cones

at different locations in the Brillouin zone. The local stabil-

ity (in momentum space) of each Dirac cone in the DSM (at

the level of free fermions) is then guaranteed by U(1)c charge

conservation symmetry and a composite symmetryZT I
2 , con-

sisting of a time-reversal transformation combined with an in-

version transformation. These two symmetries forbid transla-

tion invariant terms which could gap out a single Dirac cone

independently of any of the others.

Having reviewed the DSM, we can make the following ob-

servation about a minimal, two-cone DSM which directly in-

forms our construction of a BSM model. Since a single Dirac

cone is the surface theory for the 3+1-d Electron Topologi-

cal Insulator (ETI)3 the degrees of freedom in the two-node

DSM can be viewed as being constructed from two copies of

the ETI surface theory, but with the two copies separated in

momentum space. We are therefore motivated to construct a

model for a BSM from two copies of the surface theory for

the 3D Bosonic Topological Insulator (BTI), but with those

two copies also separated in momentum space. According to

Ref. 17, one representation of the surface theory of the BTI

is the O(4) NLSM with theta term and θ = π, and it is this

theory which we discuss next.

In Sec. IV we give a lengthy review of the properties of the

O(4) NLSM with θ = π as it appears on the surface of the

BTI. There are two reasons for giving an extended discussion

of the BTI surface theory: (1) understanding just one copy of

this theory is a prerequisite for understanding our BSM effec-

tive theory, which consists of two copies of the surface the-

ory, and (2) we provide alternate derivations (and also proofs

in Appendixes B and C) for some of the properties of this

model. These discussions, and some additional new results,

lend further support to many of the claims about this model

that have already appeared in the literature. In particular we

provide an extended discussion on the stability of the gapless

nature of the O(4) surface theory that we will require for our

discussion of the BSM theory.

To begin, we recall that theO(4) NLSM can be equivalently

formulated in terms of an SU(2) matrix field

U =

(

b1 −b∗2
b2 b∗1

)

, (2.2)

where the components b1 and b2 are interpreted as represent-

ing physical bosons on the surface of the BTI. As such, they

transform under the physical U(1)c charge conservation sym-

metry as bI → eiχbI for I = 1, 2 (in units where the boson

charge e = 1). This theory also has a time-reversal symmetry

ZT
2 under which b1 and b2 are separately invariant. The ac-

tion for this model includes the conventional NLSM “kinetic

energy” term, and the topological theta term,

Sθ[U ] =
1

24π2

∫

d3x ǫµνλtr[(U †∂µU)(U †∂νU)(U †∂λU)] ,

(2.3)

where tr[· · · ] is the usual trace operation. In the action, the

theta term is multiplied by a parameter θ, which is an angular

variable defined modulo 2π. For the surface theory of the BTI

we have θ = π17. In Sec. IV we review the calculation of the

time-reversal breaking electromagnetic response of this the-

ory via its dual vortex description (developed in Refs. 17 and

42) and also discuss an alternate method for calculating this

response that confirms this result. We also comment on the re-

lation between the descriptions of the BTI surface used in this

paper and the recently proposed dual description of the BTI

surface in terms of N = 2 QED3
40,41. We then go on to give

a careful discussion of the effects that perturbations allowed

by the U(1)c and ZT
2 symmetries have on the surface theory.

These perturbations were only discussed briefly in Ref. 17. Fi-

nally, we review the construction of the symmetry-preserving

Z2 topologically ordered surface phase of the BTI which was

first derived in Ref. 17.

After all of this setup we are ready to introduce an effec-

tive theory of the BSM. In Sec. V we introduce a system with

two copies of the O(4) NLSM with theta term. One copy

has θ = π and the other copy has θ = −π, and just as in

the case of the fermionic DSM, the two copies of the O(4)
NLSM are located at positions k± = ±(Bx, By) in momen-

tum space. In our description of the effective theory we dis-

cern how charge conservation, translation, time-reversal, and

inversion symmetries act on the fields in the model, and then

compute the time-reversal and inversion breaking electromag-

netic responses analogous to those found in the fermion DSM.

We find that these responses also exist in the BSM case, and

have exactly twice the value of the responses in Eq. (2.1)

for the free fermion DSM. This doubling of the response for

bosonic vs. fermionic systems is similar to what happens for

the case of the ETI and BTI in 3D, and also the integer quan-

tum Hall effects for fermions and bosons in 2D15,17.

We then go on to give a partial discussion of the stability

of our theory. We argue that the translation symmetry pre-

vents us from coupling one copy of the theory to the other

copy in order to drive the system into a trivial insulating state,

and that the combined ZT I
2 symmetry ensures the stability

of each individual O(4) NLSM. Finally, we discuss some 2D

topologically ordered phases which can be accessed from our

BSM model by condensing suitable bound states of the vor-

tices in the theory. In particular, we find a phase with Z2×Z2

topological order which breaks either the time-reversal or the

inversion symmetry of the original BSM model. This phase is

essentially two copies of the Z2 topologically ordered phase

found in Ref. 17, but in which the time-reversal and the in-

version symmetry of the BSM exchange the two copies. We

also discuss phases with Z2 topological order which break ei-

ther the inversion or the time-reversal symmetry of the BSM

model.

In Sec. VI we give a different perspective on the stability of

any semi-metal phase by relating the gaplessness of the semi-
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metal to its polarization response. In particular, we consider

three broad classes of 2D gapped phases with translation sym-

metry which can have a polarization response, and we show

that for these classes of gapped phases the polarization in the

x or y direction (in the presence of inversion symmetry) is

always of the form r e
2a0

, where r ∈ Q is a rational num-

ber and a0 is the lattice spacing. In addition, for each class

of gapped phase we are able to relate the number r to simple

measurable properties of that phase. A crucial point is that

the three classes of gapped phases that we consider are repre-

sentative of all gapped 2D phases with translation symmetry

which could be expected to exhibit a polarization response.

Our result then implies that a generic (i.e., non-rational) value

of the polarization in a system with translation symmetry, and

in particular a continuously tunable polarization, indicates a

gapless semi-metal phase. This shows that the gaplessness of

the semi-metal is directly related to its physically measurable

polarization response. Since this response is expected to be

reasonably robust, this also provides additional evidence for

the stability of the semi-metal phase itself.

Finally, in Sec. VII we give an explicit construction of the

BSM model using an array of coupled 1D wires. This con-

struction is motivated by the fact that 2+1-d fermion DSMs

can be constructed out of arrays of coupled wires7. A build-

ing block for the simplest two-node DSM of fermions is a wire

with a single 1+1-d massless Dirac fermion. When coupled,

arrays of these wires may exhibit three related phases: (i) if

an array of these wires is dominated by an intra-wire topo-

logical tunneling term then the system becomes a 2+1-d weak

topological insulator that exhibits a charge polarization paral-

lel to the wires, (ii) if the array is dominated by an inter-wire

topological tunneling term then the array forms a Chern in-

sulator phase with an integer Hall conductivity of ±e2/h, or

(iii) if there is significant competition between an intra-wire

and inter-wire tunneling there can be a parent critical phase,

i.e., a DSM, which is unstable to the formation of phase (ii) if

time-reversal is broken, and unstable to phase (i) if the Dirac

nodes meet at the boundary of the Brillouin zone and annihi-

late.

A key observation of this construction is that a wire with

a single 1+1-d Dirac fermion can be thought of as a narrow

strip of a σxy = e2/h integer quantum Hall system. Hence,

by analogy, we can immediately propose a 1+1-d bosonic

wire model to serve as the building block for a coupled-

wire construction of our 2+1-d BSM state: a narrow strip of

the BIQHE, which will contain the degrees of freedom from

both edges. An edge of the BIQHE can be described by an

SU(2)1 Wess-Zumino-Witten (WZW) conformal field theory

(CFT)15,17, therefore our 1+1-d bosonic wires will consist of

two (time-reversed) copies of an SU(2)1 WZW theory. The

fields in each wire consist of bosons which carry charge 1 un-

der the U(1)c symmetry.

It has been known for some time that one copy of the O(4)
NLSM with θ = π can be obtained from an array of coupled

wires in which each wire contains a single SU(2)1 WZW

theory17,42,43. After giving a brief review of this result, we

then show how our BSM model can be derived starting with

1+1-d bosonic wires containing two SU(2)1 WZW theories.

We construct inter-wire tunneling terms which not only give

the desired O(4) NLSM’s with theta angles π and −π, but

also shift the two copies of the O(4) NLSM’s to the locations

k± = ±(Bx, By) in momentum space (our specific construc-

tion gives the case withBx = 0). We then show how to assign

transformations under time-reversal and inversion symmetry

to the fields in the coupled wires model so that the transfor-

mations of the fields in the BSM model are recovered in the

continuum limit. We conclude Sec. VII with a discussion of

the different physical interpretations of the coupled wire con-

structions of the DSM and BSM models, and we also indicate

how inversion and time-reversal breaking perturbations of the

BSM model can be explored within its quasi-1D coupled wire

description.

In Appendix A we review the canonical quantization of the

O(4) NLSM, and also work out the commutators for this the-

ory when expressed in terms of the constrained bosonic vari-

ables b1 and b2. This information is used in Sec. IV to inves-

tigate the effects of symmetry-allowed perturbations on the

BTI surface theory, and also in Sec. V to discuss the stability

of the BSM model to symmetry-allowed perturbations. In Ap-

pendix B we study a family of exact, finite energy vortex solu-

tions to the NLSM equations of motion, and we compute the

quantum numbers carried by global excitations in the back-

ground of a single vortex. In particular, we are able to prove

the result, first argued for in Ref. 17, that the main effect of

the theta term in the O(4) NLSM is to attach a charge θ
2π of

the boson b1 to vortices in the phase of b2, and vice-versa. In

Appendix C we discuss the role of the theta term of the O(4)
NLSM in the Minkowski spacetime path integral of the theory.

Finally, in Appendix D we resolve an apparent paradox asso-

ciated with our alternative calculation, via auxiliary fermions,

of the time-reversal breaking electromagnetic response of the

BTI surface theory.

III. REVIEW OF THE FREE-FERMION DIRAC

SEMI-METAL

Before going into the details of our construction of a

bosonic analog of a Dirac semi-metal (DSM), we first give

a review of the free fermion DSM for the simple case of two

Dirac points in the Brillouin zone. Our review closely fol-

lows the discussion in Ref. 7, in which the electromagnetic

responses of various topological semi-metals were derived.

Specifically, we discuss a square lattice model of a DSM, its

symmetry requirements, its low-energy description, the time-

reversal and inversion symmetry breaking electromagnetic re-

sponses of the system, and finally the local stability of the

Dirac nodes. A particularly important point is that the local

stability of the DSM, which means the stability against per-

turbations that can gap out individual Dirac cones, is guaran-

teed by enforcing a composite symmetry ZT I
2 , whose action

consists of a time-reversal transformation composed with an

inversion transformation. This composite symmetry will also

play an important role in our bosonic semi-metal model.

We also note here that the surface theory of the 3D Elec-

tron Topological Insulator (ETI) is a single Dirac fermion. We
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may therefore view the simple two cone DSM as a theory con-

structed from similar degrees of freedom as two copies of the

surface theory of the 3D ETI (but with the two copies of the

theory having opposite helicity). This observation is the moti-

vation for our construction of a bosonic semi-metal from two

copies of the surface theory of the 3D Bosonic Topological

Insulator (BTI), which is an O(4) NLSM with theta term and

theta angle θ = ±π. We return to this point in later sections.

A. Lattice model of a DSM

We now describe a lattice model, discussed in more detail in

Ref. 7, which realizes a DSM phase for a certain range of pa-

rameters. The model consists of two species/orbitals of spin-

less fermions at half-filling on the square lattice. We therefore

have a two-component complex fermion operator ~cn at each

site n = (nx, ny) of the square lattice. We take the lattice

spacing a0 = 1. A number of symmetries play an important

role in this system. They are discrete translation symmetry,

U(1)c charge conservation symmetry, ZT
2 time-reversal sym-

metry, andZI
2 inversion symmetry. The fermions carry charge

1, so they transform under U(1)c as

U(1)c : ~cn → eiχ~cn , (3.1)

where χ is a constant phase. The action of the time-reversal

and inversion symmetries on the fermions is given in terms of

the anti-unitary operator T and the unitary operator I, respec-

tively. We will specify the action of these operators on the

complex fermions after introducing the DSM model.

The Bloch Hamiltonian of this model takes the form

H2D(k) = sin(kx)σ
x + (1−m− cos(kx)− ty cos(ky))σ

z ,
(3.2)

where σa, a = x, y, z are the Pauli matrices acting on the

orbital space. The sin(kx) term represents a complex hopping

for fermions in the x direction, while the terms multiplying σz

represent a mass term as well as real hopping terms in the x
and y directions. This system has time-reversal and inversion

symmetry where T and I act on the fermions as

T ~cnT −1 = σz~cn , (3.3)

and

I~cnI−1 = σz~c−n . (3.4)

We see that both time-reversal and inversion symmetry act

with opposite signs on the two species of fermion. We note

that the inversion symmetry also negates the spatial coordi-

nate, and T is anti-unitary.

The energies of the two bands of this model as a function

of k are given by

E(k)± = ±
√

sin2(kx) +
(

1−m− cos(kx)− ty cos(ky)
)2
.

(3.5)

When ty = 0 and m = 0, this model has a band touching

at kx = 0 for any value of ky . However, for non-zero m

and ty the bands touch only at isolated points along the line

kx = 0 in the Brillouin zone. The location of these points is

determined by the ratio of m and ty . We focus our attention

on the regime of m > 0 but m ≪ 2 (at m = 2 the band

touching moves to kx = π). In this regime the low-energy

physics of this system is completely described by two contin-

uum Dirac Hamiltonians obtained by linearizing around the

two band touchings. These band touchings are located at the

points k± = (0,±By) in the Brillouin zone, where By is the

positive solution, in the first Brillouin zone, to the equation

m+ ty cos(By) = 0.

Performing a k · P expansion around k± we find the low-

energy Dirac Hamiltonians H±(k)

H±(k) = kxσ
x ± ty sin(By)(ky ∓By)σ

z . (3.6)

We emphasize that these two low-energy Hamiltonians have

opposite signs on their ky terms. This means that the two

Dirac fermions which emerge at low-energy in this model

have opposite helicity, i.e., the Berry phase for electrons on

the two Fermi surfaces when the chemical potential is tuned

away from the Dirac points have opposite signs. This form

of the low-energy Hamiltonian for each Dirac point leads us

directly to the continuum description of the DSM.

B. Continuum description of the DSM

For the continuum description of the DSM, we take as our

starting point an effective Hamiltonian for two continuum

Dirac fermions ψA and ψB with opposite helicity (which is

exactly what we found in the linearized Bloch Hamiltonian

for the DSM model). We then shift the zero in momentum in

the ky direction by By. This leads to the Hamiltonian

HDSM (k) = kxI⊗ σx + kyσ
z ⊗ σz −ByI⊗ σz , (3.7)

where for simplicity we have taken ty sin(By) = 1 to make

the dispersion of the Dirac cones isotropic. In position space

the original lattice fermions~cn may be written at low energies

in terms of the two continuum Dirac fermions ψA and ψB as

~cn
a0

∼ ψA(x)e
iByy + ψB(x)e

−iByy , (3.8)

where x = (x, y) = (nxa0, nya0), and we have temporarily

restored the lattice spacing. Now we define the multi- compo-

nent fermion operator Ψ = (ψA, ψB)
T . One can show that I

and T act on Ψ as

IΨ(x)I−1 = σx ⊗ σzΨ(−x) , (3.9)

and

T ΨT −1 = σx ⊗ σzΨ . (3.10)

In particular, these operators exchange ψA and ψB , i.e., they

each map fermions from one Dirac cone to the other.

At this point we may go ahead and generically allow for an

offset Bx to the kx location of the Dirac points, as well as an
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offset Bt between the energies of the two Dirac points. This

leads to the effective Hamiltonian

HDSM (k) = kxI⊗ σx −Bxσ
z ⊗ σx + kyσ

z ⊗ σz

− ByI⊗ σz +Btσ
z ⊗ I . (3.11)

To more clearly see the final structure we can pass to a La-

grangian formulation of this system. The Lagrangian has the

form

L = Ψ̄
(

i/∂ + /A+ (σz ⊗ I) /B
)

Ψ , (3.12)

where we define the gamma matrices γ0 = I ⊗ σy, γ1 =
−iI ⊗ σz , and γ2 = iσz ⊗ σx, and where Ψ̄ = Ψ†γ0. We

have also employed the Feynman slash notation /∂ = γµ∂µ,

etc., and included minimal coupling to the external electro-

magnetic field Aµ connected to the U(1)c symmetry.

C. Electromagnetic response of the DSM

We now briefly review the electromagnetic response of the

DSM to time-reversal and inversion symmetry breaking per-

turbations. The two mass terms

ΣI = I⊗ σy (3.13)

ΣT = σz ⊗ σy , (3.14)

are the only matrices that anti-commute with the kinetic en-

ergy terms of the DSM Hamiltonian in Eq. (3.11), and pre-

serve translation invariance (i.e., they do not couple ψA to

ψB , which are located at different points in momentum space).

The first term ΣI breaks inversion symmetry, while the sec-

ond term ΣT breaks time-reversal symmetry.

As shown in Ref. 7, perturbing the system with a term

−mΣT leads to the 2D electromagnetic response LT from

Eq. (2.1), i.e., it induces a quantum anomalous Hall effect

with Chern number/Hall conductance6 σxy = ±e2/h. On the

other hand, perturbing the system with −mΣI leads to the

quasi-1D electromagnetic response LI from Eq. (2.1). This

response indicates that, when starting from the gapped, in-

version breaking phase and taking m → 0, the DSM limit

will have a charge polarization and/or orbital magnetization.

In fact, the response does not depend on the magnitude of m
at all, and the dependence on m enters only as a global sign

sgn(m) multiplying the response formula. Interestingly, this

second response term depends crucially on the properties of

the Dirac nodes, i.e., their relative positions in momentum and

energy.

D. Combined T I symmetry ensures local stability of the Dirac

cones

We end this section with a quick comment about the stabil-

ity of the DSM. We saw in the previous section that the only

mass terms that we can add to Eq. (3.11) which are allowed

by translation symmetry are the terms ΣT and ΣI . If we add

only one of these mass terms to the system then it will gap out

both of the Dirac cones. However, suppose we tried to add a

linear combination of these two mass terms. The two possible

linear combinations are

Σ± =
1

2
(ΣI ± ΣT ) . (3.15)

Adding just one of these terms would gap out either ψA (add

Σ+) orψB (addΣ−). However, both of these terms are forbid-

den by the composite symmetry T I . Therefore, the local sta-

bility of the Dirac cones is guaranteed by the combined time-

reversal times inversion symmetry T I .44 If we enforce this

symmetry, then it is impossible to gap out one of the Dirac

cones independently of the other cone, and hence they can

only be removed if they are perturbed enough to collide with

each other in momentum space. This means that with transla-

tion, T I, and U(1)c preserved the DSM is a (perturbatively)

stable 2+1-d semi-metal phase.

IV. THE SURFACE THEORY OF THE BOSONIC

TOPOLOGICAL INSULATOR

In this section we review, and also clarify some aspects of,

the surface theory of the 3+1-d BTI. Since our BSM model

is constructed from two copies of the surface theory of the

BTI, it is essential that we discuss this theory in detail. The

surface theory of the BTI was first derived in Ref. 17, where

it was obtained from a network model constructed from cou-

pled edge theories of the BIQH state (we briefly discuss this

network model in Sec. VII). The authors of Ref. 17 then used

this theory, as well as a dual vortex description of the theory,

to derive many possible surface phases for the BTI. These dif-

ferent possible surface phases were further investigated and

clarified in Ref. 18 which utilized monopole configurations of

the external gauge field to probe the properties of the various

phases.

In this section we provide a detailed account of the sur-

face theory of the BTI, which is equivalent to an O(4) NLSM

with theta term and theta angle θ = π. We first discuss the

basic properties of this theory, and also the transformations

of the O(4) field under the physical symmetry group of the

BTI. We then give a summary of the dual description of the

theory, but from a different point of view than the one given

in Ref. 17. We then show how the time-reversal symmetry

breaking electromagnetic response of the BTI surface can be

obtained from the dual description. We also describe an alter-

native method for calculating the electromagnetic response of

the theory. This method uses a well-known formula derived by

Abanov and Wiegmann in Ref. 45, which allows one to write

the original O(4) NLSM as a path integral over a set of auxil-

iary fermions which couple to the O(4) field. Since the O(4)
NLSM is such a difficult system to study, having two differ-

ent methods for calculating the response which give the same

answer is strong corroborating evidence. We next discuss the

stability of the gapless theory. In particular, we carefully study

the effects of symmetry-allowed perturbations, some of which

were briefly discussed in Ref. 17. Finally, we end the section

with a brief review of the symmetry-preserving, topologically
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ordered surface phase for the BTI proposed in Ref. 17. After

all of this is complete we will be ready to discuss the proper-

ties of the bosonic semi-metal state.

A. The O(4) NLSM with theta term

In this subsection we review the description of the surface

of the Bosonic Topological Insulator (BTI) in terms of one

2+1-d O(4) Nonlinear Sigma Model (NLSM) with a topo-

logical theta term having θ = π. The O(4) NLSM field

N = (N1, N2, N3, N4) is a real-valued unit vector field (i.e.,

N · N = 1). The action for this theory with a general theta

angle takes the form

S =

∫

d3x
1

g
(∂µNa)(∂µN

a)− θSθ[N] , (4.1)

where we sum over all repeated indices (µ = t, x, y and a =
1, 2, 3, 4), and the theta term is

Sθ[N] =
1

12π2

∫

d3x ǫµνλǫabcdN
a∂µN

b∂νN
c∂λN

d .

(4.2)

The coefficient g is a positive coupling constant. Small g fa-

vors an ordered phase in which Na is constant everywhere in

spacetime, while large g favors a disordered phase. The theta

term only plays a role in the disordered phase, so we assume

that we are working in the large g regime.

For the description of the surface of the BTI, it is more con-

venient to use a formulation of the O(4) NLSM in terms of

an SU(2) matrix U which is related to the unit vector N via

U = N4I+
∑3

a=1 iN
aσa. In terms of U the action takes the

form

S =

∫

d3x
1

2g
tr[∂µU †∂µU ]− θSθ[U ] , (4.3)

where now

Sθ[U ] =
1

24π2

∫

d3x ǫµνλtr[(U †∂µU)(U †∂νU)(U †∂λU)] ,

(4.4)

and tr[. . . ] denotes the usual trace operation for matrices. In

this form, the O(4) NLSM is also known as the SU(2) Prin-

cipal Chiral Nonlinear Sigma Model (PCNLSM).

The renormalization group (RG) flows of general SU(N)
PCNLSM’s in the (g, θ) plane were studied qualitatively in

Ref. 46. In that paper the authors argued that the theory with

θ = π could either be gapless or have a degenerate ground

state. In the gapless case they predicted an RG fixed point at

θ = π and g = g∗ for some finite g∗, while for the degenerate

case they predicted that g flows off to positive infinity. In

this paper we focus only on the first possibility of a gapless

theory. We might also suspect that the O(4) NLSM at θ = π
is gapless on the grounds that its lower dimensional cousin,

the O(3) NLSM with θ = π, was also shown to be gapless in

Ref. 47.

For the description of the BTI surface, one writes U in

terms of two complex fields b1 and b2 as

U =

(

b1 −b∗2
b2 b∗1

)

, (4.5)

where b1 and b2 are subject to the constraint
∑2

I=1 |bI |2 = 1,

which is equivalent to the original constraint N · N = 1 of

theO(4) NLSM. We should think of b1 and b2 as representing

the physical bosonic degrees of freedom on the surface of the

BTI, and so we will refer to bI , I = 1, 2, as “bosonic fields”

for the rest of the article. Using these fields we see that the

O(4) NLSM can be viewed as being essentially a theory of

two complex scalar fields b1 and b2, however, these fields in-

teract with each other due to (i) the constraint
∑

I |bI |2 = 1 ,

and (ii) the theta term Sθ[U ].
The BTI is a gapped bosonic phase of matter protected by

U(1)c charge conservation symmetry and ZT
2 time-reversal

symmetry. Under these symmetries the bosonic fields bI
transform as

U(1)c : bI → eiχbI (4.6)

ZT
2 : bI(t,x) → bI(−t,x) , (4.7)

for I = 1, 2, where x = (x, y) denotes the spatial coordi-

nates. These transformations give the total symmetry group

the structure U(1)c ⋊ZT
2 , where the semi-direct product “⋊”

indicates that the U(1)c and ZT
2 transformations do not com-

mute with each other. As we explain in the next few para-

graphs, the O(4) NLSM theory with a theta term only pos-

sesses this time-reversal symmetry when θ is an integer mul-

tiple of π.

To see why the only time-reversal symmetric values of θ are

θ = nπ, n ∈ Z, we first make a transformation to Euclidean

spacetime. Euclidean time is defined by τ = it, and the theta

term in Euclidean spacetime has the form

Sθ,E[N] = − i

12π2

∫

d3xE ǫµνλǫabcdN
a∂µN

b∂νN
c∂λN

d ,

(4.8)

where d3xE = dτd2x is the integration measure for Eu-

clidean spacetime, and now µ, ν, λ = τ, x, y. The theta term

is now imaginary, which means that e−θSθ,E[N] appears as a

phase factor in the Euclidean path integral. Under a time-

reversal transformation we send t → −t, i → −i (since this

symmetry is anti-unitary), and bI(t,x) → bI(−t,x). Since

τ = it, τ is invariant under this transformation. Therefore we

find that under time-reversal Sθ,E[N] → −Sθ,E[N]48.

If we impose boundary conditions on N such that N tends

to a fixed configuration N0 at infinity in all directions of Eu-

clidean spacetime, then we may identify Euclidean spacetime

with the sphere S3. The sphere S3 is also the configuration

space for the O(4) NLSM, so in this situation the theta term

becomes quantized,

1

12π2

∫

d3xE ǫµνλǫabcdN
a∂µN

b∂νN
c∂λN

d = nI ∈ Z ,

(4.9)

where nI is the instanton number of the field configurationN.

The quantization of this integral follows from the homotopy

group π3(S
3) = Z. In fact, the theta term is just the pull-

back to spacetime of the volume form on S3. Since Euclidean

spacetime (with the boundary conditions discussed above) is

just another copy of S3, the integral is required to be an inte-

ger, which just counts the number of times that the spacetime



8

S3 wraps around the configuration space (also S3) of theO(4)
NLSM field N.

In the Euclidean path integral, the theta term appears in an

exponential, e−θSθ,E [N] = eiθnI , which shows that the pa-

rameter θ is only defined modulo 2π. We have already seen

that a time-reversal transformation sends θ → −θ. It is then

immediate to see that the only time-reversal symmetric values

of θ are θ = nπ, n ∈ Z, since it is only these values of θ
which satisfy θ ≡ −θ mod 2π. It was shown in Ref. 17 that

the gapless surface termination of the BTI is described by the

O(4) NLSM with θ = π, and hence preserves time-reversal

symmetry.

Another comment can be made about the interpretation of

the theta term in Euclidean spacetime. It was shown in Ref. 42

that the one-instanton configuration of theO(4) field N can be

re-interpreted in terms of vortex configurations of the bosonic

fields b1 and b2. Recall that a vortex of the field bI is a point

in space around which the phase of bI winds by 2π. In 2+1-d

the spacetime trajectory, or worldline, of a vortex is just a line

(or curve) in spacetime. In Euclidean spacetime (compact-

ified to the sphere S3 via appropriate boundary conditions),

the worldlines of vortices become closed loops. In Ref. 42

it was shown that the one-instanton configuration of the field

N is equivalent to a linking configuration in which the world-

line of a vortex in the phase of b1 links exactly once with a

worldline of a vortex in the phase of b2. Since this configura-

tion contributes a phase of eiθ to the Euclidean path integral,

the authors of Ref. 42 interpreted this to mean that a vortex

in b1 and a vortex in b2 have a mutual statistical angle of θ.

This means that a braiding process in which a vortex in b1
makes a complete circuit around a vortex in b2 should result

in an overall phase factor eiθ for the wave functional of the

quantum field theory. This result was then used in Ref. 17 to

deduce a topologically ordered surface phase for the BTI. We

will review this topologically ordered phase at the end of this

section. We remark in passing that similar arguments were

also used in Ref. 49 to deduce the braiding statistics of parti-

cle and loop-like excitations in gauged SPT phases from their

description in terms of NLSM’s with theta term.

It is clear from the discussion in the preceding paragraphs

that the theta term plays an important role in the physics of the

O(4) NLSM. However, in this section we relied extensively

on the interpretation of the theta term in Euclidean spacetime

to understand its special properties. To better understand the

quantum mechanics of the O(4) NLSM with theta term, it is

desirable to understand the role the theta term plays in the

Minkowksi spacetime path integral. In Appendix C we ex-

plain the precise interpretation of the theta term in Minkowksi

spacetime, and show that the theta term does indeed contribute

a phase eiθ to the path integral for configurations of the O(4)
field in which a vortex in the boson b2 makes a complete cir-

cuit around a vortex in b1. This result confirms the interpreta-

tion of the theta term given by Senthil and Fisher in Ref. 42,

which was based on an analysis of the theory in Euclidean

spacetime. In addition, following an argument from Ref. 50,

this result implies that a bound state of a vortex in b1 and a

vortex in b2 carries intrinsic angular momentum J = θ
2π . At

θ = π we have J = 1
2 , which means that the vortex bound

state is a fermion, as was discussed in Ref. 17.

B. Time-reversal breaking response

In this section we discuss the calculation of the time-

reversal breaking electromagnetic response of the O(4)
NLSM with θ = π. This response is in principle obtained

by coupling the NLSM to the external electromagnetic field

Aµ, turning on a small time-reversal breaking perturbation,

integrating out the matter fields b1 and b2, and then setting

the time-reversal breaking perturbation to zero. In practice,

however, it is very difficult to integrate out the NLSM field di-

rectly, and so we make use of two alternative and completely

different methods for calculating the time-reversal breaking

response of the theory. The fact that these two methods give

the same answer strongly suggests that the answer is the cor-

rect one, even though it has not, as yet, been checked with a

direct calculation in the O(4) NLSM.

1. Method 1: Dual Vortex Description

The first method for calculating the time-reversal breaking

response of the BTI surface is to use the dual vortex descrip-

tion of theO(4) NLSM which becomes possible at the special

value of θ = π. This dual vortex description was first ob-

tained in Ref. 42 using a lattice formulation of the theory. The

continuum version of this dual vortex theory was then used

extensively in Ref. 17 to study the possible surface phases of

the BTI. In this section we give a review of this dual descrip-

tion from an alternative perspective that is complementary to

that given in Refs. 17 and 42.

We have already explained how the O(4) NLSM can be

regarded as a theory of two complex scalar fields b1 and b2
subject to the constraint

∑

I |bI |2 = 1. This constraint has a

strong effect on the physics of vortices in the fields b1 and b2.

Recall that a vortex in the field b1 is a point in space around

which the phase of b1 winds by 2π. At such a point the phase

of b1 is undefined, and so the amplitude of b1 must vanish at

that point. However, since the fields b1 and b2 are subject to

the constraint discussed above, this means that in the core of

a vortex in b1 we have |b2| = 1. This indicates that vortices in

b1 can trap charge of b2 and vice-versa. In fact, in Minkowski

spacetime the main effect of the theta term is to attach charge
θ
2π of boson b1 to vortices in b2 and vice-versa. A heuristic

argument for this effect was given in Ref. 17. In Appendix B

we prove this result explicitly by computing the charges of

global excitations on the background of certain exact vortex

solutions of the NLSM equations of motion.

We first give a short review of the dual vortex description

of the theory of an ordinary charged scalar field in 2+1-d, and

refer the reader to Ref. 51 for a more detailed description of

this technique. Consider first an ordinary complex scalar field

b, with a Lagrangian of the form

L = |(∂µ − iAµ)b|2 −
µ

2
|b|2 − λ

4
|b|4 + . . . (4.10)
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For later convenience we write b in a density phase represen-

tation as b = ρeiϑ. When µ < 0 this system has a symmetry-

broken ground state in which ρ = ρ̄ =
√

−µ
λ and the phase

of b is locked to a particular value (thus spontaneously break-

ing the original U(1)c symmetry under b → eiχb). The low-

energy excitations about this ground state are the gapless fluc-

tuations of the phase ϑ of b (the Goldstone modes), which are

described by

L = ρ̄2(∂µϑ−Aµ)
2 + . . . . (4.11)

The fluctuations ϑ consist of two parts, ϑ = ϑs + ϑv. The

smooth part ϑs consists of small fluctuations around the fixed

vacuum value of ϑ. The second part ϑv consists of vortices

in which the phase winds by some multiple of 2π around the

vacuum manifold (i.e., the circle defined by |b| = ρ̄).

In the usual boson-vortex duality a sequence of transforma-

tions is now applied to the Lagrangian Eq. (4.11) (more pre-

cisely, these transformations are applied to the path integral)

to obtain a final Lagrangian of the form

L = |(∂µ − iαµ)φ|2 −
µ̃

2
|φ|2 − λ̃

4
|φ|4 + . . .

− 1

4ρ̄2

(

1

2π
ǫµνλ∂ναλ

)2

− 1

2π
ǫµνλAµ∂ναλ .(4.12)

This expression features two new fields: the gauge field αµ

and the complex scalar field φ. The field αµ is a non-compact

gauge field which is introduced to represent the conserved

number current Jµ of the original bosons b via the equa-

tion Jµ = 1
2π ǫ

µνλ∂ναλ. Non-compactness of αµ is just the

statement that ǫµνλ∂µ∂ναλ = 0, which guarantees the con-

servation of Jµ. The excitations of the new complex scalar

field φ represent vortices in the phase of the original boson

b. The vortex current of b, defined by Kµ = 1
2π ǫ

µνλ∂ν∂λϑ
v ,

is given in this representation by the number current of φ as

Kµ = i(φ ∂µφ∗ − φ∗∂µφ) (in other words, the U(1) charge

of φ is the vortex number). We have also included a number

of potential energy terms which could appear in the action for

the vortex field φ.

We now apply this technique to the boson b2 in the O(4)
NLSM while leaving b1 untransformed (a nearly identical dis-

cussion can be had if one chooses to dualize b1 and leave b2
fixed instead). We therefore define a new complex scalar field

φ2,+ which creates a vortex in the phase of b2. From the dis-

cussion earlier in this section, and the results of Appendix B,

φ2,+ carries charge θ
2π under the U(1)c symmetry. We rep-

resent the conserved number current Jµ
2 of b2 using the non-

compact gauge field α2,µ.

At this point, the dual vortex description of theO(4) NLSM

with general angle θ takes the form

L =
1

g
|(∂µ − iAµ)b1|2 + |(∂µ − iα2,µ − i

θ

2π
Aµ)φ2,+|2 + . . .

− 1

κ2

(

1

2π
ǫµνλ∂να2,λ

)2

− 1

2π
ǫµνλAµ∂να2,λ , (4.13)

where the ellipses stand for possible potential energy terms.

The field φ2,+ carries charge of both the dual gauge field α2,µ

and the external field Aµ. The theta term is entirely responsi-

ble for the coupling of φ2,+ to Aµ. Finally, the constant κ2 is

given by κ2 = g
4ρ̄2

2
, where ρ̄2 is the absolute value of b2 in the

condensed phase.

Interestingly, exactly at the special value θ = π, it becomes

possible to replace our description of the theory in terms of

b1 and φ2,+ with a much more symmetric dual description

in terms of two types of vortices φ2,+ and φ2,−, as we now

explain. At θ = π, the vortex φ2,+ carries charge 1
2 of boson

b1. In this case the composite field

φ2,− = φ2,+b
∗
1 , (4.14)

carries charge − 1
2 of boson b1 (note that we are using ∗ to

represent anti-particles). The field φ2,− can be understood as

a vortex-anti-boson bound state, and at θ = π it is a natural

object to consider because of the fact that it carries the same

magnitude of charge as the original vortex φ2,+ (note that we

can always define φ2,− in this way for any value of θ, but

this field only transforms nicely under the symmetries of the

theory when θ = π).

Further justification for the introduction of the field φ2,−
can be obtained by recalling that at the special value θ = π,

the time-reversal symmetry of the O(4) NLSM is restored. It

follows that the vortex φ2,+ should have a well-defined trans-

formation under time-reversal when θ = π. Vortices should

transform into anti-vortices under the action of time-reversal,

since time-reversal is an anti-unitary symmetry. On the other

hand, the time-reversal partner of φ2,+ should have the same

U(1)c charge as φ2,+ in order to preserve the structure of the

symmetry group of the BTI. It turns out that φ∗2,− has just

the right properties to be the partner of φ2,+ under the time-

reversal operation.

We see then that at the special value θ = π, the dual

description of the O(4) NLSM is given most naturally in

terms of the two-component vortex field Φ2 = (φ2,+, φ2,−)
T ,

which transforms under the U(1)c and ZT
2 symmetries ac-

cording to

U(1)c : Φ2 → ei
χ
2 σz

Φ2 (4.15)

ZT
2 : Φ2(t,x) → σxΦ∗

2(−t,x) . (4.16)

In terms of the pair of vortex fields making up Φ2, the final

dual action takes the form

L =
∑

s=±

|(∂µ − iα2,µ − i
s

2
Aµ)φ2,s|2 + . . . (4.17)

− 1

κ2

(

1

2π
ǫµνλ∂να2,λ

)2

− 1

2π
ǫµνλAµ∂να2,λ ,

where again the ellipses stand for possible potential energy

terms. Note that the two species of vortex carry the same

charge of α2,µ, but opposite charge of Aµ.

As stated in Ref. 17, the original boson field b1 is now rep-

resented approximately by

b1 = φ2,+φ
∗
2,− , (4.18)

i.e., it is a bound state of a vortex (φ2,+) and an anti-vortex

(φ∗2,−). We should, however, take a moment to consider this
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equation carefully. Interestingly, the two sides of this equa-

tion do not have the same dimensions. The field b1 is dimen-

sionless, while the complex scalar fields φ2,+ and φ2,− carry

dimensions of (length)−
1
2 (this is true because the vortex cur-

rent Kµ has dimensions of (length)−2). A more precise ver-

sion of this equation would be to write

b1 ∼ g φ2,+φ
∗
2,− , (4.19)

where g is the NLSM coupling which has units of length, and

where an arbitrary dimensionless constant could be included

on the right-hand side of this equation.

The time-reversal breaking response of the O(4) NLSM at

θ = π can now be explored using the dual description in

Eq. (4.17). A gapped, time-reversal breaking phase is real-

ized when, for example, φ2,+ condenses and φ2,− becomes

gapped, or vice-versa. In order to induce this phase, one needs

to include in Eq. (4.17) a potential energy of the form

V (Φ2) = µΦ†
2σ

zΦ+ λ+|φ2,+|4 + λ−|φ2,−|4 , (4.20)

where λ± are both positive. The choice of which vortex con-

denses and which is gapped depends on the sign of µ. Note

that the term Φ†
2σ

zΦ explicitly breaks time-reversal symme-

try.

When φ2,+ condenses and φ2,− is gapped, we may (at low

energies) set φ2,− = 0 and φ2,+ = const. to find that the min-

imum energy configuration is realized when α2,µ = − 1
2Aµ,

which yields the response

Leff =
e2

4π
eµνλAµ∂νAλ , (4.21)

where we have restored the charge e. This response yields a

“half” bosonic quantum Hall effect with σxy = 1
2
2e2

h . If we

had instead condensed φ2,− and gapped out φ2,+, we would

have found the same response but with the opposite sign.

2. Method 2: Abanov-Wiegmann integration over fermions

The second method for calculating the time-reversal break-

ing response of the BTI surface uses a formula due to Abanov

and Wiegmann45 which allows one to express theO(4) NLSM

with theta term as a path integral over a set of auxiliary

fermions. The fermions in this construction must also carry

charge under the physicalU(1)c symmetry, so we can directly

couple the fermions to theU(1)c gauge fieldAµ and then inte-

grate out the fermions to deduce the electromagnetic response

of the system. A similar approach was used recently in Ref. 52

to calculate the electromagnetic response of a Bosonic Integer

Quantum Hall state in 4+1-d.

The starting point for this construction is a multi-

component fermionic field Ψ = (ψ1, ψ2, ψ3, ψ4)
T , where

each of ψa, a = 1, 2, 3, 4, is a two-component Dirac fermion

in 2+1-d. In what follows we use tensor product notation in

order to treat spinor and “isospace” indices on equal footing.

All indices are traced over in the evaluation of the fermion

path integral. The rightmost 2 × 2 matrix in the tensor prod-

ucts acts on the spinor indices of ψa, while the left and middle

matrices in the tensor products act on the isospace indices.

We define two sets of gamma matrices γµ and Γa by

γ0 = I⊗ I⊗ σy (4.22a)

γ1 = −iI⊗ I⊗ σz (4.22b)

γ2 = iI⊗ I⊗ σx , (4.22c)

and

Γ1 = σx ⊗ σx ⊗ I (4.23a)

Γ2 = σy ⊗ σx ⊗ I (4.23b)

Γ3 = σz ⊗ σx ⊗ I (4.23c)

Γ4 = I⊗ σy ⊗ I , (4.23d)

where I is the 2 × 2 identity matrix. In this case we can also

define a fifth matrix for the second set,

Γ5 = I⊗ σz ⊗ I . (4.24)

The first set of gamma matrices obey a Clifford Algebra in

Lorentz signature, {γµ, γν} = 2ηµνI8×8, and are used to con-

struct the derivative operator for the Dirac action. The second

set obeys a Euclidean Clifford Algebra, {Γa,Γb} = 2δabI8×8,

and is used to construct the mass terms which couple Ψ to the

O(4) field N.

According to Ref. 45, a fermionic action of the form

Lf = Ψ̄

(

i/∂ − cos(ν)MΓ5 − sin(ν)M
4
∑

a=1

NaΓa

)

Ψ ,

(4.25)

with large mass M > 0 will produce, after integration over

the fermions, anO(4) NLSM of the form of Eq. (4.1) with the

theta angle given by

θ = π

(

1− 9

8
cos(ν) +

1

8
cos(3ν)

)

. (4.26)

Taking ν = π
2 gives θ = π. The evaluation of this fermion

path integral is not completely straightforward, and so we re-

fer the reader to Ref. 45 as well as Ref. 53 for explanations of

this calculation.

If we set ν = π
2 − δ for small δ, then the action takes the

form

Lf = Ψ̄

(

i/∂ − (Mδ)Γ5 −M

4
∑

a=1

NaΓa

)

Ψ . (4.27)

Since the only time-reversal invariant values of θ are multiples

of π, this corresponds to adding a small time-reversal breaking

perturbation to the action (we would now get θ ≈ π(1 − 3
2δ)

after integrating out the fermions). We now calculate the re-

sponse of the theory in the presence of this perturbation, and

then take the limit δ → 0.

Before we proceed with the calculation, we mention the fol-

lowing puzzle. The calculation in Ref. 45 is controlled by an

expansion in powers of M−1, so we must take M to be large
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for this expansion to make sense. On the other hand, the cou-

pling constant g of the O(4) NLSM is related to M via a for-

mula of the form M ∝ 1/g. For M large we seem to obtain

an O(4) NLSM in the ordered (small g) phase, whereas we

are interested in studying the disordered (large g) phase. It

is therefore not immediately clear why the calculation in this

subsection agrees with the response calculation of Ref. 17 us-

ing the dual vortex theory, which we reviewed in the previ-

ous subsection. We resolve this puzzle in Appendix D, where

we use the Abanov-Wiegmann formula to argue that the the-

ory Sf =
∫

d3x iΨ̄/∂Ψ of four massless fermions ψa must

possess exactly the same topological response as the original

O(4) NLSM at θ = π. In the rest of this section we will there-

fore calculate the response of the fermions ψa to the time-

reversal breaking mass term −(Mδ)Ψ̄Γ5Ψ. According to the

arguments in Appendix D, this response (or at least its topo-

logical part), should be identical to the response of the O(4)
NLSM at θ = π.

Before we can do this we need to determine the charges

qa of the four Dirac fermions ψa. These charges should be

chosen so that the coupling term
∑4

a=1N
aΨ̄ΓaΨ is invariant

under the U(1)c symmetry. Each fermion ψa is assumed to

transform as

U(1)c : ψa → eiqaχψa . (4.28)

The transformation of theO(4) field under the U(1)c symme-

try was described in Eq. (4.6). Using the relation

b1 = N4 + iN3 (4.29)

b2 = −N2 + iN1 , (4.30)

and the explicit form of the matrices Γa, we find that in order

for the term
∑4

a=1N
aΨ̄ΓaΨ to be invariant under U(1)c, the

charges qa must satisfy the matrix equation







−1 0 0 1
0 −1 1 0
−1 1 0 0
0 0 −1 1













q1
q2
q3
q4






=







1
1
−1
1






. (4.31)

This matrix has a null vector (1, 1, 1, 1)T , so the solution of

the system is not unique. One possible way to parameterize a

general solution is







q1
q2
q3
q4






=







q̄
−1 + q̄
q̄

1 + q̄






, (4.32)

where the parameter q̄ is completely arbitrary because of the

non-uniqueness of the solution. In what follows, we keep q̄
to be some arbitrary number. Importantly, when we calculate

a physical quantity pertaining to the O(4) NLSM we will see

that the answer is independent of q̄.

We now define the diagonal matrix of charges Q =
diag(q1, q2, q3, q4)⊗ I, given explicitly by,

Q = q̄I⊗ I⊗ I+
1

2
(σz ⊗ σz ⊗ I− σz ⊗ I⊗ I) , (4.33)

(note that it acts as the identity on the spinor indices of the

fermions) and then use this matrix to couple Ψ toAµ to obtain

the action

Lf,gauge = Ψ̄
(

i/∂ − (Mδ)Γ5 (4.34)

− M

4
∑

a=1

NaΓa +Q /A

)

Ψ .

We now integrate out the fermions and collect the lowest order

terms in derivatives involving only Aµ, because those terms

will give the dominant contribution to the electromagnetic re-

sponse. For completeness we give a basic outline of this cal-

culation below.

Since we are currently only interested in the electromag-

netic response of the fermions, we set Na = 0 for the re-

sponse calculation. Integrating out Ψ then gives

Seff [Aµ] = −i ln det
(

i/∂ − (Mδ)Γ5 +Q /A
)

= −iTr ln
(

i/∂ − (Mδ)Γ5 +Q /A
)

, (4.35)

where Tr[. . . ] indicates a trace over spacetime, spinor, and

isospace indices. We now write

Seff [Aµ] = −iTr ln(i/∂ − (Mδ)Γ5) (4.36)

− iTr ln
[

1 + (i/∂ − (Mδ)Γ5)−1(Q /A)
]

,

and expand the second term using ln(1 + x) =
∑∞

n=1(−1)n+1 xn

n .

Here is a technical point. The effective action we wrote

down is divergent for δ → 0. Therefore a procedure is needed

to define the effective action for δ = 0. Let us indicate

the dependence of the effective action on δ by writing it as

Seff [Aµ, δ]. We follow Ref. 1 and define the renormalized

effective action at δ = 0 by

SR
eff [Aµ, 0] = Seff [Aµ, 0]− lim

δ→∞
Seff [Aµ, δ] . (4.37)

The second term in this expression also has a divergent term

which cancels the divergence from the first term. Now as

δ → ∞, the second term gives a finite contribution, which

is a Chern-Simons term. We find that

SR
eff [Aµ, 0] =

1

2
trI [Q

2Γ5]
sgn(δ)

4π

∫

d3x eµνλAµ∂νAλ ,

(4.38)

where trI [. . . ] denotes a trace over isospace indices only (the

trace over spacetime and spinor indices has already been per-

formed). Since 1
2 trI [Q

2Γ5] = −1, the final response is given

by

LR
eff = −sgn(δ)

e2

4π
ǫµνλAµ∂νAλ , (4.39)

where we have restored the charge e. The answer depends on

sgn(δ) and not sgn(δM) because the massM is assumed pos-

itive in the Abanov-Wiegmann method. Note that the result is

independent of q̄ (the arbitrary offset to the charges of the four

fermions ψa), which is expected because we have calculated

a physical quantity related to the O(4) NLSM at θ = π.
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C. Connection to the dual description of the BTI surface in

terms of N = 2 QED3

In this section we briefly comment on the relationship be-

tween the descriptions of the BTI surface theory discussed

above: (i) the dual vortex description, (ii) the description in

terms of Abanov-Wiegmann fermions, and (iii) the recently

proposed dual description of the BTI surface in terms of

2 + 1-d Quantum Electrodynamics with two flavors of Dirac

fermion, also known asN = 2 QED3
40 (a quasi-1D derivation

of this dual description was later given in Ref. 41).

Before writing down the dual description of Ref. 40, we

first remind the reader that in their original study of the BTI

in Ref. 17, Vishwanath and Senthil assigned an additional

“pseudo-spin” quantum number to the bosons b1 and b2 for

convenience, with b1 carrying spin 1 and b2 carrying spin −1.

We refer to the U(1) symmetry associated with pseudo-spin

conservation asU(1)s. Under this symmetry the bosons trans-

form as

U(1)s : b1 → eiξb1, (4.40a)

b2 → e−iξb2 . (4.40b)

The fermions in the N = 2 QED3 description of the BTI

surface are charged under this U(1)s symmetry.

The N = 2 QED3 description of the BTI surface consists

of two flavors of Dirac fermions, χ1 and χ2, which can be

combined into one multi-component spinor X = (χ1, χ2)
T .

These fermions do not carry any U(1)c charge, but χ1 carries

spin 1 while χ2 carries spin −1. The time-reversal symmetry

of the BTI acts onX like a particle-hole transformation. Both

fermions also carry charge 1 of a dual non-compact gauge

field αµ, whose curl represents the total number current Jµ
tot

of the bosons on the BTI surface via Jµ
tot =

1
2π ǫ

µνλ∂ναλ. The

dual Lagrangian takes the form

L =X̄(i(I⊗ γµ)∂µ + (σz ⊗ γµ)As
µ + (I⊗ γµ)αµ)X

− 1

2π
ǫµνλAc

µ∂ναλ , (4.41)

where γµ, are the usual 2 × 2 gamma matrices for 2 + 1 di-

mensional Dirac fermions (e.g. the matrices from Eq. (4.22)

without the additional identity matrices in the tensor product),

X̄ = X†(I ⊗ γ0), Ac
µ is the external electromagnetic field

(denoted simply by “Aµ” in the other sections of this paper),

and As
µ is a new external U(1) gauge field which probes the

U(1)s symmetry.

We now speculate on the relation between the fermions χ1

and χ2, the vortices φ1,± and φ2,± from the dual vortex de-

scription of the BTI surface, and the four Abanov-Wiegmann

fermions ψa. Out of the four vortices φ1,± and φ2,±, we may

form four composite vortices φ1,±φ2,± by taking every pos-

sible combination of “+” and “−” vortices of species 1 and

2. As discussed in Ref. 17, and as we show in Appendix C,

when θ = π a bound state of a vortex in b1 and a vortex in

b2 is a fermion. This means that the four composite vortices

φ1,±φ2,± are in fact fermions. The charges and spins of these

four composite vortices can be easily determined and they are

shown in Table I. The spins sa of the four Abanov-Wiegmann

φ1,+φ2,+ φ1,+φ2,− φ1,−φ2,+ φ1,−φ2,−

q 1 0 0 -1

s 0 -1 1 0

TABLE I. Charges and spins of the composite vortices of the form

φ1,±φ2,±. As was discussed in Ref. 17, and as we show in Ap-

pendix C, a bound state of a vortex in b1 and a vortex in b2 is a

fermion.

ψ1 ψ2 ψ3 ψ4

q 0 -1 0 1

s 1 0 -1 0

TABLE II. Charges and spins of the fermions ψa used in the Abanov-

Wiegmann formula for the O(4) NLSM (ignoring the arbitrary off-

sets q̄ and s̄ discussed in the main text).

fermions ψa can also be calculated, using the same method

used to determine their charges qa (just like the charges, the

spins are also determined only up to an arbitrary offset s̄,
which we ignore here). The charges and spins of the four

Abanov-Wiegmann fermions are shown in Table II. Interest-

ingly, each composite vortex has precisely the same charge

and spin as one of the Abanov-Wiegmann fermions.

Since the composite vortices have precisely the same

charges and spins as the Abanov-Wiegmann fermions, and

since the composite vortices in the O(4) NLSM at θ = π
are known to be fermions, we conjecture that these objects

should be identified with each other. Furthermore, we pro-

pose that the fermions χ1 and χ2 from the N = 2 QED3 de-

scription can be identified with ψ1 and ψ3, respectively, which

in turn correspond to the composite vortices φ1,−φ2,+ and

φ1,+φ2,−. The particle-hole-like transformation of χ1 and χ2

under time-reversal then follows immediately from the trans-

formations of the vortices under time-reversal. Also, since

the individual vortices φI,± couple to the non-compact gauge

fields αI,µ, where the conserved current of boson bI is given

by Jµ
I = 1

2π ǫ
µνλ∂ναI,λ, the composite vortices are coupled

to the total gauge field αµ = α1,µ + α2,µ, whose curl repre-

sents the total boson number current. This is the exact same

gauge field which χ1 and χ2 couple to in the N = 2 QED3

description. It would be an interesting challenge for future

investigations to provide a derivation of the N = 2 QED3 de-

scription of the BTI surface directly from the description in

terms of an O(4) NLSM at θ = π. Such a derivation would

provide the details necessary to support the picture we have

presented here.

D. Symmetry-breaking phases accessible from the dual theory

In this section we will complete our discussion, following

Ref. 17, of the symmetry-breaking phases of the surface of the

BTI which are accessible from the dual vortex description of

theO(4) NLSM at θ = π. We have already seen that condens-

ing just one vortex, say φ2,+, and gapping out the other one

leads to a phase which breaks time-reversal symmetry. In that
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case it was necessary to add the time-reversal breaking term

Φ†
2σ

zΦ2 to the Lagrangian to simultaneously gap out one vor-

tex and force the other vortex to condense.

There are two other basic options for condensing and/or

gapping out the vortices in the dual theory. These options are:

(i) condense both vortices, and (ii) gap both vortices. Both

options lead to a superfluid phase which can be understood

as a phase in which one of the original fields b1 or b2 con-

denses. To identify which boson is condensing in each case,

it is convenient to separately gauge the U(1) symmetries cor-

responding to b1 → eiχb1 and b2 → eiχb2. We couple b1 to

the external field A1,µ and b2 to the external field A2,µ. In

this case the dual theory takes the form (recall that φ2,± carry

charge ± 1
2 of the boson b1)

L =
∑

s=±

|(∂µ − iα2,µ − i
s

2
A1,µ)φ2,s|2 + . . .

− 1

κ2
(ǫµνλ∂να2,λ)

2 − 1

2π
ǫµνλA2,µ∂να2,λ . (4.42)

Consider first the phase obtained by condensing both φ2,+
and φ2,−. To be precise, we consider the condensation

〈φ2,+〉 = 〈φ2,−〉∗ = v, which does not break ZT
2 . In this

case we get a Higgs term for the gauge field α2,µ and the ex-

ternal field A1,µ. The gauge field α2,µ, which represents the

Goldstone boson of a condensate of b2, is therefore gapped

and can be safely integrated out. The resulting action contains

only a Higgs term for A1,µ, and so the phase where both φ2,+
and φ2,− condense can be identified with the phase where b1
condenses.

Next consider the second case in which φ2,+ and φ2,− are

both gapped. We can then set φ2,+ and φ2,− equal to zero to

study the low energy properties of this phase. At this point the

gauge field α2,µ can be integrated out to give a Higgs term for

A2,µ, and so the phase where both φ2,+ and φ2,− are gapped

can be identified with the phase in which b2 condenses.

Finally, we note that the dual vortex theory can be driven

into either of these two phases by a potential that does not

break the U(1)c or ZT
2 symmetries, which means that the su-

perfluid phase of the BTI surface spontaneously breaks the

U(1)c symmetry (and it does not break the time-reversal sym-

metry).

E. Symmetry-allowed perturbations

In this section we carefully investigate the effects of

symmetry-allowed perturbations on the BTI surface. This is

important as we want to understand the stability of the gap-

less phase of the surface, and hence the related 2+1-d semi-

metal, as explicitly as possible. In Ref. 17 Vishwanath and

Senthil initially studied the O(4) NLSM at θ = π assum-

ing a larger symmetry group consisting not only of U(1)c
charge conservation and ZT

2 time-reversal, but also an addi-

tional U(1)s “pseudo-spin” conservation symmetry and a Zs
2

“spin-flip” symmetry. The action of the U(1)s symmetry on

the bosons bI was already given in Eq. (4.40). The Zs
2 spin-

flip symmetry acts as

Zs
2 : b1 ↔ b2 . (4.43)

In the presence of these additional symmetries, interspecies

tunneling terms of the form b∗1b2 + b∗2b1, as well as chemical

potential terms of the form µ1|b1|2 + µ2|b2|2 (with µ1 6= µ2),

cannot be added to the Lagrangian. However, the BTI is sup-

posed to be protected by U(1)c and ZT
2 symmetry alone. It

is therefore essential to understand the effects that such terms

can have on the O(4) NLSM at θ = π, since we are allowed

to add these terms to the Lagrangian in the generic case when

the extra U(1)s and Zs
2 symmetries are broken.

Interspecies tunneling and chemical potential terms can

have a drastic effect on the physics of the O(4) NLSM with

theta term. However, we will show that these terms always

drive the system into a symmetry-breaking phase. To show

this we make use of the commutation relations of the O(4)
NLSM fields in the canonical formalism. Because of the con-

straint between the bosonic fields bI , these commutation rela-

tions must be derived using the Dirac Bracket formalism, and

we review their derivation in Appendix A.

There is a simple way to understand why interspecies tun-

neling and chemical potential terms can have a strong effect

on the physics of theO(4) NLSM with theta term. When these

terms are strong, they can drive the fields into a configuration

in which the theta term vanishes identically. This is easiest

to see when the theta term is written in Hopf coordinates on

the the sphere S3. In Hopf coordinates the fields b1 and b2
are parameterized as b1 = sin(η)eiϑ1 , b2 = cos(η)eiϑ2 with

η ∈ [0, π/2], and ϑ1, ϑ2 ∈ [0, 2π), and the theta term takes

the form

Sθ[U ] =
1

2π2

∫

d3x cos(η) sin(η)ǫµνλ∂µη∂νϑ1∂λϑ2 .

(4.44)

The interspecies tunneling and chemical potential terms take

the form

b∗1b2 + b∗2b1 = 2 cos(η) sin(η) cos(ϑ1 − ϑ2) , (4.45)

and

µ1|b1|2 + µ2|b2|2 = µ1 cos
2(η) + µ2 sin

2(η)

= µ1 + (µ2 − µ1) sin
2(η) . (4.46)

Consider the interspecies tunneling term. When it is strong,

the lowest energy configurations of the O(4) field are those

configurations which have ϑ1 = ϑ2 + nπ for some integer

n which is even or odd depending on the sign of the coeffi-

cient of this term. It is easy to see that the theta term vanishes

identically on this kind of field configuration. The analysis of

the chemical potential term is even simpler. Depending on the

sign of µ2 − µ1, the lowest energy configurations are those

with sin(η) = 0 or sin(η) = 1. In either case η is a con-

stant and so the theta term completely vanishes. This analysis

makes it clear that a more thorough understanding of the ef-

fects of symmetry-allowed perturbations on the BTI surface is

needed.
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1. Interspecies tunneling

We now show that interspecies tunneling terms such as

b∗1b2 + b∗2b1, and even interaction terms such as (b∗1b2)
n +

(b∗2b1)
n for n ≥ 1, do not condense (i.e., have zero expec-

tation value) in any time-reversal invariant state |Ψ〉. This

means that interspecies tunneling terms can only condense

in the ground state of the system if that ground state breaks

time-reversal symmetry. It also means that weak interspecies

tunneling terms should have a negligible effect on the gapless

time-reversal invariant ground state of the O(4) NLSM with

θ = π.

To show that these expectation values vanish, we canon-

ically quantize the theory and study the (equal-time) com-

mutation relations of the operators bI(x), their hermitian

conjugates b†I(x), and their canonically conjugate momenta.

We discuss the canonical quantization of this system in Ap-

pendix A. The only commutation relation we will need here

is

[bI(x), πJ (y)] = i

(

δIJ − 1

2
bI(x)b

†
J (y)

)

δ(2)(x− y) ,

(4.47)

where πI = ∂L/∂(∂tbI) is the momentum conjugate to bI .

Consider this commutation relation first in the case where I =
J , say for I = J = 1. We have

[b1(x), π1(y)] = i

(

1− 1

2
b1(x)b

†
1(y)

)

δ(2)(x−y) . (4.48)

In the Hilbert space the action of the time-reversal symme-

try ZT
2 is represented by an anti-unitary operator T , obeying

T 2 = 1, which acts on the boson operators bI(x) as

T bI(x)T −1 = bI(x) . (4.49)

Then we must have

T πI(x)T −1 = −πI(x) , (4.50)

in order for the commutation relations to be invariant under

conjugation by T . Now suppose we have a state |Ψ〉 of the

system which is time-reversal invariant, i.e., T |Ψ〉 = |Ψ〉.
Then the expectation value 〈Ψ|O|Ψ〉 of any operator O which

is odd under time-reversal, T OT −1 = −O, must vanish.

We now apply this reasoning to the off-diagonal commuta-

tion relation

[b1(x), π2(y)] = −i1
2
b1(x)b

†
2(y)δ

(2)(x − y) . (4.51)

If we take the expectation value of both sides of this equation

in the state |Ψ〉, then the expectation value of the left-hand

side vanishes since all operators on the left-hand side are odd

under the action of T . We are left with the equation

0 = −i1
2
〈Ψ|b1(x)b†2(y)|Ψ〉δ(2)(x− y) , (4.52)

and integrating both sides of this equation over y yields the

final result

〈Ψ|b1(x)b†2(x)|Ψ〉 = 0 . (4.53)

So we find that the operator b1(x)b
†
2(x) has zero expectation

value in any time-reversal invariant state |Ψ〉. Going further,

we may first multiply both sides of Eq. (4.51) by any time-

reversal invariant operator Õ(x), and then take an expectation

value in |Ψ〉 to find that

〈Ψ|Õ(x)b1(x)b
†
2(x)|Ψ〉 = 0 . (4.54)

For example we could take Õ(x) = (b1(x)b
†
2(x))

n−1 to find

that the expectation value of (b1(x)b
†
2(x))

n vanishes for any

n ≥ 1. We can conclude from this analysis that if interspecies

tunneling and interaction terms of the form (b∗1b2)
n+(b∗2b1)

n

do condense in the ground state of the system, then that

ground state must break time-reversal symmetry. However,

our analysis is not limited to just these terms, since there are

many more possible choices for the form of the operator Õ(x)
which we are allowed to insert.

2. Chemical potential

We now discuss the effects of the chemical potential term

on the quantum theory. In a theory of two independent com-

plex scalar fields, a chemical potential term, combined with

suitable quartic terms in the potential, can have many possible

effects on the fields in the theory. For example, both scalar

fields could become gapped, or they could both condense, or

one scalar field could become gapped and the other scalar field

could condense. But the O(4) NLSM is not a theory of two

independent complex scalar fields. Instead, the fields b1 and

b2 obey the very important constraint
∑

I |bI |2 = 1. In fact,

with the help of the constraint, any chemical potential term

can be re-written as

µ1|b1|2+µ2|b2|2 =
1

2
(µ1+µ2)+

1

2
(µ1−µ2)(|b1|2−|b2|2) .

(4.55)

This result indicates that for the O(4) NLSM, the effect of a

general quartic potential of the form

V (b1, b2) = µ1|b1|2 + µ2|b2|2 + λ1|b1|4 + λ2|b2|4 , (4.56)

is to cause one of the fields b1 or b2 to condense and to cause

the other field to become gapped. The choice of which of b1
or b2 is condensed and which is gapped depends only on the

sign of µ1 − µ2 (assuming that λ1 and λ2 are positive). In

particular, it seems that it is impossible to write down any po-

tential which could cause both b1 and b2 to condense. Further

evidence for this conclusion can be obtained from an analysis

of the commutation relations of the theory, as we now show.

Consider a state |Φ〉 which represents a superfluid ground

state of the O(4) NLSM for the boson b1. In such a state

the U(1) symmetry b1 → eiχb1 is spontaneously broken, and

〈Φ|b1|Φ〉 6= 0. In general, the state |Φ〉 is not an eigenstate

of the operator b1, or even of the phase of b1 (this can be seen

from the form of the symmetry broken ground state for the

phase excitations of an ordinary complex scalar field shown in

Chapter 11 of Ref. 54, for example). Below we show that in

the special case where |Φ〉 is an eigenstate of b1, it is possible
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to prove that 〈Φ|b2|Φ〉 = 0. For the general case where |Φ〉 is

not an eigenstate of b1, we must instead rely on the qualitative

argument presented above, and another argument which we

present below which is based on the expression for b2 in terms

of the vortices φ1,± in b1 (Eq. (4.19) with the indices 1 and 2
swapped).

For now we assume that |Φ〉 is an eigenstate of the operators

b1(x) and b†1(x), and that b1(x)|Φ〉 = α|Φ〉 and b†1(x)|Φ〉 =
β|Φ〉, where α and β are complex numbers which do not de-

pend on x. The relation 〈Φ|b1(x)|Φ〉 = 〈Φ|b†1(x)|Φ〉∗ implies

that β = α∗. Now assume that α 6= 0, and take the expecta-

tion value of Eq. (4.51) in the state |Φ〉. The left-hand side

vanishes and we find

0 = −iα
∗

2
〈Φ|b†2(y)|Φ〉δ(2)(x− y) . (4.57)

Since we assumed that α 6= 0, we are forced to conclude that

〈Φ|b†2(x)|Φ〉 = 0, which shows that b2 cannot condense in

an eigenstate of b1 (which we have argued is a representative

ground state of the superfluid phase of b1). Similarly, we can

show that b1 cannot condense in an eigenstate of b2.

Another intuitive way of seeing that b2 cannot condense

in a superfluid ground state of b1 is to recall that b2 can

be expressed in terms of the two kinds of vortices in b1 as

b2 ∼ φ1,+φ
∗
1,−. In a superfluid ground state of b1 we expect

that the vortices φ1,± in b1 are gapped (i.e., not condensed),

which means that we should also have 〈b2〉 = 0 in such a

state.

We conclude that the main effect of a chemical poten-

tial term (combined with suitable quartic terms) is to spon-

taneously break the U(1)c symmetry, since this term will con-

dense one of b1 or b2 and gap out the other one. Our analysis

of the commutation relations confirms that the vacuum expec-

tation value of one boson always vanishes in a state which

represents a superfluid ground state of the other boson.

F. Symmetry-preserving state with topological order

In Ref. 17 Vishwanath and Senthil showed that it was

possible for the surface phase of the BTI to retain the full

U(1)c ⋊ ZT
2 symmetry while gapped, but at the expense of

having intrinsic topological order, and they went on to de-

rive a specific topologically ordered state for the BTI sur-

face. That same topologically ordered state was constructed

in Ref. 55 using a coupled wires construction consisting of

Bosonic Integer Quantum Hall effect edge modes decorated

with Toric Code/Z2 topological order (Abelian Chern-Simons

theory with K-matrix given by ±2σx) edge modes. In this

section we briefly review the construction of this topologically

ordered state via vortex condensation in theO(4) NLSM with

θ = π as shown in Ref. 17.

Recall the interpretation of the theta term that was derived

in Ref. 42 (see also our Appendix C). According to Ref. 42,

in the O(4) NLSM with θ = π, a braiding process in which a

vortex in the phase of b1 makes a full circuit around a vortex

in the phase of b2 results in an overall phase of eiπ in the path

integral for the theory. In other words, the vortex in b1 and the

vortex in b2 can be regarded as anyons with a mutual statistical

angle of π.

In the O(4) NLSM at θ = π, all quasi-particles with non-

trivial statistics can be built just from the fundamental vortices

φ1,+ and φ2,+. Indeed, recall that the other two vortices φ1,−
and φ2,− should really be understood as bound states of a vor-

tex and a boson: φ1,− ∼ φ1,+b
∗
2 and φ2,− ∼ φ2,+b

∗
1, and are

hence not topologically distinguishable from φ1,+ and φ2,+.
This means that the two vortices φ1,+ and φ2,+ should be suf-

ficient building blocks to describe any topologically ordered

states derived from this system. According to the arguments

given in the previous paragraph, these two vortices have a mu-

tual statistical angle of π, i.e., they are mutual semions. Also,

a composite of a vortex with itself, such as (φ1,+)
2, should

be regarded as trivial (topologically equivalent to the vacuum

quasi-particle), since that object has the exact same quantum

numbers as the boson b2 and braids trivially with all other

quasi-particles. This property is partly responsible for the Z2

structure of the topological order discussed below.

We can now consider condensing some field O which is a

composite of the vortices. Standard reasoning then tells us

that any quasi-particles that have trivial mutual statistics with

O will survive as anyons in the state obtained by condensing

O. In Ref. 17 Vishwanath and Senthil construct a topologi-

cally ordered phase for the surface of the BTI by choosing to

condense O = φ1,+φ1,− in such a way that 〈O〉 is real. Since

ZT
2 maps O → O∗, this condensation does not break time-

reversal symmetry. In addition, O is invariant under U(1)c,
so the resulting phase actually retains the full U(1)c ⋊ ZT

2

symmetry of the BTI.

We see that both φ1,+ and φ2,+ have trivial mutual statistics

with O, so these vortices both survive as quasi-particles in

the condensed state. The condensed state therefore has quasi-

particle content (recall that fusing a vortex with itself gives a

trivial excitation)

{1, φ1,+, φ2,+, φ1,+φ2,+} , (4.58)

where “1” is the trivial (vacuum) quasi-particle and φ1,+φ2,+
is the composite of the two vortices φ1,+ and φ2,+. The

composite vortex φ1,+φ2,+ is actually a fermion. The ex-

change and mutual statistics of these quasi-particles is shown

in Table III. These quasi-particles with the braiding statis-

tics shown in Table III form a Z2 topological order which

is characterized by a K-matrix K = 2σx and charge vector
~t = (1, 1)T . In a purely 2D system which admits an edge to

the vacuum, such a system would exhibit a charge Hall con-

ductance of~t·(K−1~t) = 1 (it is non-zero and therefore breaks

time-reversal symmetry), which hints that the topologically-

ordered state on the surface of the BTI realizes time-reversal

symmetry in a way which is forbidden in a real 2D system17.

V. THE BOSONIC SEMI-METAL MODEL: TWO O(4)
NLSM’S WITH θ = ±π

In this section we introduce our Bosonic Semi-Metal

(BSM) model. The model is constructed from two copies of

the O(4) NLSM with theta term, and we take one copy to
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φ1,+ φ2,+ φ1,+φ2,+

φ1,+ 0 π π

φ2,+ π 0 π

φ1,+φ2,+ π π π

TABLE III. Exchange and mutual statistics for the quasi-particles

contained in the topologically ordered surface phase of the BTI

which is accessed by condensing the composite field O = φ1,+φ1,−.

The diagonal entries in the table (exchange statistics) are the phase

for a process in which two identical particles exchange positions (so a

phase of π represents fermions), while the off-diagonal entries (mu-

tual statistics) are the phase picked up when a particle of one type

makes a complete circuit around a particle of a different type.

have θ = π and the other copy to have θ = −π. The intu-

ition behind the construction of our model is as follows. Re-

call that the surface theory of the 3D ETI is a single massless

2+1-d Dirac fermion. The two-cone DSM phase in 2+1-d can

then be viewed as being constructed from two copies of the

surface theory of the 3D ETI, with the two copies separated

in momentum space and having opposite helicity. For our

BSM model we instead take two copies of the O(4) NLSM

with |θ| = π, (i.e., two copies of the surface theory of the

BTI), but we take the two copies to have opposite signs of θ,

which is the bosonic analog of the helicity of the 2+1-d Dirac

fermion. One way to see this is in the construction by Abanov

and Wiegmann in Ref. 45, where the helicity of the auxiliary

fermions directly determines the sign of the theta angle in the

resulting O(4) NLSM.

This section is broken up into several subsections as fol-

lows. We first define our BSM model and the transformations

of the fields in the model under U(1)c charge conservation

symmetry, U(1)t “translation” symmetry (to be defined), ZT
2

time-reversal symmetry, andZI
2 inversion symmetry. We then

discuss the dual description of our BSM model and derive the

action of the different symmetries on the vortex fields in the

dual theory. Finally, we calculate the time-reversal and inver-

sion breaking electromagnetic responses of our BSM model

(again using two different methods), and compare the result

with that of the 2+1-d DSM model discussed in Ref. 7, and re-

viewed in Sec. III. We then discuss the stability of the model

and find that the composite ZT I
2 symmetry again plays an im-

portant role. Finally, we close the section with a discussion

of phases with Z2 and Z2 × Z2 topological order which can

be accessed from our BSM model by condensing a composite

of the vortices appearing in the dual description of the model.

We show that these phases break either the time-reversal or

the inversion symmetry of the BSM model. This is interest-

ing because the gapped phases which do not have topological

order also must break one of these two symmetries.

A. BSM model and symmetries

Our BSM model consists of two copies of an O(4) NLSM

with theta term, called “A” and “B” copies, with the theta an-

gles for the two copies being θA = π and θB = −π. We write

the model in terms of SU(2) matrices UA and UB , which

are each expressed in terms of bosonic fields bI,A and bI,B,

I = 1, 2, as in Eq. (4.5). The action for the system is

S =

∫

d3x

[

1

2g
tr[∂µU †

A∂µUA + (A→ B)]

− πSθ[UA] + πSθ[UB]] , (5.1)

where the explicit form of the theta term was given in

Eq. (4.4).

The fields in the BSM model transform underU(1)c charge

conservation symmetry, U(1)t “translation” symmetry, ZT
2

time-reversal symmetry, and ZI
2 inversion symmetry. In this

section we explain the action of each of these symmetries on

the fields bI,A and bI,B in the model. Just as for the DSM,

the composite symmetry ZT I
2 , consisting of a time-reversal

transformation followed by an inversion transformation, will

be important for guaranteeing the stability of the gapless phase

of our model.

The fields transform under the U(1)c symmetry as

U(1)c : bI,A/B → eiχbI,A/B . (5.2)

This just indicates that each bosonic field bI,A/B carries

charge 1 of the external gauge field Aµ. Under the “trans-

lation” U(1) symmetry, U(1)t, the fields transform as

U(1)t : bI,A → eiξbI,A (5.3a)

bI,B → e−iξbI,B . (5.3b)

To explain the physical meaning of this U(1) translation

symmetry, we need to imagine that our BSM model has been

obtained in the low-energy continuum limit of a bosonic lat-

tice model, as we now explain. Let us assume that the fields

bI,A and bI,B arise from the low-energy continuum limit of a

bosonic lattice model, and that they are related to the lattice

boson operators in a way similar to the DSM case illustrated

in Eq. (3.8). In other words, the combinations eik+bI,A and

eik−bI,B appear in the expression for the lattice boson opera-

tor, indicating that the continuum fields bI,A and bI,B are lo-

cated at positions k± = ±(Bx, By) in momentum space. We

provide an explicit example of such a model using a coupled-

wire construction in the next section.

To model this momentum shift, the kinetic term in the La-

grangian for the fields bI,A and bI,B will feature a minimal

coupling to the vector field Bµ (and just as in the DSM case,

we also allow for a relative energy offset given by Bt). The

translation properties of the fields bI,A and bI,B can then be

thought of in terms of carrying charges 1 and −1, respectively,

of the field Bµ, and the action is invariant under the U(1)t
gauge transformation in which the bosonic fields transform

according to Eq. (5.3) while Bµ → Bµ + ∂µξ. This is the

physical origin of the U(1)t symmetry56.

We now discuss the discrete symmetries ZI
2 , ZT

2 and ZT I
2 .

We take ZI
2 , and ZT

2 to act on the bosonic fields as

ZI
2 : bI,A(t,x) → bI,B(t,−x) (5.4)

ZT
2 : bI,A(t,x) → bI,B(−t,x) , (5.5)
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and vice-versa. The composite symmetry ZT I
2 then acts as

ZT I
2 : bI,A(t,x) → bI,A(−t,−x) , (5.6)

with an identical transformation for bI,B(t,x). In the canoni-

cal formalism, the action of time-reversal is represented by the

anti-unitary operator T , and the action of inversion is repre-

sented by the unitary operator I. From the symmetry transfor-

mations defined above we can see that these operators satisfy

the identities T 2 = 1, I2 = 1, and [T , I] = 0, which implies

that (T I)2 = 1 as well.

Just as in the fermionic DSM case, the compositeZT I
2 sym-

metry is important for ensuring the local (in momentum space)

stability of each O(4) NLSM copy in our BSM model. We

will have more to say on this subject later in this section, but

for now we note the following important property of the ZT I
2

symmetry for the BSM model. In the BSM model it is actu-

ally the ZT I
2 symmetry which fixes the theta angles θA and

θB to be multiples of π, just as the ZT
2 symmetry guaranteed

this property for the BTI surface theory. Therefore, from this

general argument, the gaplessness of the BSM model (which

can occur only when the theta angles are odd multiples of π)

depends crucially on this symmetry.

B. Dual vortex description of the BSM model

We now turn to the dual vortex description of our BSM

model, using the dual description of one O(4) model which

we reviewed in Sec. IV. We choose to employ the dual vortex

description in terms of vortices in b2,A and b2,B, although a

description starting in terms of vortices in b1,A and b1,B is also

possible. For the “A” NLSM, vortices in b2,A are represented

by the two-component field Φ
(A)
2 = (φ

(A)
2,+, φ

(A)
2,−)

T . For the

“B” copy of the NLSM, vortices in b2,B are represented by

the two-component field Φ
(B)
2 = (φ

(B)
2,+, φ

(B)
2,−)

T .

As discussed in Sec. IV, and as we explicitly prove in Ap-

pendix B, a vortex in the phase of one boson binds a charge

of θ
2π of the other boson. This result holds for any U(1) sym-

metry under which the bosons are charged; for example, the

U(1)c and U(1)t symmetries in our case. This means that

under the U(1)c and U(1)t symmetries, the field Φ
(A)
2 trans-

forms as

U(1)c : Φ
(A)
2 → ei

χ
2 σz

Φ
(A)
2 (5.7)

U(1)t : Φ
(A)
2 → ei

ξ
2σ

z

Φ
(A)
2 . (5.8)

On the other hand, the “B” copy of the O(4) NLSM in our

BSM model has theta angle θB = −π. The elementary

vortices φ
(B)
1,+ and φ

(B)
2,+ now both carry charges − 1

2 and 1
2

under the U(1)c and U(1)t symmetries, respectively. The

“−” vortices must now be defined as φ
(B)
2,− = φ

(B)
2,+b1,B and

φ
(B)
1,− = φ

(B)
1,+b2,B. Unlike for the “A” copy, these relations

involve the bosons bI,B and not the anti-bosons b∗I,B since

θB = −π and not +π. We then find that under the U(1)c and

U(1)t symmetries, the field Φ
(B)
2 transforms as

U(1)c : Φ
(B)
2 → e−i

χ
2 σz

Φ
(B)
2 (5.9)

U(1)t : Φ
(B)
2 → ei

ξ
2σ

z

Φ
(B)
2 . (5.10)

In terms of the fields Φ
(A)
2 and Φ

(B)
2 , the dual description

of the BSM model has the Lagrangian L = L(A)+L(B), with

L(A) =
∑

s=±

|[∂µ − iα
(A)
2,µ − i

s

2
(Aµ +Bµ)]φ

(A)
2,s |2 (5.11)

− 1

κ2,A

(

1

2π
ǫµνλ∂να

(A)
2,λ

)2

− 1

2π
ǫµνλ(Aµ +Bµ)∂να

(A)
2,λ ,

and

L(B) =
∑

s=±

|[∂µ − iα
(B)
2,µ + i

s

2
(Aµ −Bµ)]φ

(B)
2,s |2 (5.12)

− 1

κ2,B

(

1

2π
ǫµνλ∂να

(B)
2,λ

)2

− 1

2π
ǫµνλ(Aµ −Bµ)∂να

(B)
2,λ .

In these expressions, 1
2π ǫ

µνλ∂να
(A)
2,λ and 1

2π ǫ
µνλ∂να

(B)
2,λ rep-

resent the number currents of the bosons b2,A and b2,B, re-

spectively. We have included coupling to the external probe

fields Aµ and Bµ associated with the two U(1) symmetries

U(1)c and U(1)t. It is also possible to add various potential

energy terms to these dual Lagrangians.

C. Transformation of vortices under T and I symmetries

In this section we deduce the transformations of the vortices

under the ZT
2 and ZI

2 symmetries. First we note that because

of the quantum numbers carried by the vortex fields, we have

the approximate relations

b1,A ∼ φ
(A),∗
2,− φ

(A)
2,+ (5.13)

b1,B ∼ φ
(B),∗
2,+ φ

(B)
2,− , (5.14)

which are just Eq. (4.19) written for the two copies of the

O(4) NLSM, and taking into account the fact that the “B”

copy of the O(4) NLSM has θB = −π. Also, recall that a

dimensionful quantity like g, the NLSM coupling constant, is

needed to balance the units in this equation, but we ignore that

subtlety here. We now deduce the transformations of the vor-

tices under ZT
2 and ZI

2 by requiring that the transformations

of the vortices under these symmetries reproduce the transfor-

mations of b1,A and b1,B under the symmetries, and that the

action of the symmetries on the vortices is consistent with the

general structure of the symmetry group.

Consider first the inversion symmetry. Inversion com-

mutes with the U(1)c symmetry, whereas it negates the U(1)t
charge. In addition, since inversion is a unitary symmetry, it

should take vortices to vortices, not anti-vortices (conjugation

by the operator I does not negate the phase of bI,A/B). We

have only two options: either Φ
(A)
2 (t,x) → σxΦ

(B)
2 (t,−x) or
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Φ
(A)
2 (t,x) → iσyΦ

(B)
2 (t,−x). Only the first option is con-

sistent with Eq. (5.4). We hence find that

ZI
2 : Φ

(A)
2 (t,x) → σxΦ

(B)
2 (t,−x) , (5.15)

and vice-versa.

Next consider time-reversal symmetry. Time-reversal is

anti-unitary, so it should take vortices to anti-vortices (con-

jugation by T does negate the phase of bI,A/B). In

addition, time-reversal preserves the U(1)c charge and

negates the U(1)t charge. The only two possibilities

are then Φ
(A)
2 (t,x) → Φ

(B),∗
2 (−t,x) or Φ

(A)
2 (t,x) →

σzΦ
(B),∗
2 (−t,x). Only the first option is consistent with

Eq. (5.5), so we find that

ZT
2 : Φ

(A)
2 (t,x) → Φ

(B),∗
2 (−t,x) , (5.16)

and vice-versa.

We see that the time-reversal and inversion symmetry con-

tinue to commute with each other when acting on the vortices.

The combined ZT I
2 symmetry then acts on the vortices as

ZT I
2 : Φ

(A)
2 (t,x) → σxΦ

(A),∗
2 (−t,−x) , (5.17)

and similarly for Φ
(B)
2 .

D. Time-reversal and inversion breaking mass terms ,

electromagnetic response, and a bosonic Chern insulator

Now that we know how the vortex fields transform un-

der the various symmetries, we can use the dual vortex the-

ory to calculate the responses of our BSM model to time-

reversal and inversion breaking perturbations. Analogous to

the fermion DSM, we can define a time-reversal breaking

mass term for the vortices,

ΣT = Φ
(A),∗
2 σzΦ

(A)
2 − Φ

(B),∗
2 σzΦ

(B)
2 , (5.18)

and also an inversion breaking mass term

ΣI = Φ
(A),∗
2 σzΦ

(A)
2 +Φ

(B),∗
2 σzΦ

(B)
2 . (5.19)

The term ΣT is odd under ZT
2 but even under ZI

2 . On the

other hand, ΣI is even under ZT
2 but odd under ZI

2 .

Now let us consider the electromagnetic response in these

two gapped phases. Suppose we add the time-reversal break-

ing mass term µΣT to the vortex potential energy. If µ < 0
(and in the presence of suitable quartic terms in the vortex ac-

tion), this will cause φ
(A)
2,− and φ

(B)
2,+ to become gapped, and

φ
(A)
2,+ and φ

(B)
2,− to condense. In this case we can then inte-

grate out φ
(A)
2,− and φ

(B)
2,+. A mean-field treatment of the re-

maining terms in the action then gives α
(A)
2,µ = − 1

2 (Aµ +Bµ)

and α
(B)
2,µ = − 1

2 (Aµ −Bµ), which gives the 2D time-reversal

breaking response

LT =
e2

2π
ǫµνλAµ∂νAλ +

1

2π
ǫµνλBµ∂νBλ . (5.20)

The first term in this expression is a Quantum Hall response

with Hall conductivity σxy = 2e2/h, exactly the same as one

finds for the Bosonic Integer Quantum Hall effect15,16. If we

took µ > 0 we would get the same response but with the op-

posite sign. We note that we cannot add a simple mass term to

find a σxy quantized as an odd multiple of e2/h. This gapped

phase represents a Bosonic Chern insulator.

On the other hand, we can add the inversion breaking mass

term µΣI to the vortex potential energy instead. If µ < 0 (and

again, assuming suitable quartic terms), this will cause φ
(A)
2,−

and φ
(B)
2,− to become gapped and φ

(A)
2,+ and φ

(B)
2,+ to condense.

In a mean-field treatment this gives α
(A)
2,µ = − 1

2 (Aµ + Bµ)

and α
(B)
2,µ = 1

2 (Aµ−Bµ), which yields the quasi-1D inversion

breaking response

LI =
e

π
ǫµνλBµ∂νAλ . (5.21)

Again, if we took µ > 0 then we would get the same response

but with the opposite sign. This response encodes a charge

polarization P i = e
π ǫ

ijBj (i, j = x, y) and an orbital magne-

tization M = e
πBt.

We see that both the time-reversal breaking and inversion

breaking electromagnetic responses of the BSM are twice as

large as the responses for the free fermion DSM shown in

Eq. (2.1). Let us now provide an alternate derivation of these

responses.

E. Electromagnetic Responses from Abanov-Wiegmann

Method

We now briefly show how the time-reversal and inversion

breaking responses of our BSM model can be computed using

the Abanov-Wiegmann method of integration over auxiliary

fermions which we discussed in Sec. IV. We first rewrite

our BSM model in terms of two four-component unit vec-

tor fields NA and NB . Now introduce the multi-component

complex fermionΨ = (ψ1,A, .., ψ4,A, ψ1,B, .., ψ4,B)
T , where

each of ψa,A/B is a two-component Dirac fermion in 2 + 1
dimensions. The fermion Ψ has a total of 16 components.

In terms of the two sets of gamma matrices introduced in

Eqs. (4.22) and (4.23), our BSM model can be obtained from

the fermionic Lagrangian

L̃f = Ψ̄

(

iγ̃µ∂µ − M

2

4
∑

a=1

Na
A(I+ σz)⊗ Γa

− M

2

4
∑

a=1

Na
B(I− σz)⊗ Γa

)

Ψ , (5.22)

where we have defined

γ̃0 = I⊗ γ0 (5.23a)

γ̃1 = I⊗ γ1 (5.23b)

γ̃2 = σz ⊗ γ2 , (5.23c)

and Ψ̄ = Ψ†γ̃0 now. The extra σz on γ̃2 means that the

fermions ψa,B have opposite helicity to the fermions ψa,A.
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This change directly accounts for the opposite signs of the

theta angle for the “A” and “B” copies of theO(4) NLSM that

we get when we integrate out Ψ. This is the reason why we

stated earlier that the sign of θ is the analogue in the BSM of

the helicity of the Dirac fermions in the DSM. Indeed, we see

that the helicity of the Abanov-Wiegmann auxiliary fermions

directly translates into the sign of θ in the O(4) NLSM.

By the same reasoning used in Sec. IV to deduce the

charges of the fermions used to generate one O(4) NLSM on

the surface of the BTI, we now find that the field Ψ transforms

under the U(1)c and U(1)t symmetries as

U(1)c : Ψ → eiχI⊗QΨ (5.24)

U(1)t : Ψ → eiξσ
z⊗QΨ , (5.25)

where Q is the 8 × 8 charge matrix introduced in Eq. (4.33).

We can now couple Ψ to the background gauge fields Aµ and

Bµ and calculate the response of the system to various pertur-

bations.

The time-reversal breaking response is obtained by adding

the term −(Mδ)Ψ̄(σz ⊗ Γ5)Ψ to the Lagrangian. According

to Eq. (4.26), this will give θA ≈ π(1− 3
2δ) and θB ≈ −π(1+

3
2δ), so this breaks ZT

2 (which requires θA ≡ −θB mod 2π).

The inversion breaking response is obtained by adding the

term −(Mδ)Ψ̄(I⊗ Γ5)Ψ. This will give θA ≈ π(1− 3
2δ)and

θB ≈ −π(1− 3
2δ), so this breaksZI

2 (which requires θA ≡ θB
mod 2π).

In the limit that δ → 0, the time-reversal breaking pertur-

bation generates the 2+1-d response

L̃T = −sgn(δ)
1

2π
ǫµνλ

(

e2Aµ∂νAλ +Bµ∂νBλ

)

, (5.26)

coming from the contributions of each of the Dirac fermions

(and according to their charge), while the inversion breaking

perturbation gives the quasi-1D response

L̃I = −sgn(δ)
e

π
ǫµνλBµ∂νAλ . (5.27)

These are the same responses which we derived in the previ-

ous subsection using the dual vortex formulation of the BSM

model.

F. Stability of the BSM Effective Theory

We have provided an effective theory for a gapless bosonic

semi-metal in 2+1-d and we now want to evaluate the per-

turbative stability of this theory to see under what conditions

the semi-metal is a stable phase. In discussing the stability

of the BSM model, there are a few expected properties which

we would like to verify. First, the translation symmetry of

the model should prevent us from trivially gapping out the

model by coupling the “A” copy of the O(4) NLSM to the

“B” copy (for our purposes, by a trivially gapped phase, we

mean a gapped phase which retains all the symmetries of the

original gapless system and has no interesting electromagnetic

response). And second, the composite ZT I
2 symmetry should

guarantee the local stability of the O(4) NLSM’s which make

up our BSM model (recall that local stability means that it

should be impossible to gap out one copy of the O(4) NLSM

independently of the other copy without breaking required

symmetries). We claim that analogous to the 2+1-d fermionic

DSM, these symmetries are enough to provide perturbative

stability to the BSM. However, just as with any symmetry-

protected phase (gapped or gapless) it is also important to keep

in mind the possibility that even symmetry-allowed perturba-

tions may spontaneously break one or more of the symmetries

of the system if those perturbations are strong enough.

Also, as a caveat, the O(4) NLSM with θ = π is a diffi-

cult interacting theory to study in general. Since many of its

properties are still unknown, it is impossible for us to give a

complete characterization of the stability of our BSM effective

theory. We do provide a thorough analysis of the the effects

of many important perturbations on the BSM model, but there

are still many other symmetry-allowed perturbations that we

have not been able to completely understand: for example, a

quartic coupling of the form |bI,A|2|bJ,B|2 between bosons in

the “A” and “B” copies of the O(4) NLSM. Our discussion in

this section gives strong evidence for the stability of the semi-

metal phase so we will leave a possible discussion of these

untreated terms to future work.

Let us begin by addressing the issue of trivially gapping

out the system by coupling the “A” copy of the O(4) NLSM

to the “B” copy. Since the two copies of the O(4) NLSM

have opposite theta angles, an interaction which could enforce

NA = ±NB would have the effect of canceling the theta

terms and leaving us with just a single O(4) NLSM without

theta term. According to Ref. 48, an O(4) NLSM with θ = 0
represents a trivial gapped phase of charged bosons in 2 +
1 dimensions (i.e., this phase has no topological term in its

electromagnetic response). Hence, as one consideration, we

should make sure that it is not possible to get NA = ±NB in

our model. To show that it is impossible to drive our system

into a phase where NA = ±NB , we should examine the term

NA · NB , as any interaction which could set NA = ±NB

should be a function of NA ·NB . In terms of UA and UB we

have

NA ·NB =
1

2
tr[U †

AUB] . (5.28)

This term is invariant under the U(1)c symmetry, but under

U(1)t we have

tr[U †
AUB] → tr[U †

AUBe
−i2ξσz

] , (5.29)

where we used the fact that the U(1)t transformation of the

bosons from Eq. (5.3) is equivalent to UA → UAe
iξσz

and

UB → UBe
−iξσz

. Since this term is not invariant under

U(1)t, we see that translation symmetry forbids terms which

could drive our BSM model into a trivial gapped phase.

As we mentioned earlier in this subsection, there are

symmetry-allowed quartic terms which can couple the two

copies of the O(4) NLSM in the BSM model, for exam-

ple the term |bI,A|2|bJ,B|2. Another possibility would be a

current-current interaction of the form ηµνJµ
I,AJ

ν
J,B where

Jµ
I,A = i

g (∂
µb∗I,AbI,A−b∗I,A∂µbI,A) is the conserved number
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current for boson I in the “A” NLSM, similarly for Jν
J,B, and

ηµν = diag(1,−1,−1) is the Minkowksi metric. A precise

analysis of these terms is very difficult and beyond the scope

of this paper. To address them what is really needed is the

scaling dimension of the O(4) field at the RG fixed point at

θ = π discussed in Ref. 46. Despite this, we expect the BSM

model to be perturbatively stable to these interactions since,

at least when treated in a mean-field limit, these terms do not

cause the theta terms for the “A” and “B” copies of the O(4)
NLSM to cancel each other.

We see that translation symmetry prevents us from coupling

the two NLSM copies (if they are not at the same momen-

tum point), so it remains to discuss the local stability of each

NLSM copy . Recall that in the dual description of the BSM

model we added mass terms of the form Φ
(A),†
2 σzΦ

(A)
2 ±

Φ
(B),†
2 σzΦ

(B)
2 to gap out the system and induce an interest-

ing electromagnetic response. Suppose instead that we tried

to add just a single term Φ
(A),†
2 σzΦ

(A)
2 or Φ

(B),†
2 σzΦ

(B)
2 to

the dual theory in order to gap out just one of the “A” or “B”

copies of the model. It turns out that adding one of these terms

alone is actually forbidden by the composite ZT I
2 symme-

try. Indeed, under ZT I
2 we have Φ

(A),†
2 (t,x)σzΦ

(A)
2 (t,x) →

−Φ
(A),†
2 (−t,−x)σzΦ

(A)
2 (−t,−x), and likewise for the “B”

copy. Thus, if we require our system to obey ZT I
2 then these

terms are forbidden, and some measure of stability is provided

for the BSM phase.

While the requirement of ZT I
2 forbids the conventional

mass terms listed above, we should also consider the local

stability of each O(4) NLSM in the presence of symmetry-

allowed perturbations. The discussion here closely paral-

lels the discussion in Sec. IV of the effects of symmetry-

allowed perturbations on the surface theory of the BTI. We

start by considering interspecies tunneling terms of the form

b∗1,Ab2,A + c.c. for the “A” copy of the O(4) NLSM. In the

canonical formalism the operators bI,A(x) and their conju-

gate momenta πI,A(x) also obey the commutation relation

of Eq. (4.47). Since the composite ZT I
2 symmetry acts on

the bosons as (T I)bI,A(x)(T I)−1 = bI,A(−x), we deduce

from the diagonal commutator that (T I)πI,A(x)(T I)−1 =
−πI,A(−x). Now consider a state |Ψ〉 which is ZT I

2 -

symmetric, i.e., (T I)|Ψ〉 = |Ψ〉. Then in such a state we

find that

〈Ψ|[b1,A(x), π2,A(y)]|Ψ〉 = −〈Ψ|[b1,A(−x), π2,A(−y)]|Ψ〉 .
(5.30)

If we now plug in for the commutators on both sides of this

equation using Eq. (4.47), then we find (again, after integra-

tion over the y coordinate) that

〈Ψ|b1,A(x)b†2,A(x)|Ψ〉 = −〈Ψ|b1,A(−x)b†2,A(−x)|Ψ〉 .
(5.31)

On the other hand, if the state |Ψ〉 is really invariant under the

action of ZT I
2 , then we should have

〈Ψ|b1,A(x)b†2,A(x)|Ψ〉 = 〈Ψ|b1,A(−x)b†2,A(−x)|Ψ〉 .
(5.32)

Therefore we find that 〈Ψ|b1,A(x)b†2,A(x)|Ψ〉 = 0 in any state

|Ψ〉 which is invariant under the combined ZT I
2 symmetry.

Just as in Sec. IV, we may conclude that weak interspecies

tunneling terms should have a negligible effect on the BSM

model (which has ZT I
2 symmetry), but strong interspecies

tunneling can drive the system into a phase which sponta-

neously breaks ZT I
2 symmetry. The same conclusion holds

for interspecies tunneling terms in the “B” copy of the O(4)
NLSM.

Also, in close analogy to the case in Sec. IV, this result

may be generalized to include insertions of any operator Õ(x)
which transforms nicely under the action of T I (recall that in

Sec. IV the result was generalized to include operators Õ(x)

invariant under T ). Suppose Õ(x) transforms under the action

of T I as (T I)Õ(x)(T I)−1 = Õ(−x). Then we find that

〈Ψ|Õ(x)[b1,A(x), π2,A(y)]|Ψ〉 =
−〈Ψ|Õ(−x)[b1,A(−x), π2,A(−y)]|Ψ〉 ,

(5.33)

and following the same steps as above gives the result that

〈Ψ|Õ(x)b1,A(x)b
†
2,A(x)|Ψ〉 = 0 in any state |Ψ〉 which is in-

variant under ZT I
2 . Note that Õ(x) could in principle contain

operators from both the “A” and “B” copies of the NLSM, as

long as it transforms under T I as specified above.

Finally, we can again consider chemical potential terms; the

discussion of these terms is nearly identical to that in Sec. IV

since the discussion of the terms in that section did not involve

the time-reversal symmetry at all. For the BSM model we can

add chemical potential terms of the form µ1|b1,A|2+µ2|b2,A|2
for just one copy of the O(4) NLSM. As in Sec. IV we again

find that this term (combined with suitable quartic terms) will

in general cause one of b1,A or b2,A to condense and the other

to be come gapped (with the choice depending on the sign of

µ1 − µ2). The only new feature in this context is that if a

boson from one of the O(4) NLSM’s were to condense, then

both U(1)c and U(1)t symmetries would be spontaneously

broken (i.e., condensing a boson from just one of the O(4)
NLSM’s also spontaneously breaks translation symmetry).

G. Topologically ordered phases accessible from the BSM

theory

In this section we briefly discuss the possibility of generat-

ing topologically ordered states from the BSM model by con-

densing composite vortices. As in Sec. IV, a basis for describ-

ing any possible topological orders generated from the BSM

model is provided by the “+” vortices φ
(A)
1,+, φ

(A)
2,+, φ

(B)
1,+, and

φ
(B)
2,+, since the “−” vortices may be obtained by binding a

“+” vortex with a trivial boson excitation.

In exploring different composite vortices to condense, we

note first that if we condense a composite vortex of the form

φ
(A)
I,±φ

(B)
J,±, then the only “+” vortices which braid trivially

with this object are φ
(A)
I,+ and φ

(B)
J,+, and these two vortices

braid trivially with each other. The resulting state is therefore

trivial. This means that it is impossible to generate any topo-

logically ordered states by condensing a product of one vortex

from the “A” NLSM and one vortex from the “B” NLSM. We
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must therefore consider composites which have at least two

vortices from the same copy of the O(4) NLSM. In this sec-

tion we discuss one particular phase with Z2×Z2 topological

order which is generated by condensing two fields which are

themselves quadratic in the vortex fields from a single O(4)
NLSM. We then show that this same phase can be constructed

by condensing a single field which is quartic in the vortex

fields. We also show how to construct phases with Z2 topo-

logical order by condensing a composite vortex in one copy

of the O(4) NLSM and in the other copy simultaneously con-

densing a single vortex of one species and gapping out the

other one.

We now show how to construct a phase with Z2 ×Z2 topo-

logical order by condensing the composite vortices OA =

φ
(A)
1,+φ

(A)
1,− and OB = φ

(B)
1,+φ

(B)
1,− in such a way that 〈OA〉 =

〈OB〉 ≡ Ō with Ō real. The vortices φ
(A)
1,+, φ

(A)
2,+, φ

(B)
1,+, and

φ
(B)
2,+ all braid trivially with OA and OB and so they survive

as quasi-particles in the resulting topologically ordered state.

The particular condensation shown here, with Ō real, appears

to respect all symmetries of the system (U(1)c, U(1)t, Z
T
2 ,

and ZI
2 ), however, we show below that this state must break

either the time-reversal (ZT
2 ) or the inversion (ZI

2 ) symmetry.

Since {φ(A)
1,+, φ

(A)
2,+} braid trivially with {φ(B)

1,+, φ
(B)
2,+} the re-

sulting state is nearly identical to two copies of the Z2 topo-

logical order shown in Table III. The first factor of Z2 is

represented exactly by Table III. This part of the topologi-

cal order is generated by {φ(A)
1,+, φ

(A)
2,+} and is described in the

K-matrix formalism by K(A) = 2σx, ~t(A) = (1, 1)T and

~u(A) = (1, 1)T , where ~u(A) is a U(1)t charge vector which

describes the coupling of the vortices to the external field Bµ.

Based on this data, the contribution of the “A” vortices to the

electromagnetic responses of this state are

L(A)
T =

e2

4π
ǫµνλAµ∂νAλ , (5.34)

and

L(A)
I =

e

2π
ǫµνλBµ∂νAλ . (5.35)

The second factor of Z2 is generated by {φ(B)
1,+, φ

(B)
2,+}. For

the “B” copy, since we actually have θB = −π, it seems that

we should choose K(B) = −2σx, however, there is some

ambiguity here because a statistical phase of π is equivalent to

a phase of −π. So let us consider both possibilities K(B) =
±2σx. On the other hand, there is no ambiguity in the charges

of the “B” vortices under the U(1)c and U(1)t symmetries:

the coupling of {φ(B)
1,+, φ

(B)
2,+} to Aµ and Bµ is described by

the charge vectors ~t(B) = (−1,−1)T and ~u(B) = (1, 1)T ,

respectively. Based on this, the contribution of the “B” copy

to the responses of this state are given by

L(B)
T = ± e2

4π
ǫµνλAµ∂νAλ , (5.36)

and

L(B)
I = ∓ e

2π
ǫµνλBµ∂νAλ , (5.37)

where the signs out front correspond to the choice of K(B) =
±2σx.

We see that if we choose K(B) = 2σx, then the entire

system will break time-reversal (we get the full 2D time-

reversal breaking response of the BSM), but if we choose

K(B) = −2σx, the entire system breaks inversion (we get

the full quasi-1D inversion breaking response of the BSM).

In particular, it seems like one cannot construct a topological

order consisting of the quasi-particles φ
(A)
1,+, φ

(A)
2,+, φ

(B)
1,+, and

φ
(B)
2,+, which also preserves all of the symmetries of the BSM

model.

The topologically ordered phase which we constructed

above can also be accessed by condensing the single quar-

tic vortex field O′ = φ
(A)
1,+φ

(A)
1,−φ

(B)
1,+φ

(B)
1,− in such a way that

the expectation value 〈O′〉 is real. The field O′ does not carry

any charge under the U(1)c or U(1)t symmetries, is invariant

under inversion, and is complex conjugated by time-reversal

(so we should take 〈O′〉 real in an attempt to preserve time-

reversal).

In analyzing the resulting topological order, we first

note that all four fundamental vortices φ
(A)
1,+, φ

(A)
2,+, φ

(B)
1,+,

and φ
(B)
2,+ braid trivially with O′, so they all survive

as quasi-particles in the resulting topologically ordered

state. The composite quasi-particles that can be con-

structed from these four fundamental vortices have the form

(φ
(A)
1,+)

n1(φ
(A)
2,+)

n2(φ
(B)
1,+)

n3(φ
(B)
2,+)

n4 , where the integers nj

are either 0 or 1 (since the fusion of a vortex with itself is

topologically trivial). A total of 16 possible quasi-particles

can be constructed by letting all nj range over their values

0 and 1. To see whether the resulting topologically ordered

state actually supports all of these quasi-particles as distinct

excitations, we need to check whether any quasi-particle can

be obtained from another one by fusing with the condensate

O′, which is equivalent to the vacuum (in the phase where

O′ is condensed). We find that each of the 16 quasiparticles

is topologically distinct and that this set is sufficient to label

all of the anyon sectors. Hence, the resulting state is actually

identical to the state obtained earlier from simultaneously con-

densing OA and OB . This result could have been anticipated

since O′ = OAOB , and the vortices from the “A” copy of the

NLSM braid trivially with the vortices from the “B” copy.

Another way to see that condensing O′ leads to Z2 × Z2

topological order, and not, for example, Z4 topological or-

der, is as follows. First, note that φ
(A)
1,± carry charge 1 of the

dual gauge field α
(A)
1,µ (whose curl is the number current of

b1,A), while φ
(B)
1,± carry charge 1 of the dual gauge field α

(B)
1,µ

(whose curl is the number current of b1,B). So the compos-

ite field O′ carries charge 2 of α
(A)
1,µ and charge 2 of α

(B)
1,µ .

Therefore, condensing O′ will break the U(1) symmetries

associated with α
(A)
1,µ and α

(B)
1,µ down to a Z2 subgroup, i.e.,

the symmetry-breaking associated with this condensation is

U(1)× U(1) → Z2 × Z2. If instead it were the case that the

four vortices φ
(A)
1,± and φ

(B)
1,± all carried charge 1 of the same

U(1) gauge field, then we would expect the condensation of

O′ to break that U(1) symmetry down to a Z4 subgroup, lead-
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ing to a Z4 topological order. This does not happen in our

case since the vortices φ
(A)
1,± and φ

(B)
1,± couple to differentU(1)

gauge fields.

As we mentioned above, it is also possible to generate a

phase withZ2 topological order by condensing composite vor-

tices in one copy of the O(4) NLSM, and in the other copy

simply gapping out one vortex species and condensing the

other. We show that such a phase will break either the time-

reversal or the inversion symmetry of the BSM model. As

an example, consider condensing the composite vortex OA in

the “A” copy of the NLSM, while in the “B” copy condens-

ing the single vortex φ
(B)
2,+, and gapping out the vortex φ

(B)
2,−.

The resulting phase has a Z2 topological order generated by

φ
(A)
1,+ and φ

(A)
2,+. Note that the “B” copy does not contribute to

the topological order since φ
(B)
2,+ has been condensed (i.e., it

is now topologically equivalent to the vacuum quasi-particle)

and φ
(B)
1,+ is confined (it has non-trivial braiding with φ

(B)
2,+,

which is condensed). The electromagnetic response of this

phase can be easily calculated using the results contained in

this section, and we find that this phase has no time-reversal

breaking response, but it does possess the full inversion break-

ing response of the BSM, as shown in Eq. (5.21). If for the

“B” copy we instead chose to condense φ
(B)
2,− and gap out φ

(B)
2,+

(while still condensing OA for the “A” copy), we would get a

phase with Z2 topological order which has no inversion break-

ing response, but the full time-reversal breaking response of

the BSM, as in Eq. (5.20).

VI. QUANTIZATION OF POLARIZATION IN GAPPED 2D

PHASES AND A CRITERION FOR SEMI-METAL

BEHAVIOR

In this section we give a general discussion of the quan-

tization of the charge polarization in gapped phases of 2D

quantum many-body systems with translation, inversion, and

U(1)c charge conservation symmetries, with the goal of estab-

lishing a criterion for detecting whether a given system is in

a semi-metallic phase by measuring its polarization response.

The systems in question can be either bosonic or fermionic,

and we assume they are made of up some fundamental par-

ticles of charge e. For simplicity we focus on systems on a

square lattice with lattice spacing a0, but the result can be eas-

ily extended to any Bravais lattice. We consider three broad

classes (to be described below) of gapped phases of 2D sys-

tems in which one can define a charge polarization, and we

show that in these three classes the polarization in (say) the

x-direction is quantized in units of

P (min)
x = r

e

2a0
, (6.1)

where r ∈ Q is a rational number. This result then implies

that if a 2D quantum many-body system is found to have

a continuously tunable polarization of the form α e
2a0

for a

generic real numberα, then this system cannot be in one of the

three classes of gapped phases mentioned above. If these three

classes of gapped phases exhaust all possible gapped phases

with translation symmetry which can support a polarization

response, and from their definitions below it is clear that they

do, then this implies that a polarization of the form α e
2a0

for

generic α ∈ R is indicative of a gapless semi-metal phase.

Therefore our argument in this section provides a direct rela-

tion between the gaplessness of a semi-metal and the tunabil-

ity of its polarization response. As we mentioned in Sec. II,

since the polarization response is expected to be reasonably

robust, this provides additional evidence for the stability of

the semi-metal phase to perturbations which do not destroy its

polarization response.

As we show below, the rational number r mentioned above

can be related to specific measurable properties of the three

types of gapped phases that we consider, so we do not need

to worry about the difficulty of “measuring an irrational num-

ber”, as the number r can be readily obtained for these gapped

phases in other ways. Thus, the charge polarization response

of a 2D system can be used as a criterion for detecting a gap-

less semi-metal phase. The reason for focusing on gapped

phases with translation symmetry is that we know that a semi-

metal requires translation symmetry for its stability. Since we

are looking for a way to distinguish a semi-metal phase from

other phases with a polarization response, we need to com-

pare to other systems with translation symmetry as we know

that without translation symmetry the semi-metal phase is not

even a possibility. We now give the details of our argument.

The three classes of gapped systems which we consider are

(i) systems with a unique ground state and translation symme-

try by one site, (ii) systems with a ground state which spon-

taneously breaks translation symmetry by one site down to

translation symmetry by q sites (so q is a positive integer), and

(iii) systems with intrinsic topological order as well as trans-

lation symmetry by one site. To calculate the charge polar-

ization of these systems we use a many-body formula for the

polarization introduced by Resta in Ref. 57, which we now

review. We focus on an analysis of the polarization in the

x-direction, and so we assume periodic boundary conditions

in that direction. This assumption of periodic boundary con-

ditions in at least one direction will also allow us to invoke

certain theorems58,59 which will be crucial for our results in

this section.

A. Polarization in 2D, ambiguity with translation invariance,

and quantization with inversion symmetry

Consider a quantum many-body system defined on a square

lattice with lattice spacing a0 and lengths Lx and Ly in the

x and y directions. Let Ns be the number of sites so that

Nsa
2
0 = LxLy. We label sites on the square lattice by the

vector of integers j = (jx, jy), jx, jy ∈ Z. Finally, let |Ψ0〉 be

the ground state of the system. We assume |Ψ0〉 is an eigen-

state of the number operator with eigenvalue Np so that the

filling factor in the ground state is ν =
Np

Ns
. The total num-

ber operator can be expressed as N̂ =
∑

j n̂j where n̂j is the

number operator for site j. Then, assuming that |Ψ0〉 is the

ground state of a gapped system, Resta’s formula tell us that
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the polarization in the x-direction is given by

Px = lim
Lx→∞

e

2πLy
Im[ln〈Ψ0|ei

2π
Lx

X̂ |Ψ0〉] , (6.2)

where the position operator X̂ is given by

X̂ =
∑

j

(jxa0)n̂j . (6.3)

The polarization in the y-direction has a similar definition.

Let us suppose that the state |Ψ0〉 has translation invariance

by one site in the x-direction, i.e., |Ψ0〉 is an eigenstate of

the translation operator T̂x with some eigenvalue eik
(0)
x (the

precise value of k
(0)
x will not be important in what follows).

Concretely, T̂x acts as T̂ †
xÔjT̂x = Ôj+(1,0) on operators Ôj

carrying a position index. If this is the case then one can show

that Px is only well-defined modulo eν
a0

. To see it we compute

the polarization P ′
x of |Ψ′

0〉 ≡ T̂x|Ψ0〉 in two ways. On one

hand we can just write |Ψ′
0〉 ≡ eik

(0)
x |Ψ0〉 to find that P ′

x =
Px. However, we can also use

〈Ψ0|T̂ †
xe

i 2π
Lx

X̂ T̂x|Ψ0〉 = 〈Ψ0|ei
2π
Lx

X̂e−i
2πa0
Lx

∑

j
n̂j |Ψ0〉

= 〈Ψ0|ei
2π
Lx

X̂ |Ψ0〉e−i
2πa0Np

Lx , (6.4)

to show that

P ′
x = Px − eν

a0
. (6.5)

So we conclude that Px is defined only modulo eν
a0

in the pres-

ence of translation symmetry by one site.

The last ingredient in the polarization calculation is to en-

force inversion symmetry in the system. We consider in-

version which acts simply as j → −j for the coordinates

on the square lattice. It is clear that under inversion we

have Px → −Px and similarly for the polarization in the

y-direction. So the polarization in the inversion symmetric

system must obey the relation

Px ≡ −Px mod
eν

a0
. (6.6)

The solutions to this relation are

Px ≡ 0 or
eν

2a0
mod

eν

a0
, (6.7)

with a similar result for Py . So in a gapped 2D system with

translation and inversion symmetry and filling factor ν, the

polarization is quantized in units of

P (min)
x =

eν

2a0
. (6.8)

Before moving on let us make a few general comments

about this formula for the polarization. First, in a band insula-

tor made out of free fermions the filling ν must be an integer

in order for the system to be gapped (i.e., in order to have a

completely filled band). This is why the filling ν usually does

not appear explicitly in discussions of the polarization in band

insulators. Also, in the discussion above we have assumed that

there is only one type of particle. More generally, our system

could have several different species of particles, for example

spin up and spin down electrons, and in this case one can sep-

arately consider the polarization for each species. If we label

different particles species by σ then we can compute Px,σ,

the polarization from particles of species σ, by modifying the

position operator X̂ to

X̂σ =
∑

j

(jxa0)n̂j,σ , (6.9)

where n̂j,σ is the number of particles of species σ on site

j. The total polarization is then given by Px =
∑

σ Px,σ.

The importance of computing the polarization in this way is

demonstrated by the following example. Suppose we have a

band insulator of spinful electrons (so σ =↑, ↓) and we have

a completely filled band of up and down electrons. Then we

have ν↑ = 1 and ν↓ = 1 and so the total filling is ν = 2. How-

ever, in the absence of time-reversal symmetry both bands do

not have to have the same polarization. Since each individ-

ual band is at filling νσ = 1 we could have Px,↑ = e
2a0

but

Px,↓ = 0, and so Px = e
2a0

. This result could not have been

predicted from Eq. (6.8), since that formula does not distin-

guish between different particle species.

We now discuss the specific values that ν can take in the

three classes of gapped systems discussed above, and in this

way constrain the possible values of P
(min)
x in such phases.

B. The filling factor ν in the three classes of gapped phases

Now we discuss the possible values of the filling factor ν
in the three classes of gapped phases, which will in turn give

us the minimum value eν
2a0

of the polarization in these sys-

tems. To start we go back to a theorem of Oshikawa58 which

was later proven rigorously (under slightly more restrictive as-

sumptions) by Hastings59. What Oshikawa/Hastings showed

is that if the filling ν of a gapped system is a rational number,

say ν = p
q with p and q coprime, then the system will in gen-

eral have q degenerate ground states (in the thermodynamic

limit), each with a different momentum in the (for example)

x-direction. For integer ν the ground state is unique. On the

other hand, irrational values of ν in the ground state generally

imply a gapless system. In Hastings’ rigorous proof the con-

dition is actually that ν
(

Nsa0

Lx

)

=
Npa0

Lx
= p

q , where Lx is

the length of the system in the x-direction59. In what follows

we assume that this result holds for the condition ν = p
q , as

is expected on general physical grounds, although the reader

should be aware that there is no rigorous proof available in

this case (and there are even counterexamples in 2D systems

which are long in one direction but short in the other, see e.g.,

Ref. 60).

Using this theorem we can immediately conclude that in the

case of integer filling the minimum value of the polarization in

the ground state of a gapped, translation-invariant 2D system
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with a unique ground state is

P (min)
x =

e

2a0
, (6.10)

which corresponds to the filling ν = 1. This gives the answer

for the minimum value of the polarization in a gapped system

in class (i) discussed above.

Next we discuss the case of rational filling factor ν = p
q ,

which will turn out to include gapped systems in classes (ii)

and (iii). For rational filling factor ν = p
q there are two

possible physical explanations for the q degenerate ground

states58,59. The first possibility is that the q degenerate states

correspond to a spontaneous breaking of the translation sym-

metry by one lattice site down to translation symmetry by q
lattice sites. In this case the actual ground state in the thermo-

dynamic limit is expected to be a particular linear combination

of the q ground states (which each have different momenta in

the x-direction) which is an eigenstate of (T̂x)
q but not of T̂x,

thus breaking the symmetry of translation by one site. This

corresponds to our class (ii) of gapped phases. If we repeat

the analysis from above of the ambiguity of the polarization

in the presence of translation symmetry, but replace T̂x with

(T̂x)
q , then we find that the polarization is only well-defined

modulo qeν
a0

. Then in the presence of inversion symmetry the

minimum value of the polarization in this case is also

P (min)
x =

e

2a0
, (6.11)

corresponding to the choice ν = 1
q .

The final possibility is that the system at filling factor ν = p
q

does not break translation symmetry but instead has intrinsic

topological order, which can also explain the q-fold ground

state degeneracy in the thermodynamic limit. This corre-

sponds to our class (iii) of gapped systems. In this case the

filling factor ν can be related to the data describing a 2D

symmetry-enriched topological (SET) phase with U(1)c and

translation symmetry61,62 and so we now give a brief overview

of the physical properties of 2D SET phases with U(1)c and

translation symmetry. For more details see Ref. 61.

An SET phase in 2D is a gapped phase possessing intrin-

sic topological order, but which also has global symmetry of

a group G (see Ref. 63 for an in-depth discussion of these

phases). The group G can act in various non-trivial ways on

the anyons which are present in the topologically ordered sys-

tem. For example if G = U(1)c then an anyon can carry a

fractional charge under G (i.e., the anyon transforms in a pro-

jective representation of G). A more exotic possibility is that

the action of G can exchange, or permute, two different kinds

of anyons. In the case where the symmetry does not permute

the anyons it is known that 2D SET phases with symmetry

group G are classified by the cohomology group H2(G,A),
where A is the group of Abelian anyons in the topologically

ordered system.

In a 2D SET phase with U(1)c symmetry, each anyon a can

carry a particular fractional charge ea = Qae under the U(1)
symmetry, where Qa is a dimensionless number. The num-

ber Qa can also be expressed in terms of the mutual braiding

statistics Ma,v of a with the anyon v, which is the excitation

created in the system by threading 2π delta function flux of

the U(1)c gauge field at a point in the system (this excitation

was referred to as a vison in Ref. 62). Here Ma,a′ = eiθa,a′

is the U(1) phase accumulated during a process in which the

anyon a makes a complete circuit around the anyon a′. This

essentially calculates the Aharonov-Bohm phase of the U(1)c
charge carried by a when dragged around the fundamental

flux of U(1)c carried by v. Hence, we have the relation

ei2πQa =Ma,v , (6.12)

or

Qa =
θa,v
2π

. (6.13)

A 2D SET phase with translation symmetry is characterized

by one additional property. This is the anyonic flux b per unit

cell, where b is an Abelian anyon in the topologically ordered

system under consideration. The physical meaning of the any-

onic flux b is that if an anyon a is translated around a unit cell,

then the state of the system picks up the phase Ma,b.

We see that we can characterize a 2D SET phase withU(1)c
and translation symmetry by the data ({ea}, b), which in-

cludes the set of charges {ea} of the anyons under the U(1)c
symmetry, and the particular anyon b which provides the any-

onic flux per unit cell in the system.

The authors of Refs. 61 and 62 showed that the filling factor

ν in a 2D SET phase with translation andU(1)c symmetry can

be expressed in terms of the data of the SET phase as

ν ≡ Qb mod 1 , (6.14)

or, using Eq. (6.13),

ν ≡ θb,v
2π

mod 1 . (6.15)

So the filling factor of the 2D SET phase is equal to the U(1)c
charge of the anyon b characterizing the anyonic flux per unit

cell in the system, and this is in turn related to the mutual sta-

tistical angle θb,v between b and the excitation v. The deriva-

tion of this equation essentially uses Oshikawa’s original flux

threading argument and the fact that threading a flux through

the hole of the torus is equivalent to wrapping a string opera-

tor for v around the cycle of the torus which does not enclose

the hole62. Note that Qb must be a rational number since if it

were not then the relation between Qb and ν, combined with

the Oshikawa/Hastings argument, would imply that the phase

was gapless and not a gapped SET phase. From this relation

between Qb and ν we find that the minimum value of the po-

larization for systems in our class (iii) is

P (min)
x =

eb
2a0

=
eQb

2a0
. (6.16)

We have succeeding in showing that for all three classes

of gapped phases considered in this section, the polarization

is quantized to some rational multiple of e
2a0

and, in partic-

ular, is not continuously variable since tuning ν away from
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a rational value leads to gapless phase according to the Os-

hikawa/Hastings argument. Thus, we see that generic non-

rational values of the polarization are indicative of a gapless

semi-metal phase. Furthermore, we have shown how the po-

larization in these gapped phases can be simply related to var-

ious physical data describing those phases, which means that

it should be simple to diagnose whether a given value of the

polarization implies a gapped or gapless phase.

VII. COUPLED WIRES CONSTRUCTION OF THE

BOSONIC SEMI-METAL

So far we have provided an effective theory for a 2+1-

d bosonic semi-metal, and discussed its electromagnetic re-

sponse properties and stability criteria. In this Section we

provide an explicit construction of this phase using a cou-

pled wires approach which is modeled after the coupled wires

construction of a single O(4) NLSM with θ = π derived in

Ref. 42 (see also Refs. 17 and 43). We are able to find a suit-

able wire building-block, as well as suitable inter-wire tunnel-

ing terms, which together generate our 2D BSM model after

taking the continuum limit in the wire stacking direction.

The rationale for a coupled wires construction of the BSM

model is provided by the general demonstration in Ref. 7

that free fermion DSMs admit a coupled wires construction

in terms of 1+1-d topological insulator wires, each with a

charge e
2 polarization response. Indeed, one of the most im-

portant aspects of the coupled wires construction of the free

fermion DSM is the intuitive explanation it provides for the

quasi-1D inversion-breaking electromagnetic response of the

DSM model, shown in Eq. (2.1).

This Section is organized as follows. We begin by review-

ing the coupled wires construction of the free fermion DSM.

We then construct a wire building block for the 2D BSM

phase using two copies of the Bosonic Integer Quantum Hall

(BIQH) edge theory. For our purposes, we require the descrip-

tion of the BIQH edge in terms of an SU(2)1 Wess-Zumino-

Witten (WZW) theory, as discussed in Refs. 15 and 17. For

completeness, we briefly review this description of the BIQH

edge, and carefully discuss how this edge theory couples to an

external electromagnetic field. We then review the derivation

of Ref. 42 of a single O(4) NLSM with θ = π from coupled

wires consisting of a single copy of an SU(2)1 WZW theory.

With all of this information in hand, we go on to present a

coupled wires construction of the 2D BSM model, and we

include a careful discussion of how to define the action of

time-reversal and inversion symmetries in the coupled wires

model so that the correct action of these symmetries on the

continuum fields is recovered in the continuum limit. Finally,

we conclude this section by contrasting the coupled wires

constructions of the DSM and BSM phases, and we briefly

comment on how the symmetry breaking phases of the BSM

model can be accessed within the coupled wires description.

A. Coupled Wire Construction of a Fermionic Dirac

Semi-metal

We begin by reviewing the construction of the free-fermion

DSM via a stacking of 1D gapped topological free fermion

wires, each with charge e
2 polarization. This construction was

introduced in Ref. 7, and it provides a clear physical inter-

pretation of the quasi-1D inversion-breaking response of the

DSM in terms of the polarization response of the individual

wires in the stacking construction. Just as in Sec. III, the

degrees of freedom are two-component spinless fermions ~cn
living on a 1D lattice with site index n. The Bloch Hamilto-

nian for the 1+1-d free fermion topological wire model has

the form

H1D(kx) = sin(kx)σ
x + (1 −m− cos(kx))σ

z . (7.1)

This model is in a topological phase for 0 < m < 2, and one

can show that charge ± e
2 is trapped at a domain wall between

a state with m . 0 and m & 035,64–66. For our interest, we

consider the topological phase of this model to be protected by

inversion symmetry67,68, where the inversion operator I acts

on the lattice fermions as

I~cmI−1 = σz~c−m . (7.2)

To obtain the DSM model we now stack these 1+1-d

fermion wires into two dimensions and introduce a hopping

term: ty(~c
†
n+ŷσ

z~cn + h.c.) between fermions on adjacent

wires. The Bloch Hamiltonian for the resulting 2D system

has exactly the form of Eq. (3.2). Now we note that the 2+1-d

model Eq. (3.2) looks like many copies of the 1+1-d model

in Eq. (7.1) where the different copies of the 1+1-d wire are

labeled by ky , and with each having a ky-dependent mass

mky
= m+ ty cos(ky) . (7.3)

Essentially, the Bloch Hamiltonian for each value of ky rep-

resents a 1+1-d insulator of the type Eq. 7.1, but with a ky-

dependent mass parameter.

Consider the parameter range m, ty > 0, and recall the

definition of By from Sec. III (it is the positive solution to

m+ ty cos(By) = 0 with By ∈ [0, π)). We see that the 1+1-d

systems labeled by ky havemky
> 0 for ky ∈ (−By, By), but

mky
< 0 for ky ∈ (By , π) or ky ∈ (−π,−By). So the 1+1-d

systems in the range −By < ky < By are in the topological

phase, while the rest are in the trivial phase.

As we now review, this observation immediately leads to

a microscopic description of the quasi-1D response of the

DSM. First, note that each topological wire contributes a fac-

tor e
2

∫

dxdt Ftx to the electromagnetic response of the sys-

tem. Here Ftx = ∂tAx − ∂xAt = −Ex (the electric field

in the x-direction), so this response represents a charge polar-

ization of magnitude e
2 in the x-direction. The total number

of 1+1-d systems in the range −By < ky < By is
2By

(

2π
Nya0

) ,

whereNy is the number of wires that we stack to construct the

2+1-d system, and a0 is the lattice spacing in the y-direction.
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So the total electromagnetic response from all of the topolog-

ical wires in the range −By < ky < By is

Seff,1D =
2By

(

2π
Nya0

)

e

2

∫

dxdt Ftx . (7.4)

Using Nya0 =
∫

dy and the fact that By is uniform in this

case, we get

Seff,1D =
e

2π

∫

d3x ByFtx , (7.5)

which is exactly the response from Eq. (2.1) for the case where

only By 6= 0.

We would like to make one more comment about the free

fermion topological wire model of Eq. (7.1). If one linearizes

this model near the m = 0 critical point, and then takes

a continuum limit, the resulting model is a 1 + 1-d Dirac

fermion with a Dirac mass (back-scattering) term acting be-

tween the left and right-moving fermions that make up the

Dirac fermion. For the BSM construction it will be useful to

make the following analogy. We note that the edge theory of

the ν = 1 Integer Quantum Hall Effect (IQHE) (for fermions)

is a single right-moving fermion. Hence, the fermion topo-

logical wire model used to construct the DSM can then be

interpreted as being built from the edge theory of a ν = 1
IQH state and a ν = −1 IQH state, with an additional back-

scattering mass term introduced to gap out the entire system.

Alternatively, we could think of the wire as just a thin strip of

ν = 1 IQHE where the opposing edges are close enough to

interact with each other. Similarly, in our coupled wires con-

struction of the BSM model, each individual wire will contain

the two counter-propagating edge modes of a thin strip of the

BIQH system.

B. Edge Theory of the Bosonic Integer Quantum Hall System

In this section we briefly discuss the edge theory of the

BIQH system, paying close attention to how the edge theory

couples to an external electromagnetic field. This edge the-

ory will help form the basic building block for the 1D bosonic

wires we will use to construct our 2D BSM model, just as

the edge theory for the fermion IQH system forms the ba-

sic building block for the 1+1-d fermionic topological wire

considered in the previous subsection. We expect the edge

theory for the BIQH system to satisfy (at least) two require-

ments: (i) the basic fields in the model are bosonic, and (ii) the

U(1)c charge conservation symmetry is realized in an anoma-

lous way so that the variation of the boundary action under a

gauge transformation cancels the contribution from the bulk

Chern-Simons action for the BIQH system.

The edge theory for the BIQH state can be described us-

ing the K-matrix formalism familiar from Abelian quantum

Hall systems (in which case it is described by K = σx, c.f.

Ref 16), however, we will use the description of the edge the-

ory in terms of an SU(2)1 Wess-Zumino-Witten (WZW) the-

ory, which was proposed in Refs. 15 and 17. Here we re-

view some details of this theory and explicitly show that the

anomaly of the edge theory with the correct charge assign-

ment exactly cancels the boundary term we obtain when we

perform a gauge transformation on the bulk Chern-Simons ef-

fective action for the BIQH system. Indeed, this clearly shows

that the BIQH state can be terminated with an SU(2)1 WZW

edge theory.

The bulk Chern-Simons effective action for the BIQH sys-

tem can be written in differential form notation as

SBIQH =
1

2π

∫

M

A ∧ dA , (7.6)

where M is the space-time manifold and A = Aµdx
µ. Under

a gauge transformation A → A + dχ we have SBIQH →
SBIQH + δSBIQH with

δSBIQH =
1

2π

∫

∂M

A ∧ dχ . (7.7)

Therefore, in order for the system as a whole to be gauge in-

variant, we should expect that the edge theory has an anomaly

when we couple to an electromagnetic field, in order to cancel

this term coming from the gauge-variation of the bulk action.

The SU(2)1 WZW theory takes the form (see Ref. 69 for

an introduction)

S =
1

8π

∫

d2x tr[(∂µU †)(∂µU)]− SWZ [U ] , (7.8)

where U is an SU(2) matrix field, and the Wess-Zumino

(WZ) term is

SWZ [U ] = (7.9)

1

12π

∫ 1

0

ds

∫

d2x ǫµνλtr[(Ũ †∂µŨ)(Ũ †∂νŨ)(Ũ †∂λŨ)].

As usual, the WZ term involves integration over an auxiliary

direction of spacetime. In this expression Ũ(s, t, x) denotes

an extension of U(t, x) into the s-direction and µ, ν, λ =
s, t, x in the sum (we take ǫstx = 1) . By convention, one

typically chooses boundary conditions Ũ(0, t, x) = I (i.e.,

a trivial configuration) and Ũ(1, t, x) = U(t, x), so that the

physical spacetime is located at s = 1.

The SU(2)1 WZW theory has an SU(2)× SU(2) symme-

try: the action is invariant under the replacement U → g†Uh,

for g, h ∈ SU(2). The transformation with g = I is referred to

as the right SU(2) symmetry, while the transformation with

h = I is referred to as the left SU(2) symmetry. The case

g = h is called the diagonal SU(2) symmetry. Just as in

Sec. IV, the matrix U can be written in terms of bosonic fields

bI , I = 1, 2, and the physical U(1)c symmetry bI → eiχbI is

realized on U as U → Ueiχσ
z

. Hence, the U(1)c symmetry is

a U(1) subgroup of the right SU(2) symmetry of the SU(2)1
WZW theory.

It is known that one cannot obtain a gauge invariant ac-

tion by only gauging the right or left SU(2) symmetry of

the WZW theory (or a subgroup of one of these symmetry

groups)70. However, in the case where one chooses to gauge a

left or right symmetry of the theory, there is a “best possible”

action that one can obtain, in which the gauge transformation
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produces a term that only depends on the gauge field itself and

the element of the Lie algebra involved in the gauge transfor-

mation (instead of a more complicated expression involving

the actual field U )71. In our case, this “best possible” action

takes the form

Sgauged =
1

4π

∫

d2x
∑

I

(Dµb∗I)(DµbI)− SWZ [U ]

+
1

4π

∫

d2x ǫµν tr[iAµσ
zU †∂νU ] , (7.10)

where Dµ = ∂µ − iAµ. In the kinetic term we applied

the usual minimal coupling procedure ∂µ → Dµ. The last

term, however, is more mysterious. Its purpose is to make the

gauge-variation of this action as nice as possible (the WZ term

is not gauge invariant). Indeed, under a gauge transformation

U → Ueiχ(x)σ
z

, Aµ → Aµ + ∂µχ(x), we have

δSgauged = − 1

2π

∫

d2x ǫµνAµ∂νχ = − 1

2π

∫

∂M

A ∧ dχ .
(7.11)

This precisely cancels the gauge variation of the bulk Chern-

Simons term, which shows that the SU(2)1 WZW theory with

gauged right U(1) symmetry is an appropriate description of

the edge of the BIQH system.

In our coupled wires construction of the BSM we will take

each wire to consist of two copies of the SU(2)1 WZW the-

ory, with fields U+ and U−, but with the two copies hav-

ing opposite signs on their WZ terms. Based on the form of

the gauged action Eq. (7.10) for one WZW theory, it is clear

that this doubled system can be gauged in such a way that

the total action is completely gauge-invariant. This 1D wire

model, which can be interpreted as consisting of two counter-

propagating BIQH edge modes, is a completely consistent 1D

system and is therefore an appropriate building block for a

coupled wires construction of the BSM model.

C. Review: Coupled wires model for one O(4) NLSM with

θ = π

Before presenting the coupled wires construction of the

BSM model, we first review the coupled wires construction

of a single O(4) NLSM with θ = π, which was first derived

in Ref. 42 (see also Refs. 17 and 43). In this construction

each 1D wire consists of just one copy of the SU(2)1 WZW

theory. We note briefly that in accordance with the discus-

sion in the previous subsection, if each wire contains only one

copy of the SU(2)1 WZW theory, then the left or right SU(2)
symmetry of each wire cannot be consistently gauged. This

was not a problem in the physical context of Refs. 42 and 43,

where the SU(2)1 WZW theory was considered in connec-

tion with 1D spin chains. In that case the SU(2) subgroup of

the theory which one might consider gauging is actually the

diagonal subgroup (U → h†Uh), and this subgroup can be

consistently gauged70.

We label the individual wires in the wire model by the dis-

crete coordinate j = 0, . . . , N − 1. The lattice spacing in the

stacking direction is a0, and the continuum coordinate for the

stacking direction will be y = ja0. The unperturbed action

for the collection of wires is

S0 =
∑

j

{

1

8π

∫

d2x tr[(∂µU †
j )(∂µUj)] + (−1)jSWZ [Uj ]

}

.

(7.12)

We see that the sign of the WZ term alternates between adja-

cent wires. The coupling between the wires takes the form

S⊥ =
t⊥
2

∑

j

∫

d2x
2
∑

I=1

(b∗I,jbI,j+1 + c.c.) , (7.13)

where t⊥ > 0, and b1 and b2 are the matrix elements of U .

This term is proportional to tr[U †
jUj+1+h.c.]. We now Fourier

transform in the stacking direction

bI,j =
1√
N

∑

k

bI,ke
ikja0 , (7.14)

to get

S⊥ = t⊥
∑

k

cos(ka0)

∫

d2x
∑

I

b∗I,kbI,k . (7.15)

The key point now is that we should expand this term near

its lowest energy point. This should be contrasted with the free

fermion case, where the correct procedure was to expand the

dispersion near the band touchings at zero energy (which is

where the low energy excitations are located when the lattice

is at half-filling). The potential energy associated with S⊥ is

H⊥ = −t⊥
∑

k

cos(ka0)

∫

dx
∑

I

b∗I,kbI,k , (7.16)

which has its minimum value at k = 0 for t⊥ > 0. Expanding

around k = 0 gives

S⊥ ≈ const. − t⊥
2

∑

k

(ka0)
2

∫

d2x
∑

I

b∗I,kbI,k . (7.17)

Since this interaction tends to align the fields Uj and Uj+1

(if we think of them as four component unit vector fields), it

makes sense to introduce the slowly varying continuum fields

bI(t, x, y), which are obtained from bI,j(t, x) by keeping only

the modes near k = 0. We have72

bI,j(t, x) ≈ bI(t, x, y) =
1√
N

∫

dk
(

2π
Na0

)bI,k(t, x)e
iky ,

(7.18)

where y = ja0, and we have expressed the continuum field

bI(t, x, y) as an integral over a continuous set of wavenumbers

k. The continuum fields bI(t, x, y) then become the compo-

nents of the continuum matrix field U(t, x, y). Back in real

space, S⊥ becomes the y derivative term (∂yU
†)(∂yU) in the

continuum limit.

Finally, the theta term comes from a careful evaluation of

the alternating sum of Wess-Zumino terms. We have

∑

j

(−1)jSWZ [Uj ] ≈
1

2

∫

dy ∂ySWZ [U ] , (7.19)
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where U in SWZ [U ] is the continuum field U(t, x, y). It re-

mains to evaluate ∂ySWZ [U ]. One method for evaluating this

quantity is to simply use the definition of the derivative,

∂ySWZ [U ] = lim
ǫ→0

SWZ [U(t, x, y + ǫ)]− SWZ [U(t, x, y)]

ǫ
.

(7.20)

We then expand U(t, x, y + ǫ) ≈ U(t, x, y) + ǫ∂yU(t, x, y)
and use the formula for the variation of the Wess-Zumino term

with δU set equal to ǫ∂yU . The variation of the WZ term is

δSWZ [U ] =
1

4π

∫

d2x ǫµ̄ν̄ tr[(U †∂µ̄U)(U †∂ν̄U)(U †δU)] ,

(7.21)

where µ̄, ν̄ = t, x only. Setting δU = ǫ∂yU , we obtain for the

y derivative,

∂ySWZ [U ] =
1

4π

∫

d2x ǫµ̄ν̄ tr[(U †∂µ̄U)(U †∂ν̄U)(U †∂yU)] .

(7.22)

A small amount of algebra then gives the final result

∑

j

(−1)jSWZ [Uj ] = πSθ[U ] , (7.23)

where Sθ[U ] is the theta term for the O(4) NLSM from

Eq. (4.4). Note that the theta angle θ works out to be exactly

π.

D. Coupled wires construction of the 2D BSM model

In this section we give a coupled wires construction of the

2D BSM model. Specifically, the construction presented here

yields our 2D BSM model with only the y-component of the

field Bµ non-zero. As we have discussed, our coupled wires

construction uses two SU(2)1 WZW theories in each unit cell

j in the stacking direction. We label the fields for the two

copies of the WZW model in each unit cell as U±,j . Below,

we will see how the “A” and “B” fields for the 2D BSM model

emerge from these initial ± fields (they are not the same).

In order to accommodate the inversion transformation in the

stacking direction, we take the wires to be numbered as j =
−N

2 , . . . ,
N
2 − 1 (so there are still N unit cells). We take N

even and assume periodic boundary conditions in the stacking

direction so that j = N
2 is identified with j = −N

2 . The

unperturbed action for the decoupled collection of wires is

S0 =
∑

j

{

∑

s=±

1

8π

∫

d2x tr[(∂µU †
s,j)(∂µUs,j)]

+ SWZ [U+,j]− SWZ [U−,j ]

}

, (7.24)

which consists of two SU(2)1 WZW theories in each unit cell

j, but with the ± copies having opposite signs on their re-

spective WZ terms. We add two kinds of inter-wire coupling

terms, which take the form

S⊥,1 =
t1
2

∑

j

∫

d2x
∑

I

{

b∗I,+,jbI,−,j+1 + b∗I,−,j+1bI,+,j + b∗I,−,jbI,+,j+1 + b∗I,+,j+1bI,−,j

}

(7.25)

and

S⊥,2 = −i t2
2

∑

j

(−1)j
∫

d2x
∑

I

{

b∗I,+,jbI,−,j+1 − b∗I,−,j+1bI,+,j − (b∗I,−,jbI,+,j+1 − b∗I,+,j+1bI,−,j)
}

. (7.26)

The hopping term S⊥,1 is proportional

to tr[(U †
+,jU−,j+1 + h.c.) + (U †

−,jU+,j+1 +

h.c.)], while the term S⊥,2 is proportional to

tr
[(

(iU †
+,jU−,j+1 + h.c.)− (iU †

−,jU+,j+1 + h.c.)
)

σz
]

.

When t1 > 0 the term S⊥,1 will tend to align U+,j with

U−,j+1 and U−,j with U+,j+1. We therefore define the new

fields bI,A,j and bI,B,j by

bI,A,j =

{

bI,+,j, j = even

bI,−,j, j = odd
(7.27)

and

bI,B,j =

{

bI,−,j, j = even

bI,+,j, j = odd
. (7.28)

It is these fields which have a nice continuum limit for the

chosen hopping terms. In terms of these fields the hopping

terms take the simpler form
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S⊥,1 =
t1
2

∑

j

∫

d2x
∑

I

{

b∗I,A,jbI,A,j+1 + b∗I,A,j+1bI,A,j + b∗I,B,jbI,B,j+1 + b∗I,B,j+1bI,B,j

}

, (7.29)

and

S⊥,2 = −i t2
2

∑

j

∫

d2x
∑

I

{

b∗I,A,jbI,A,j+1 − b∗I,A,j+1bI,A,j − (b∗I,B,jbI,B,j+1 − b∗I,B,j+1bI,B,j)
}

. (7.30)

Now we Fourier transform the “A” and “B” fields as in

Eq. (7.14), and also make a specific choice of hopping pa-

rameters, t1 = t cos(Bya0) and t2 = t sin(Bya0). In terms

of the Fourier-transformed fields the inter-wire coupling now

takes the form (with S⊥ = S⊥,1 + S⊥,2)

S⊥ = t
∑

k

{

cos[(k −By)a0]
∑

I

b∗I,A,kbI,A,k

+ cos[(k +By)a0]
∑

I

b∗I,B,kbI,B,k

}

. (7.31)

It is clear that the additional imaginary hopping terms with

amplitude t2 have cause the minima of the cosine potentials

to shift from k = 0 to k = ±By.

Finally, we take the continuum limit in the stacking direc-

tion. For the “A” fields we expand the cosine around k = By ,

and for the “B” fields around k = −By , which is where the

potential energy (which is proportional to − cos[(k±By)a0])
has its minimum. The lattice fields now take the approximate

form

bI,A,j(t, x) ≈ eiByybI,A(t, x, y) (7.32a)

bI,B,j(t, x) ≈ e−iByybI,B(t, x, y) , (7.32b)

where the slowly varying continuum fields are now given by

bI,A(t, x, y) =
1√
N

∫

dk
(

2π
Na0

)bI,A,k+By
(t, x)eiky(7.33)

bI,B(t, x, y) =
1√
N

∫

dk
(

2π
Na0

)bI,B,k−By
(t, x)eiky ,(7.34)

where the integration over wavenumbers k is now centered

at the modes with wavenumber ±By instead of at k = 0.

The term S⊥ will give the terms |(∂y − iBy)bI,A|2 and

|(∂y + iBy)bI,B|2 in the continuum limit, so this construc-

tion gives the correct minimal coupling of the bosonic fields

to the “gauge field” By .

Now we look at how the alternating sums of WZ terms

transform into the theta terms for the “A” and “B” copies of

the O(4) NLSM. We first define the matrix lattice fields UA,j

and UB,j , whose matrix elements are the lattice fields bI,A,j

and bI,B,j . In the continuum limit these are expressed in terms

of the continuum matrix fields UA(t, x, y) and UB(t, x, y)
(whose matrix elements are the continuum fields bI,A(t, x, y)

and bI,B(t, x, y)), as

UA,j(t, x) ≈ UA(t, x, y)e
i(Byy)σ

z

(7.35)

UB,j(t, x) ≈ UB(t, x, y)e
−i(Byy)σ

z

. (7.36)

The matrix phase factors e±i(Byy)σ
z

attach the appropriate

phase to the lattice bosons, as shown in Eq. (7.32). Because of

the form of the WZ term, the matrix phase factors e±i(Byy)σ
z

completely cancel each other, and the evaluation of the theta

terms from alternating sums of WZ terms proceeds exactly as

in the case of one copy of the O(4) NLSM. In addition, we

have
∑

j

(SWZ [U+,j]− SWZ [U−,j ]) =

∑

j

(−1)jSWZ [UA,j ]−
∑

j

(−1)jSWZ [UB,j] ,

(7.37)

so the theta angles for the “A” and “B” copies of the O(4)
NLSM will have opposite sign.

E. Symmetry transformations

We now define transformations for the lattice bosonic fields

bI,±,j under inversionZI
2 and time-reversalZT

2 in such a way

that in the continuum limit we get the transformations shown

in Eq. (5.4) and Eq. (5.5) for the fields bI,A and bI,B of the 2D

BSM model. For time-reversal, we take

T bI,±,jT −1 = bI,∓,j . (7.38)

It is easy to see that the term S⊥,1 has this symmetry. The term

S⊥,2 picks up a minus sign under the swap + → −, but the

factor of i in that term is also negated since T is anti-unitary.

These two signs cancel each other, and so the term S⊥,2 is

also symmetric under this time-reversal symmetry. We also

see that T bI,A,jT −1 = bI,B,j, which then translates over to

the correct continuum transformation T bI,AT −1 = bI,B, as

can be seen from Eq. (7.32).

Next we consider the action of inversion symmetry. We

take I to act on the lattice fields as

IbI,±,j(x)I−1 = bI,∓,−j(−x) , (7.39)

which is just an inversion about the origin x = 0, j = 0.

Again, it is easy to see that S⊥,1 has this inversion sym-

metry. Although it is not obvious, one can explicitly check
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that S⊥,2 also has this symmetry. For example the terms

b∗I,+,1bI,−,2 and b∗I,−,−1bI,+,−2, which are partners under in-

version, appear in S⊥,2 with the same sign. We also see that

IbI,A,j(x)I−1 = bI,B,−j(−x) since j ≡ −j mod 2. In the

continuum limit this inversion symmetry then translates into

IbI,A(x)I−1 = bI,B(−x), as can be seen from Eq. (7.32),

and this is exactly the inversion transformation for the contin-

uum fields in the 2D BSM model.

Finally, we discuss the emergence of the U(1)t translation

symmetry for the continuum fields. We saw that after ex-

panding the cosines near k = ±By and taking the continuum

limit in the y direction, the term S⊥ gave the kinetic terms

|(∂y − iBy)bI,A|2 and |(∂y + iBy)bI,B|2 for the continuum

fields bI,A and bI,B . We can see from the form of these terms

that the continuum action is invariant under the transforma-

tion bI,A → eiξbI,A, bI,B → e−iξbI,B and By → By + ∂yξ.

This transformation is exactly the U(1)t gauge transformation

shown in Eq. (5.3) and discussed in the paragraphs following

that equation (in the special case where only the y-component

of Bµ is non-zero).

F. Discussion

In this section we have shown how to construct our 2D

BSM model from a quasi-1D coupled wires model. Let us

now contrast the coupled wires model for the BSM phase

with the coupled wires model for the DSM phase (derived in

Ref. 7).

In the DSM case, we considered fermions on the square

lattice at half-filling. The Bloch Hamiltonian for the model

in question featured two bands with energies E±(k) shown

in Eq. (3.5). At half-filling, the low-energy excitations of that

model were at the locations in the BZ where the two bands

touched, i.e., at the locations where E+(k) = E−(k) = 0.

For this reason we expanded the Bloch Hamiltonian where

E±(k) = 0 to obtain the low energy description of the system.

If the band was just a cosine, e.g., cos(ky), then we would

expand at ky = ±π
2 (so two locations), which are the locations

of the two Dirac points. From this discussion it is clear why

the formm±ty cos(ky) for the dispersion was appropriate for

the construction of the DSM model: the addition of the intra-

wire mass m shifts the cosine vertically, which changes the

positions of the zeros of energy, and hence shifts the locations

of the Dirac nodes in the BZ.

Now we compare to the BSM case. For bosons there is no

notion of filling a band or of expanding a dispersion near band

touchings. Instead, the appropriate method for finding the low

energy description of the system was to expand the potential

about its minimum. For a potential which is just a cosine, e.g.,

− cos(ky), we expand around ky = 0 (so a single location).

From this discussion it is apparent that in order to move the

low-energy physics of the bosonic system away from ky =
0, we need to shift the minimum of the cosine potential, i.e.,

we need a horizontal shift of the cosine, as in − cos(ky −
By). In our coupled wires construction of the BSM model this

horizontal shift was accomplished using an imaginary inter-

wire hopping term, not an intra-wire mass term as in the DSM

case.

It seems that the essential difference between the coupled

wires constructions of the DSM and BSM models comes from

the simple fact that fermions fill a band structure, while bosons

do not. Therefore a different mechanism is needed in the two

cases to shift the low-energy physics to the points (0,±By) in

momentum space.

Finally, we note that our coupled wires model for the BSM

can be driven into time-reversal or inversion breaking phases

by adding dimerization to the inter-wire tunneling terms. As

we discussed in Sec. V (see the discussion in the paragraph

above Eq. (5.26)), the time-reversal and inversion breaking

perturbations to the BSM model correspond to correlated

shifts of the theta angles θA and θB away from their origi-

nal values θA = −θB = π. In Ref. 43, Tanaka and Hu have

shown that incorporating dimerization into the inter-wire in-

teractions in the coupled wires construction (of Ref. 42) of

the O(4) NLSM at θ = π leads to an O(4) NLSM with θ
shifted away from π. It is therefore possible to investigate

the time-reversal and inversion breaking phases of the BSM

model within its quasi-1D description in terms of coupled

wires, just by adding suitable dimerization to the inter-wire

tunneling terms. However, we do not carry out this analysis

here as we have already investigated these phases within the

continuum description in Sec. V and we do not expect the re-

sults to be modified in an essential way.

VIII. CONCLUSION

We have constructed an effective theory and a coupled-wire

model for a bosonic analog of a topological DSM, in which

the Dirac cones of the DSM are replaced with copies of the

O(4) NLSM with topological theta term and theta angle θ =
±π. We computed the time-reversal and inversion symmetry

breaking electromagnetic responses of this BSM model, and

showed that they are twice the value of the responses obtained

in the fermionic DSM case. We also examined the stability

of our BSM model to many kinds of perturbations, and found

that the same composite ZT I
2 symmetry which protects the

local stability of the DSM also plays an important role in the

local stability of the BSM. Finally, we provided a quasi-1D

construction of the BSM model using an array of coupled 1D

wires in which each individual wire is made up of two copies

of the SU(2)1 WZW conformal field theory.

Along the way we have been able to clarify many aspects of

theO(4) NLSM with θ = π which have been discussed in the

literature. In particular we provided a detailed analysis of the

stability of the BTI surface theory to symmetry-allowed per-

turbations, which were only briefly discussed in Ref. 17. We

were also able to prove the results on the charges and statis-

tics of vortices in theO(4) NLSM with theta term which were

argued for in Refs. 17 and 42. We also conjectured a relation-

ship between the descriptions of the BTI surface discussed in

this paper, in particular the dual vortex description of Ref. 17

and the description in terms of Abanov-Wiegmann fermions,

and the recently proposed dual description in terms of N = 2
QED3

40. As we discussed in Sec. IV, one interesting direc-
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tion for future work would be to give a direct derivation of the

N = 2 QED3 description of the BTI surface, starting from the

description in terms of the O(4) NLSM with θ = π.

Another interesting direction for future work would be to

explore bosonic analogues of Weyl semi-metals in three spa-

tial dimensions. In particular, it would be interesting to un-

derstand the requirements for the local stability of a bosonic

analogue of a Weyl semi-metal, since in the fermion case the

local stability of the Weyl nodes does not depend on any dis-

crete symmetry73. This is quite different from the DSM case

in 2D, in which the composite symmetry ZT I
2 was necessary

to ensure the local stability of the Dirac nodes. One possibil-

ity for a bosonic analogue of a Weyl semi-metal would be to

try replacing each Weyl node with a copy of the O(5) NLSM

with theta term and theta angle θ = ±π.

Finally, there is still more to be learned about the O(4)
NLSM at θ = π. The disordered (symmetry-preserving)

phase of this model was first argued to be gapless in Ref. 42.

Qualitative arguments about the RG flows of this model also

indicate the existence of a fixed point (representing the pu-

tative gapless phase) at θ = π at a large but finite value of

the coupling constant g46. Very recently, numerical simula-

tions on a (fermionic) honeycomb lattice model whose low

energy sector is described by the O(4) NLSM with θ = π
have shown that this model is indeed gapless74,75. It would

be very interesting to understand how the vortex braiding pro-

cesses we described in Appendix C, which at θ = π lead to

destructive interference between the different field configura-

tions summed over in the path integral of the O(4) NLSM,

lead to this gapless behavior. In addition, it would be interest-

ing to calculate the scaling dimension of the O(4) field N at

the disordered fixed point.
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Appendix A: Canonical quantization of the O(4) non-linear

sigma model

In this appendix we briefly discuss the canonical quantiza-

tion of the O(4) NLSM. We use these commutation relations

in Sec. IV to understand the effects of symmetry-allowed per-

turbations on the surface theory of the BTI. Since the O(4)
NLSM is a constrained system, it is necessary to use the Dirac

bracket formalism to obtain the canonical commutators of this

system76,77. Let ψi, i = 1, . . . ,M , be the second class con-

straints of the system in question. Then the Dirac bracket is

given by

{f(x), g(y)}D = {f(x), g(y)} (A1)

−
M
∑

i,j=1

∫

d2z d2z′ {f(x), ψi(z)}C−1
ij (z, z′){ψj(z

′), g(y)} ,

where the Cij(z, z
′), which are the matrix elements of a ma-

trix with discrete indices i, j and continuous spatial indices z

and z′, are given by

Cij(z, z
′) = {ψi(z), ψj(z

′)} , (A2)

and where { , } is the ordinary Poisson bracket.

In the case of the O(4) NLSM, one possible choice of co-

ordinates and momenta is just the fields Na and their canon-

ically conjugate momenta Πa = ∂L
∂(∂tNa) . In terms of these

variables the Poisson bracket reads

{f(x), g(y)} = (A3)

4
∑

a=1

∫

d2z

(

δf(x)

δNa(z)

δg(y)

δΠa(z)
− δf(x)

δΠa(z)

δg(y)

δNa(z)

)

,

where δ
δNa(z) is a functional derivative. This system has two

second class constraints, which take the form

ψ1 =
∑

a

NaNa − 1 (A4)

ψ2 =
∑

a

NaΠa . (A5)

Using this data one finds, for example, that the Dirac bracket

for Na and Πb is

{Na(x),Πb(y)}D =
(

δab −Na(x)N b(y)
)

δ(2)(x− y) .
(A6)

The rest of the Dirac brackets for this system are shown ex-

plicitly in Ref. 78. The commutator for the quantum field

theory is then obtained by replacing {Na(x),Πb(y)}D with

−i[Na(x),Πb(y)] in the previous expression.

In this paper we discuss theO(4) NLSM using the variables

b1 and b2 defined in Eq. (4.5). In the canonical formalism

we now have the coordinates bI and b∗I and momenta πI =
∂L

∂(∂tbI)
and π∗

I = ∂L
∂(∂tb∗I )

for I = 1, 2. In these variables the

second class constraints are

ψ1 =
∑

I

b∗IbI − 1 (A7)

ψ2 =
∑

I

(bIπI + b∗Iπ
∗
I ) . (A8)

The Dirac bracket for bI and πJ takes the form

{bI(x), πJ (y)}D =

(

δIJ − 1

2
bI(x)b

∗
J(y)

)

δ(2)(x− y) .

(A9)

For the quantum theory this yields the commutation relation

[bI(x), πJ (y)] = i

(

δIJ − 1

2
bI(x)b

†
J (y)

)

δ(2)(x− y) ,

(A10)
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where the function b∗I(x) has been replaced with the operator

b†I(x) on the Hilbert space. One can also show that the opera-

tors bI(x) and b†J(x) all commute with each other. These are

the only commutation relations we require for this paper, but

the others can also be derived using the Dirac bracket formal-

ism.

Appendix B: Vortices in the O(4) NLSM and their quantum

numbers

In this appendix we study vortex solutions of the equations

of motion for the O(4) NLSM, and we also perform a collec-

tive coordinate quantization of the global excitations on the

background of a single vortex. This allows us to show very

directly that vortices in the phase of b1 carry charge θ
2π of

b2 and vice-versa, as was argued in Ref. 17. A more precise

statement is that in the presence of a vortex in b1, the charge

spectrum of b2 is shifted by θ
2π . Our analysis (in particular, the

collective coordinate quantization) closely parallels the anal-

ysis in Ref. 78 of solitons in the O(3) NLSM with Hopf term.

In Ref. 78, the authors showed that a soliton of topological

chargeQ carries angular momentum θ
2πQ

2, where θ is the co-

efficient of the Hopf term (the result forQ = 1 was originally

worked out in Ref. 50).

1. Finite energy vortex solutions

We start by discussing a class of finite energy vortex solu-

tions to the NLSM equations of motion. To the best of our

knowledge, these solutions have not appeared in the litera-

ture. They are, however, closely related to solitons in theO(3)
NLSM, due to the fact that they involve only three compo-

nents of the O(4) field. Exact soliton solutions for the O(3)
NLSM were obtained long ago by Belavin and Polyakov79.

Our vortex solutions, however, involve different boundary

conditions than those considered in the soliton case. Indeed,

in the study of solitons in an O(3) NLSM, with field m, one

imposes the boundary condition that m tends to a fixed con-

figuration m0 at spatial infinity. This boundary condition has

the effect of compactifying 2D space to the sphere S2. For

the vortex configurations considered here, we will instead re-

gard 2D space as a large disk of radius R, and only take R to

infinity at the end of the calculation.

If we vary the O(4) NLSM action in Eq. (4.1) with respect

to U and use δU † = −U †δUU † (since U is an SU(2) matrix)

we find the equation of motion

�U − U(�U †)U = 0 , (B1)

where � = ∂2t − ∇2. The theta term does not contribute to

the equation of motion since its variation is a total derivative.

We work in polar coordinates (r, φ) for the plane, but with an

upper cutoff R for the radial direction, i.e., r ∈ [0, R], and

take R → ∞ at the end of the calculation. Let z = (b1, b2)
T ,

where b1 and b2 are the elements of U as shown in Eq. (4.5).

We make the time-independent vortex ansatz,

z =

(

cos(f(r))eiαφ

sin(f(r))

)

(B2)

where α ∈ Z (so that the solution is single-valued) and we

take the boundary conditions f(0) = π
2 and f(R) = 0, so

that the amplitude of b1 vanishes in the vortex core. One can

actually take α to be any real number in what follows. Solu-

tions with general values of α might be relevant for the study

of braiding statistics of excitations in gauged NLSM’s as con-

sidered in Ref. 49. Plugging this ansatz into the equations of

motion yields a differential equation for f(r)

f ′′(r) +
1

r
f ′(r) + α2 sin(f(r)) cos(f(r))

r2
= 0 , (B3)

whose exact solution for the given boundary conditions is

f(r) = am[log
(

R
r

)|α|
, 1] = −π

2+2 tan−1
[

(

R
r

)|α|
]

. (B4)

In this expression, am[u, k] is the Jacobi Amplitude function.

When k = 1, this function reduces to a much more manage-

able form.

Next we show that this solution has finite energy. We will

see that the energy of the solution is actually independent of

the long-distance cutoffR. The topological term does not con-

tribute to the energy, so we just have (i = x, y and we sum

over i)

Eα =

∫

d2x
1

g
(∂iz

†)(∂iz)

=

∫

d2x
1

g

{

(∂if(r))
2 +

cos2(f(r))

r2

}

. (B5)

Next we go to polar coordinates and use the fact

that (∂if(r))
2 = 4α2

r2
R2|α|r2|α|

(r2|α|+R2|α|)2
and

cos2(f(r))
r2 =

4
r2

R2|α|r2|α|

(r2|α|+R2|α|)2
for the solution for f(r) in Eq. (B4) to find

Eα =
1

g

∫ 2π

0

dφ

∫ R

0

rdr
4(α2 + 1)

r2
R2|α|r2|α|

(r2|α| +R2|α|)2

=
2π

g

(

|α|+ 1

|α|

)

. (B6)

So we find that the vortex solution has finite energy, and that

the energy is independent of the upper cutoff R. The energy

increases essentially linearly with the “vortex strength”α. For

the case of α = 1, we just get E1 = 4π
g .

It is interesting to note that this theory admits finite energy

vortex solutions without requiring coupling to a dynamical

gauge field, as is necessary in the case of an ordinary com-

plex scalar field in 2D (see, for example, the discussion of the

Abelian Higgs model in Ref. 80). These vortex solutions are,

however, somewhat pathological, in the sense that the size of

the vortex core grows without bound as the upper cutoff R is

pushed to infinity. Vortex-anti-vortex pairs, however, do not

have this problem. This is because the energy density of such

a pair falls of faster than 1
r2 at long distances, so these objects

are well-defined when the system size is infinite.



33

2. O(2) NLSM for phase excitations of b2 on a vortex

background

We now study the global excitations of the phase of the bo-

son b2 on the background of a vortex in b1. Note that the

classical energy Eα of the vortex ansatz in Eq. (B2) is invari-

ant under the replacement sin(f(r)) → sin(f(r))eiθ̄2 where

θ̄2 is any constant phase. To study the global excitations about

the vortex solution, we promote θ̄2 to a time-dependent phase

θ2(t),

z =

(

cos(f(r))eiφ

sin(f(r))eiθ2(t)

)

(B7)

where f(r) is the vortex solution from Eq. (B4) with α = 1.

We then evaluate the action on this configuration and quantize

the motion of θ2(t). This type of analysis is referred to as

collective coordinate quantization (see Refs. 78 and 81) and is

useful for understanding how quantum fluctuations can lift the

classical degeneracy of global fluctuations about the vortex

solution.

On this field configuration the theta term in the action re-

duces as

Sθ =
1

24π2

∫

d3x ǫµνλtr[(U †∂µU)(U †∂νU)(U †∂λU)]

→ 1

2π

∫

dt ∂tθ2(t) , (B8)

which is precisely the theta term for an O(2) NLSM in 0+ 1-

d82. The kinetic term in the action reduces to

Skin =

∫

d3x
1

g
(∂µz†)(∂µz)

→
∫

dt

{

2πR2J

g
(∂tθ2)

2 − E1

}

, (B9)

where E1 = 4π
g is the energy of the vortex solution and J is

the convergent integral

J =

∫ ∞

0

dw e−2wsn2[w, 1] =
3

2
− ln(4) . (B10)

In this expression sn[w, 1] = sin(am[w, 1]) is one of the Ja-

cobi Elliptic functions. An important point here is that it does

not make physical sense to evaluate the action on a vortex so-

lution with infinite energy, therefore it is crucial for our anal-

ysis that the vortex solutions do have finite energy.

The full action for the phase excitation θ2(t) is (neglecting

the constant E1)

Sθ2 =

∫

dt

{

2πR2J

g
(∂tθ2)

2 − θ

2π
∂tθ2

}

. (B11)

This is exactly the action for an O(2) NLSM with theta term

in 0 + 1 dimensions. We can now canonically quantize the

action for θ2. We define the canonical momentum

p2 =
∂Lcore

∂(∂tθ2)
=

4πR2J

g
(∂tθ2)−

θ

2π
, (B12)

from which we derive the Hamiltonian

Hcore =
1

2m

(

p2 +
θ

2π

)2

, (B13)

where m = 4πR2J
g is the “mass” of the degree of freedom in-

side the vortex. In canonical quantization we set p2 = −i ∂
∂θ2

,

and so we find that the eigenfunctions of the vortex Hamilto-

nian are

ψn(θ2) =
1√
2π
einθ2 , n ∈ Z (B14)

with energies

En =
1

2m

(

n+
θ

2π

)2

. (B15)

We see that there is generally a unique ground state except for

when θ = π, in which case the n = 0 and n = −1 states

are degenerate. The energies of these states do, however, all

collapse to zero in the thermodynamic limit R→ ∞.

3. Spectrum of charges

Finally, we can look at the charge spectrum of θ2(t) fluc-

tuations on the background of a vortex in b1. We start by

considering the conserved charge for boson species 2,

Q2 =

∫

d2x
i

g
(∂tb

∗
2b2 − b∗2∂tb2) , (B16)

where the integration is taken over all of space. This is the

conserved charge for the Noether current of the O(4) NLSM

associated with the invariance of the action under the symme-

try b2 → eiχb2. After canonical quantization,Q2 will become

the number operator for the b2 bosons. Evaluating this expres-

sion on our vortex solution gives

Q2 =
4πR2J

g
(∂tθ2) , (B17)

and replacing ∂tθ2 with the canonical momentum p2 gives

Q2 = p2 +
θ

2π
. (B18)

This shows that the charge spectrum of b2 is shifted by θ
2π

in the presence of a vortex in b1, which means that a half-

charge of b2 may be associated to vortices in b1 at θ = π.

An analogous result holds for vortices in b2. It follows that a

vortex in b1 will carry half of any U(1) charge carried by b2,

for example the U(1)c and U(1)t charges considered in this

paper. Thus, we have been able to prove the result of Ref. 17,

which is that vortices on the surface of the BTI carry charge

± 1
2 , directly from the description of the surface in terms of

the O(4) NLSM with θ = π.
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Appendix C: Theta term and the Minkowski space path integral

for the O(4) NLSM

In this Appendix we discuss the role of the theta term in

the Minkowksi spacetime (i.e., real time) path integral of the

O(4) NLSM. Recall from Sec. IV that in Euclidean spacetime

(compactified to the sphere S3 via appropriate boundary con-

ditions), the theta term was quantized due to the non-trivial

homotopy group π3(S
3) = Z. In that case the theta term con-

tributed a phase eiθnI to the Euclidean path integral, where

nI ∈ Z was the instanton number of the field configuration

(see Eq. (4.9)). It then followed that the time-reversal sym-

metric values of θ are θ = nπ, n ∈ Z, at which the phase

eiθnI is real. In Minkowski spacetime these arguments no

longer hold, and it is illuminating to develop a separate un-

derstanding of the role of the theta term in the real time path

integral.

In this Appendix we show that in the real time path integral

the theta term gives a weight eiθ to spacetime configurations

of theO(4) field in which a vortex in the field b2 makes a com-

plete circuit around around a vortex in b1. This result was an-

ticipated by the Euclidean spacetime arguments of Senthil and

Fisher (Ref. 42), but in this Appendix we derive this result us-

ing only the properties of the theta term in Minkowski space-

time. In addition, following an argument used by Wilczek and

Zee in Ref. 50 in their analysis of solitons in the O(3) NLSM

with Hopf term, our result implies that a bound state of a vor-

tex in b1 and a vortex in b2 carries intrinsic angular momentum

J = θ
2π . When θ = π, we have J = 1

2 , which means that the

bound state is a fermion. This result was also argued for in

Ref. 17.

To start, we express the components b1 and b2 of the NLSM

field U in Hopf coordinates as in Sec. IV. In these coordinates

the bosonic fields are expressed as b1 = sin(η)eiϑ1 and b2 =
cos(η)eiϑ2 with η ∈ [0, π2 ] and ϑ1, ϑ2 ∈ [0, 2π). The theta

term can be written in the form (compare to Eq. (4.44))

Sθ[U ] =
1

4π2

∫

d3x ǫµνλ∂µ
(

sin2(η)
)

∂νϑ1∂λϑ2 . (C1)

Now we integrate by parts, for the moment ignoring boundary

terms. Later we will comment on the boundary conditions

necessary to justify ignoring these boundary terms. We get

Sθ[U ] =
1

2π

∫

d3x sin2(η) (∂µϑ1K
µ
2 − ∂µϑ2K

µ
1 ) , (C2)

where we have introduced the vortex currents Kµ
I =

1
2π ǫ

µνλ∂ν∂λϑI for vortices in the phase of the field bI . If

ϑI has vortices of vorticity qI,j (qI,j ∈ Z) at locations rI,j(t)
(i.e., rI,j(t) is the location of the vortex core), then the com-

ponents of the vortex current Kµ
I take the form

Kt
I =

∑

j

qI,jδ
(2)(x− rI,j(t)) (C3)

KI =
∑

j

qI,jvI,j(t)δ
(2)(x− rI,j(t)) , (C4)

where KI = (Kx
I ,K

y
I ) and vI,j(t) =

drI,j(t)
dt . Since

sin(η) = 0 at the core of vortices in b1, and sin(η) = 1 at

the core of vortices in b2, the theta term reduces further to

Sθ[U ] =
1

2π

∫

d3x ∂µϑ1K
µ
2 . (C5)

We now show that the theta term gives a phase of eiθ in the

real time path integral whenever a vortex (of strength q = 1) in

the phase of b2 makes a complete circuit around a vortex (also

of strength q = 1) in the phase of b1. We take the vortex in

ϑ1 to be located at r1(t), and the vortex in ϑ2 to be located at

r2(t), and we restrict the time integration in the action to be on

the interval [0, T ], where T is the time it takes for the vortices

to complete their circuit. From the form of the components of

the vortex current shown above, we find the result

∫

d3x ∂µϑ1K
µ
2 =

∫ T

0

dt
d

dt
ϑ1(t, r2(t)) , (C6)

where the integrand is the total time derivative of ϑ1(t, r2(t)),

d

dt
ϑ1(t, r2(t)) = ∂tϑ1(t, r2(t)) + v2(t) · ∇ϑ1(t,x)

∣

∣

∣

∣

x=r2(t)

.

(C7)

Here the function ϑ1(t, r2(t)) is the phase of b1 evaluated at

the core of the vortex in b2.

Now we integrate the total time derivative of ϑ1(t, r2(t))
from t = 0 to t = T to obtain

Sθ[U ] =
1

2π
(ϑ1(T, r2(T ))− ϑ1(0, r2(0))) . (C8)

Finally, since the core of the vortex in b2 makes one full circuit

around the core of the vortex in b1 as t varies from 0 to T ,

we have ϑ1(T, r2(T )) − ϑ1(0, r2(0)) = 2π. We then get

Sθ[U ] = 1, which means that in the real time path integral

we get a phase eiθSθ[U ] = eiθ for every field configuration in

which a vortex in b2 makes a complete circuit around a vortex

in b1. More generally, if a vortex of strength q2 in b2 makes a

complete circuit around a vortex of strength q1 in b1, we get a

phase of eiq1q2θ .

The result obtained above can also be used to investigate the

intrinsic angular momentum and statistics of the bound state

of vortices in b1 and b2. In Ref. 50, the authors calculated the

intrinsic angular momentum J of a soliton in theO(3) NLSM

with Hopf term by calculating the action corresponding to an

adiabatic rotation of the soliton by 2π. If the time it takes

to complete the rotation is T , then the action should evaluate

to S = 2πJ + O( 1
T ). The topological term in the action is

responsible for the value of J , and the terms of order 1
T are

produced by the other terms in the action. From our result

above, we immediately see that 2πJ = θ for the vortex bound

state, so J = θ
2π . At θ = π we get J = 1

2 , which means that

the vortex bound state is a fermion.

Finally, a few words are in order about the conditions neces-

sary to justify ignoring the boundary terms produced when we

integrated the theta term by parts. First, the boundary terms in

the time direction can be neglected if the field configurations

at the initial and final time are chosen to be the same. This is

the usual choice in field theory, where the path integral rep-

resents a matrix element of the form 〈ψ|e−iHT |ψ〉, in which
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the time evolution operator e−iHT is sandwiched between the

same initial and final state |ψ〉 (usually the vacuum, or ground

state).

Now we discuss the spatial boundary terms. One way to

ensure that the spatial boundary terms vanish is to require the

phases ϑ1 and ϑ2 to tend to constants at spatial infinity. This

means that these two phases cannot wind at spatial infinity,

which means that if vortices are present in ϑ1 or ϑ2, there

must also be an equal number of anti-vortices present to com-

pletely cancel the winding of the phase at spatial infinity. In

other words, the sum over configurations of the O(4) field U
in the path integral should be restricted to include only those

configurations which contain an equal number of vortices and

anti-vortices in the phase of each boson bI . This require-

ment makes physical sense since, as we saw in Appendix B,

isolated vortices have some undesirable properties (their core

size grew without bound as the system size was taken to infin-

ity). As we discussed in Appendix B, vortex-anti-vortex pairs

do not have this problem.

Appendix D: Abanov-Wiegmann fermions and the relation to

the O(4) NLSM with theta term

We mentioned in Sec. IV that the Abanov-Wiegmann

method seems to be more closely connected to anO(4) NLSM

in the ordered (small g) phase, whereas we are interested in

studying the disordered (large g) phase of the model. Nev-

ertheless, our response calculation using Abanov-Wiegmann

fermions completely agrees with the response calculation of

Ref. 17 using the dual vortex theory (which we reviewed in

Sec. IV). In this Appendix we use the Abanov-Wiegmann

formula to argue that the topological part of the electromag-

netic response of theO(4) NLSM with θ = π must be exactly

equal to the topological part of the response of the theory of

four massless fermions ψa, where ψa are the four Abanov-

Wiegmann fermions which can be coupled to the O(4) field

to produce an O(4) NLSM at θ = π.

As discussed above, the Abanov-Wiegmann method cannot

produce an O(4) NLSM in the disordered, or large g phase,

because the expansion in powers of M−1 would not be re-

liable at such low orders if M was taken to be small. Let

us instead consider a completely different scenario, in which

we start out with a system containing bosonic and fermionic

degrees of freedom. The ingredients in this theory are (i)

an O(4) NLSM in the disordered phase with a theta angle

θ = −π, and (ii) the four massless fermions ψa introduced in

the discussion of the Abanov-Wiegmann method in Sec. IV.

The action for these two decoupled theories takes the form

S = Sb + Sf with

Sb =

∫

d3x

[

1

g
(∂µNa)(∂µN

a)

]

+ πSθ[N] , (D1)

and

Sf =

∫

d3x iΨ̄/∂Ψ , (D2)

where Ψ = (ψ1, ψ2, ψ3, ψ4)
T . We now turn on a strong inter-

action between these two theories of the form

Sint = −M
4
∑

a=1

∫

d3x Ψ̄NaΓaΨ , (D3)

with M > 0 and large (so the coupling is strong).

If we integrate out the fermions in this theory (using the

Abanov-Wiegmann formula), then the theta term for theO(4)
NLSM will be canceled (recall that the original theta angle

was −π), and we are left with the action

S =

∫

d3x
1

g̃
(∂µNa)(∂µN

a) , (D4)

where g̃ is very small, since g̃−1 = g−1 + M
const.

. The re-

sult is an O(4) NLSM with no theta term which is in its or-

dered phase. We see that strong coupling to the four massless

fermions ψa has completely destroyed the topological proper-

ties of the original O(4) NLSM with θ = −π.

Our interpretation of this is as follows. The theory of four

massless fermions in Eq. (D2) (in which the fermions carry the

charges qa calculated in Sec. IV) should be regarded, in some

sense, as the inverse of the O(4) NLSM with θ = −π, since

strong coupling between the two theories completely destroys

the topological properties of the latter theory. In particular, the

topological part of the electromagnetic responses of these two

theories should have opposite signs. Now the O(4) NLSM

with θ = π is also, in this same sense, the inverse of the O(4)
NLSM with θ = −π. To see this, suppose we had two O(4)
NLSM’s with theta term, with fields N and M, with the first

copy having θ = π and the second copy having θ = −π. Then

a strong dot product coupling of the form N·M between these

two theories will have the effect of setting N = ±M, which

will in turn cause the theta terms for the two theories to cancel.

We therefore conclude that the topological part of the electro-

magnetic response of the fermion theory in Eq. (D2) should

be exactly equal to the topological part of the response of the

O(4) NLSM with θ = π. This explains why we were able

to calculate the electromagnetic response of the O(4) NLSM

with θ = π by instead coupling the fermion theory in Eq. (D2)

to the external field Aµ.
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