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We study composite fermi liquid (CFL) states in the lowest Landau level (LLL) limit at a generic
filling ν = 1

n
. We begin with the old observation that, in compressible states, the composite fermion

in the lowest Landau level should be viewed as a charge-neutral particle carrying vorticity. This
leads to the absence of a Chern-Simons term in the effective theory of the CFL. We argue here that
instead a Berry curvature should be enclosed by the fermi surface of composite fermions, with the
total Berry phase fixed by the filling fraction φB = −2πν. We illustrate this point with the CFL
of fermions at filling fractions ν = 1/2q and (single and two-component) bosons at ν = 1/(2q + 1).
The Berry phase leads to sharp consequences in the transport properties including thermal and spin
Hall conductances. We emphasize that these results only rely on the LLL limit, and do not require
particle-hole symmetry, which is present microscopically only for fermions at ν = 1/2. Nevertheless,
we show that the existing LLL theory of the composite fermi liquid for bosons at ν = 1 does have
an emergent particle-hole symmetry. We interpret this particle-hole symmetry as a transformation
between the empty state at ν = 0 and the boson integer quantum hall state at ν = 2. This
understanding enables us to define particle-hole conjugates of various bosonic quantum Hall states
which we illustrate with the bosonic Jain and Pfaffian states. For bosons at ν = 1 we construct
paired non-abelian states distinct from both the standard bosonic Pfaffian and it’s particle hole
conjugate and show how they may arise naturally out of the neutral vortex composite fermi liquid.
The bosonic particle-hole symmetry can be realized exactly on the surface of a three-dimensional
boson topological insulator. We also show that with the particle-hole and spin SU(2) rotation
symmetries, there is no gapped topological phase for bosons at ν = 1. Finally we comment on
systems that are not strictly in the lowest Landau level limit, and argue that our theory should still
be applicable at low energy.
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I. INTRODUCTION

Compressible metallic states of electronic systems at
even denominator filling in the quantum Hall regime
were described in pioneering work[1] by Halperin, Lee,
and Read (HLR) as composite fermi liquids. The com-
posite fermions[2] were obtained by attaching an even
number of fictitious flux quanta to the electrons and
move (after a flux-smearing mean field approximation)
in zero net magnetic field (see Ref. [3] for application
to incompressible states). This enables them to form
a Fermi surface. In this construction the composite
fermions carry the electric charge of the electron, and
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in addition the attached flux. Including fluctuations be-
yond the mean field leads to an effective action where
the composite fermions are coupled minimally (due to
their physical electric charge) to an external probe elec-
tromagnetic field, and to an internal U(1) gauge field
which has Chern-Simons dynamics, and which serves to
implement the flux attachment. The HLR construction
of composite fermi liquids leads (within an RPA treat-
ment of the internal gauge fluctuations) to a number of
predictions in experiments some of which have received
striking confirmation (see, eg, Refs. [4, 5]).

Despite these successes the HLR construction has
some well appreciated problems1. In the limit that the
typical interaction strength is much smaller than the
cyclotron frequency, it should be appropriate to define
the quantum hall problem purely in the Lowest Lan-
dau Level (LLL). However this limit of projection to the
LLL is problematic for HLR. Formally, the flux attach-
ment procedure involves all Landau levels: at the level of
wave functions it involves multiplication by a phase fac-

tor Πi<j

(
zi−zj
|zi−zj |

)2q
if 2q flux quanta are attached. The

denominator clearly lives outside the LLL. The difficulty
is also illustrated by the appearance of the bare electron
mass mb in the composite fermion kinetic energy. The
projection to the LLL involves taking the (apparently
singular) limit mb → 0.

In another pioneering work, Read[7] derived an alter-
nate theory of a composite fermi liquid for the prob-
lem of bosons at filling ν = 1. This theory is mani-
festly in the LLL, but differs strikingly from the result
of the HLR-RPA procedure applied to bosons at ν = 1.
Specifically the composite fermions in Read’s theory are
electrically neutral, and should instead be interpreted
as vortices. A useful picture then is that of a quan-
tum liquid of fermionic vortices. These neutral vortices
are not coupled minimally to the external probe electro-
magnetic gauge field. However as is usual in dual vortex
theories of boson liquids[8, 9] they are coupled minimally
to an internal non-compact U(1) gauge field without a
Chern-Simons term. The probe electromagnetic gauge
field couples to the field strength of this internal gauge
field (as is also common in dual vortex theories).

A different problem - specific to the filling ν = 1/2 - is
that upon projecting to the LLL and restricting to, say,
a two-body interaction there is a particle-hole symmetry
which involves trading the electrons for holes obtained
by removing electrons from a filled Landau level. Not be-
ing a LLL theory the HLR construction does not know
anything about this symmetry. Recently a particle-hole
symmetric theory for the ν = 1/2 composite fermi liq-
uid has been developed[10–16] and takes a form distinct
from the HLR-RPA action (even with renormalized pa-
rameters).

1 As emphasized recently[6], these issues do not affect micro-
scopic wavefunction based treatments of quantum Hall phenom-
ena which work within the LLL

The theory of the particle-hole symmetric ν = 1/2
electronic composite fermi liquid however has striking
similarities with Read’s LLL theory of bosonic ν = 1
composite fermi liquids. Indeed the particle-hole sym-
metric composite fermion is usefully understood as a
strength-4π vortex in the electronic fluid. This vortex
is an electrically neutral fermion, and forms a Fermi
surface. It thus does not couple minimally to external
electromagnetic fields but does couple minimally to an
internal non-compact U(1) gauge field without a Chern-
Simons term. In contrast however to the bosonic CFL at
ν = 1, in the ν = 1/2 particle-hole symmetric CFL when
the composite fermion goes around the Fermi surface it
acquires a Berry phase of π.

In this paper we will bring out these similarities and
differences between these quantum vortex liquid theo-
ries of composite fermi liquids. In addition to the two
examples (electrons at ν = 1/2 and bosons at ν = 1)
mentioned above we will consider more general fillings
ν = 1

n , with even denominators for electrons(fermions)
and odd denominators for bosons. We will first review,
in Sec. III, old expectations showing that a quantum
vortex liquid theory is natural once the LLL restriction
is imposed and translation symmetry is preserved. A
general feature common to such theories is the presence
of an internal U(1) gauge field but without a Chern-
Simons term. We show instead that a new feature, a
non-trivial Berry phase φB = −2πν = −2π/n appears
on the composite fermion Fermi surface2. For the spe-
cial case of electrons at ν = 1/2, we recover the π Berry
phase of the particle-hole symmetric theory even though
particle-hole symmetry per se plays no direct role in our
arguments. For bosons at ν = 1 we also recover Read’s
theory. An especially interesting case is two-component
bosons with full SU(2) spin rotation symmetry: we will
show in Sec. III C that the composite fermions again form
Dirac fermi seas.

The Berry phase on the fermi surface comes with sim-
ple yet sharp physical consequences. In Sec. IV, we dis-
cuss the effect of Berry phase on transport properties,
focusing on thermal Hall conductance and spin Hall con-
ductance (in cases with unpolarized spins). These pre-
dictions from Berry phases have not been obtained be-
fore in other theories including HLR.

We emphasize that our theory relies on the LLL limit
only, and does not require particle-hole symmetry to be
present. In fact particle-hole symmetry only exists mi-
croscopically for electrons at ν = 1/2. However, we will
show in Sec. V that for bosons at ν = 1, which does not
possess particle-hole symmetry microscopically, there is
a low-energy emergent particle-hole symmetry in the
quantum vortex liquid phase described by Read’s theory.
This possibility was raised in the Hamiltonian approach
in Ref. [15]. We show that this emergent particle-hole

2 A similar proposal has been made independently by Haldane
which we became aware of while completing this paper.
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symmetry is related to a particle-hole transformation of
bosonic quantum hall states: one that transforms a state
at filling ν to a state at filling 2 − ν. We also discuss
particle-hole conjugates of bosonic Jain states and Pfaf-
fian states. In particular a bosonic anti-Pfaffian state
at ν = 1 is naturally obtained through the particle-hole
transformation and is distinct from the bosonic Pfaffian
state at the same filling. We show that angular mo-
mentum l = ±1 pairing of the neutral vortex compos-
ite fermions in Read’s theory leads to non-abelian topo-
logical ordered states that are distinct both from the
standard bosonic Pfaffian and the anti-Pfaffian we in-
troduce. This difference is a manifestation of the Fermi
surface Berry phase of −2π that is associated with these
neutral composite fermions. We discuss the relation be-
tween these various paired states and show how they can
all be obtained from pairing either starting from Read’s
theory or the original HLR theory. We show in Sec. VI
how these observations about Read’s theory find a natu-
ral “home” at the surface of a three dimensional bosonic
topological insulator in close analogy to points of view
that have proven powerful for the electronic half-filled
Landau level. In Sec. VII we discuss a peculiar feature
of two-component bosons at ν = 1: with full SU(2) rota-
tion and particle-hole symmetry, the system cannot be in
an incompressible, topologically ordered state. Though
perhaps not very pertinent to quantum Hall systems, this
result is of primary interest in the context of three dimen-
sional Symmetry Protected Topological (SPT) phases.
It provides an example of a bosonic SPT phase which
does not admit a symmetry preserving gapped surface.
Such ‘Symmetry enforced gaplessness” was previously
described for a fermionic topological superconductor in
Ref. [17].

II. HLR AND THE LOWEST LANDAU LEVEL
LIMIT

We first review some old ideas on the HLR theory
and it’s fate in the Lowest Landau Level (LLL) that will
provide the background we will build on in this paper.

We start by considering the HLR approach[1] to com-
pressible quantum Hall states at filling ν = 1/n (with
n even/odd depending on whether the microscopic par-
ticles are fermions/bosons). This approach begins with
an exact flux attachment transformation which converts
electrons to composite fermions ψc. The corresponding

action takes the form3

LHLR =L[ψc, a
′
µ +Atotµ ] +

1

4nπ
εµνλa

′
µ∂νa

′
λ (1)

Here Atot = Abg + A is the total external gauge field
which includes both an Abg associated with the back-
ground magnetic field and a ‘probe’ A. The internal
‘Chern-Simons’ gauge field a′ implements the flux at-
tachment . The theory proceeds by making a mean
field approximation where the a′ acquires an expecta-
tion value that cancels the background Abg. The com-
posite fermions then move in zero net field and can form
a Fermi surface. Fluctuations beyond the mean field
lead to a field theory of these composite fermions cou-
pled minimally to both a′ and to the probe field A. A
low energy effective theory is obtained by truncating to
ψc modes that live near the Fermi surface. This theory
then takes the form, after the shift a′ +A = a,

LRPA =LFS [ψc, aµ] +
1

4nπ
εµνλaµ∂νaλ −

1

2nπ
εµνλaµ∂νAλ

+
1

4nπ
εµνλAµ∂νAλ + .., (2)

where LRPA[ψc, aµ] describes fermions ψc modes re-
stricted to be near the fermi surface minimally coupled
with the emergent gauge field aµ. Specific predictions
for a number of physical quantities follow from an RPA
treatment of the internal gauge fluctuations. We empha-
size that even though Eq. (1) and (2) take very similar
forms, they bear very different physical meanings: the
former is an exact reformulation of the original problem
which is still strongly coupled, and the latter is a pos-
sible effective field theory that describes the low energy
physics.

The standard criticism of HLR theory in the LLL limit
is that the limit of zero bare electron mass appears sin-
gular in the reformulation of Eq. (1). However, this on
its own does not rule out the effective field theory Eq. (2)
as a candidate theory of compressible states, since one
expects the parameters in the effective theory, including
the fermion mass, to be renormalized from the bare val-
ues. Optimistically therefore we can suppose that the
action in Eq. (2) still works in the LLL limit but with (a
priori unknown) effective parameters.

The more serious problem with Eq. (2) in the LLL
limit comes from the electric charge carried by the com-
posite fermions. Taking the equation of motion δLRPA

δaµ
=

0, it is obvious that the ψc fermions in the RPA the-
ory carries the electric charge qA = 1. However, it was

3 Very strictly speaking, instead of having a fractional level Chern-
Simons term 1

4πn
a′da′, it is more well defined to introduce

another gauge field α and replace the Chern-Simons term by
1
2π
a′dα − n

4π
αdα. The gauge fields in the latter formulation

have standard flux quantization and therefore easier to manipu-
late. However, for our purpose it suffices to integrate out α and
work with the form used in the main text.



4

pointed out by Read[18] and subsequently others[19–22]
that the composite fermion in LLL, at the compressible
filling fractions ν = 1/n, should be charge-neutral. As
this observation will play a crucial role in the present
paper we now review the reasoning of Ref. [18].

Thinking in terms of wavefunctions, flux attachment

introduces a factor
(zi−zj)n
|zi−zj |n which is not holomorphic,

and hence not in the LLL. A better alternative[2] is to
do vortex attachment which introduces a multiplicative
factor (zi − zj)n without the non-holomorphic denomi-
nators. Note that the vortex attachment forces a change
in the amplitude of the wavefunction by forcing zeroes
of the wave function in the vicinity of the original parti-
cles. Thus the vortices should be viewed as correlation
holes attached to electrons. In this procedure a com-
posite fermion is viewed as the original particle bound
to a strength-n vortex (at filling 1/n). This composite
fermion will then have its electric charge reduced by the
charge of this vortex/correlation hole.

By how much is the charge depleted at a vortex? Con-
sider taking a single 2π vortex around a loop of area A.
During this process the vortex will pick up a Berry phase
determined by the background charge density is uniform
as is appropriate for a translation invariant system. At a
filling fraction ν this phase is −2πρeA = −νBA which is
precisely the phase acquired by a charge of strength −ν
moving in the magnetic field. For ν = 1

n the charge of
an n-fold vortex is then −1. This exactly compensates
for the charge of the original particle. The composite
fermion formed by binding the original particle to an
n-fold vortex is thus expected to be neutral.

As a check, this argument can be extended to the Jain
sequence of plateaus at ν = p

np+1 proximate to the com-

pressible state at ν = 1
n . (Here p is an integer). The

bound state of the original particle and an n-fold vortex
will then have charge 1 − nν = 1

np+1 . It is easy to also

check that it has exchange statistics θ = πnp
np+1 . As we

approach the compressible state at ν = 1
n through a se-

quence of incompressible states at ν = p
np+1 by taking

the limit p → ∞ we see that the charge of the particle-
n-fold vortex bound state goes to zero and its statistical
angle goes to π.

Thus we anticipate that a purely LLL theory of the
compressible states will be formulated in terms of com-
posite fermion fields that are electrically neutral rather
than in terms of the charged composite fermions of the
original HLR theory.

We should emphasize here that the issues we discuss in
this paper have nothing to do with the non-fermi liquid
nature of composite fermi liquids and various divergen-
cies of quantities at low energy that are hard to con-
trol. In fact, one can imagine having a very long-range
interaction V ∼ 1/r1−ε, in which case both the HLR
theory flows to a simple fermi liquid fixed point, with
well-defined quasi-particles at low energy. The issue of
charge-neutrality of the composite fermion still remain
in this case.

Though the LLL composite fermions are charge neu-
tral, they carry non-zero vorticity. Thus the theory of
the compressible state should take the form of a ‘dual’
vortex theory - as in the familiar dual descriptions of
bosons in zero field[8, 9], the vortex degrees of freedom
will be coupled minimally to an internal non-compact
U(1) gauge field whose 3-flux is the physical 3-current of
the underlying particles. We will call this the quantum
vortex liquid theory.

To get an appreciation of how the charge neutrality
condition may be implemented in such a theory, let us
first understand better the HLR effective theory. Vary-
ing the HLR action with respect to aµ we see that the
composite fermion current jµ satisfies

jµ = − 1

4π
εµνλ∂ν (aλ −Aλ) (3)

However the physical electrical current (denoted Jµ) is
also given by the same expression. This is exactly as
expected for the HLR composite fermion which carry the
full charge of the electron. Note the crucial role played
by the Chern-Simons term for the internal gauge field. If
just this term were absent from the action we would not
have been able to identify the physical and composite
fermion currents.

Thus we expect that any putative quantum vortex liq-
uid theory of the compressible states in the LLL will
have a composite fermion coupled minimally to an in-
ternal U(1) gauge field aµ but without a Chern-Simons
term. The 3-flux of aµ is the physical 3-current of the
underlying particles.

A final consideration is that though the composite
fermions are electrically neutral they are expected to
carry a dipole moment proportional to their momentum.
This dipole moment will point perpendicular to the di-
rection of the momentum. This dipole moment comes
from a displacement of the vortices away from the posi-
tion of the electron, as suggested by heuristic wavefunc-
tion arguments[18]. Indeed, it is a general restriction of
the LLL that the total dipole moment operator D in a
many body state has an exact relationship with the to-
tal momentum operator P. They satisfy D = l2B ẑ × P

where lB =
√

1
B is the magnetic length. It is natural

that this many body constraint is implemented at the
level of individual composite fermions in the theory.

What we have reviewed thus far are ideas from the
1990s on the shape of a purely LLL theory of compress-
ible composite fermi liquid states in terms of neutral
dipolar composite fermions. Below we will describe a
specific effective theory which realizes these hopes. We
will see that it involves a new ingredient - a Fermi surface
Berry phase.
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III. QUANTUM VORTEX LIQUID THEORY OF
COMPRESSIBLE QUANTUM HALL STATES

Microscopically the problem of describing states in the
LLL should be formulated as follows. First specifiy the
Hilbert space of many particle states (whether parti-
cles are bosons or fermions, and at what filling). Then
work with a Hamiltonian described in terms of projected
density operators that satisfy the Girvin-MacDonald-
Platzmann algebra[23]. Going from this microscopic for-
mulation to a low energy effective theory of the com-
pressible states is a rather complex task. To this date
it has only been taken to completion[7] in the case
of bosons at ν = 1. We will not attack this prob-
lem head-on in this paper. We instead ask a sim-
pler question: what effective theory, presumably fermi-
liquid-like, can emerge from Eq. (1) while satisfying the
charge-neutrality of composite fermions which neverthe-
less carry vorticity?

The answer is almost obvious in hindsight: we postu-
late a fermi surface formed by ψc, with a Berry phase
on the fermi surface φB = − 2π

n .4 As we go to low en-
ergy by integrating out fermions deep in the fermi sea,
another Chern-Simons term appears due to the anoma-
lous Hall conductance from the fermions[24]. The coef-

ficient of this new Chern-Simons term is φB
8π2 = − 1

4nπ ,
which exactly cancels the original Chern-Simons term in
Eq. (1) (see Fig. 1). Notice that the sign of the Berry
phase is crucial: it leads to an effective hall conductance
of composite fermions σCFxy = − 1

n , in contrast with the

physical (electric) hall conductance σxy = ν = 1
n . The

final effective theory has no Chern-Simons term for aµ,
and the composite fermions are charge-neutral. We will
denote these charge-neutral composite fermions ψv to
distinguish them from the HLR composite fermions ψc.

The effective Lagrangian for these neutral composite
fermions ψv will take the form

L = LφB [ψv, aµ]− 1

2nπ
εµνλaµ∂νAλ +

1

4nπ
εµνλAµ∂νAλ.

(4)
Here the first term describes the composite fermions near
their Fermi surface coupled minimally with the inter-
nal non-compact U(1) gauge field aµ. Since these are
strength n vortices, they couple to the external probe
gauge fields Aµ as indicated in the second term. The
last term is a background Hall conductivity for the probe
gauge field which ensures that the theory really arises
in a strictly two dimensional system. Most crucially the
composite fermions see a Berry phase of φB = − 2π

n when

4 A concrete field theory realization of a fermi surface Berry phase
φB would be a massive Dirac fermion, with chemical potential
µ fine-tuned so that the fermi surface covers exactly a Berry
phase of φB . This, however, should be viewed only as an al-
ternative UV-completion of our low-energy theory. The actual
microscopic physics in the LLL may not involve the Dirac nature
in any meaningful way.

FIG. 1. Cancelation of the Chern-Simons term by integrating
out composite fermions deep in the fermi sea. Final theory:
a composite fermi surface with Berry phase φB = −2π/n.

they go around their Fermi surface. The Lagrangian
above supplemented with this Berry phase is the pro-
posed quantum vortex liquid description of the compos-
ite fermi liquid of electrons/bosons at filling 1/n in the
LLL.

We emphasize again that we did not derive the theory
in Eq. (4) from the microscopic LLL problem. Rather,
we postulated the low energy effective theory starting
from HLR formulation in Eq. (1), and argued that this
theory, unlike the standard HLR-RPA theory, is com-
patible with the physical requirement of charge-neutral
composite fermions that arises in the LLL.

Strong support for our proposed quantum vortex liq-
uid theory is provided by studying some consequences
of the proposed Lagrangian. Since these composite
fermions carry 2πn vorticity but are electrically neutral,
it follows that their density nv is determined entirely by
the external magnetic field:

nv =
B

2πn
(5)

It is instructive to consider what happens when we move
slightly away from ν = 1

n . The composite fermions feel
a magnetic field

B∗ = B − 2πnρe, (6)

where ρe is the electron/boson density. Let us now ask
about a ‘measurement’ of the Fermi surface Berry phase
by tracking the resistivity minima plotted as a function
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of 1/B∗ at fixed nv, i.e at fixed B. It is well known that
these occur at a Jain sequence with filling ν = p

np+1 .

This corresponds to effective fields that satisfy

1

B∗
=
p+ 1

n
B
n

(7)

The shift from an integer in the numerator is −φB2π where
φB is the Fermi surface Berry phase (see Ref. [25, 26]). It
follows that this Berry phase is − 2π

n exactly as proposed
in the effective field theory Eq. (4).

We should point out that the shift from integer val-
ues in Eq. (7) only applies when the fermi surface has
a Berry phase, but does not contribute to the overall
Hall conductance. For free fermions this happens in
special cases, such as on the surface of a topological
insulator, or in graphene when the quantity is divided
by four to obtain the value from each Dirac cone. In
our case the “missing” hall conductance of composite
fermion simply comes from the Chern-Simons term due
to flux-attachment. These issues are discussed in more
detail in Appendix A.

To obtain further insight into this Berry phase let us
first develop a heuristic physical picture of the composite
fermion that generalizes the considerations of Ref. [13]
from ν = 1

2 to general ν = 1
n . The composite fermion

is built by attaching n vortices to the underlying parti-
cles. We begin by first considering the case where the
particles are fermion (and hence n = 2q is even). Of
these n vortices the antisymmetry of LLL fermion wave
functions forces one (or more generally an odd number)
vortex to be exactly on top of the electron. The re-
maining n − 1 vortices will be displaced away from the
electron in the direction perpendicular to the composite
fermion momentum. The composite fermion at general
n is thus a neutral dipole with each end of the dipole
carrying electric charge ±

(
1− 1

n

)
. When one end of the

dipole is rotated fully about the other end by an angle
2π there is a phase −2πn . If these fermions form a Fermi
surface, then as a composite fermion moves a full circle
around this surface the momentum, and hence the inter-
nal dipole moment, rotate by 2π. It follows that there is
a Fermi surface Berry phase of − 2π

n .
Is there an analagous heuristic picture for the compos-

ite fermion ψv when the underlying particles are bosons?
Now the symmetry of the wavefunction does not force
any vortex to sit exactly on top of the particle. Never-
theless we are free to put any even number of vortices on
the particle, and displace the remaining away. Consider
the case where n − 1 vortices sit on the particle, and
the remaining vortex is displaced away. The end with
n− 1 vortices then has charge 1

n and the other end has

charge − 1
n . The Berry phase picked up when one end

goes around the other is precisely − 2π
n . Forming a Fermi

surface of these particles we will then get a Berry phase
of − 2π

n .
The picture of n− 1 vortices sitting exactly on top of

the particle while the remaining one is displaced away

actually works for any n (i.e, whether the microscopic
particles are fermions or bosons), and gives a Berry phase
of − 2π

n . Why make this choice as compared to say some
other way of distributing the n vortices? We do not
have a satisfactory answer to this question. However
the heuristic picture sketched above does, we believe,
help develop some intuition about the origin of the Fermi
surface Berry phase. This picture also suggests that for
any n, a useful wavefunction for the CFL is given by

ψ(z1, z2, ........zN ) = Πj<i (zi − zj)n−1 ψbν=1(z1, ......., zN )
(8)

where ψbν=1 is the wavefunction of the bosonic CFL at
filling factor ν = 1.

A. Fermions at ν = 1/2

There are two special cases in which theories of the
form of Eq. (4) are more solidly justified. The first is
fermions at ν = 1/2. It is well known that fermions
at ν = 1/2 in the LLL limit have an emergent particle-
hole symmetry (C), which does not seem to be preserved
by the standard RPA effective field theory[27]. This was
emphasized recently[28] by the construction of a particle-
hole conjugate to the standard HLR theory which leads
to a seemingly distinct effective field theory. Another
effective field theory describing a compressible state was
proposed recently by Son[10], which manifestly preserves
the particle-hole symmetry. The low energy theory takes
exactly the same form as Eq. (4), with the Berry phase
φB = π. A fermi surface with π-Berry phase can be
conveniently represented as a Dirac fermion:

L[ψ, aµ] =ψ̄(i/∂ + /a+ µγ0)ψ

− 1

4π
εµνλaµ∂νAλ +

1

8π
εµνλAµ∂νAλ (9)

and the particle-hole symmetry C is represented as an
anti-unitary symmetry that acts like time-reversal on the
Dirac composite fermions

ψc → iσyψc. (10)

We emphasize that the “Diracness” is manifested
through the π-Berry phase, rather than the Dirac cone
itself, which is far from the fermi surface and has no real
physical meaning at low energy. Indeed a recent paper
by Balram and Jain[6] argues (through calculations on
wavefunctions for proximate incompressible states) for
lack of evidence of the linear dispersion associated with
the Dirac cone.

The Dirac composite fermi liquid state was jus-
tified through a surprising charge-vortex duality in
(2 + 1)d between free Dirac fermion and quantum
electrodynamics[11–13, 29]. It could also be under-
stood as a critical point separating HLR and anti-HLR
states[28, 30]. The π-Berry phase of the composite
fermions has been verified numerically[14] through the
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absence of 2kf scattering peaks for particle-hole sym-
metric correlators. In the full theory (without the LLL
restriction), the π-Berry phase can change (to trade
a Chern-Simons term) by mixing the upper and lower
Dirac band of the composite fermions, if particle-hole
symmetry is absent. However, in a strictly LLL theory,
we now argue that the π Berry phase survives even if
particle-hole symmetry is not present in the microscopic
Hamiltonian.

Consider starting initially with C symmetry present,
and go to the low energy theory near the Fermi surface of
the Dirac composite fermion. Now break the C symme-
try explicitly through some weak perturbations. Naively,
in the absence of C we can add a mass term ψ̄vψv to the
low energy Dirac action. This will force the Dirac ‘spin’
to tilt out of the xy plane. When the resulting fermion
goes around the Fermi surface the Berry phase will then
deviate away from π, if such a mass term were allowed.
However in the LLL we can argue that such a mass term
is prohibited. The key is the understanding developed in
Ref. [13] of the x, y components of the Dirac spin as the
composite fermion dipole moment. A rigid restriction
of the LLL limit is that this dipole moment is rotated
from the composite fermion momentum by an angle of
π
2 in the anticlockwise direction. In the LLL the other
polarization of the composite fermion, where the dipole
moment (and hence the x, y components of Dirac spin)
are rotated by −π2 from the momentum direction are
simply not there in the Hilbert space. In other words,
it is impossible in a purely LLL theory to flip the direc-
tion of the dipole moment of the composite fermion while
preserving its momentum. Equivalently we can say that
the negative energy Dirac sea does not really exist in a
purely LLL theory.

Now the Dirac mass operator ψ̄vψv has the precise
effect of mixing the two components of the Dirac spin
at a fixed momentum. But since only one component
exists as a physical state in the LLL this mixing term is
not allowed. The inability to add this mass term in the
LLL means that the π Berry phase is stable to breaking
C symmetry.

Thus the LLL protects the π Berry phase even in
the absence of exact particle-hole symmetry. Rather,
particle-hole symmetry is an additional feature that, if
present, can be captured by the quantum vortex the-
ory. This is quite different from previous views on the
half-filled Landau level problem.

Note however that, in the absence of particle-hole sym-
metry, the effects of the π Berry phase will not be read-
ily visible through the suppression of 2Kf singularities.
These singularities will be suppressed in the correlators
of the density of composite fermions. But it is hard to
know what microscopic electron operators couple to the
composite fermion density in the absence of particle-hole
symmetry.

B. Bosons at ν = 1

Another example, developed even earlier, considers
bosons at ν = 1. It was realized by Read[7] through
an elaborate derivation that in the LLL, the compress-
ible state of bosons at ν = 1 should be described by a
simple fermi surface coupled with the emergent gauge
field aµ, without a Chern-Simons term for aµ.

The general theory in Eq. (4), when applied to ν = 1,
gives the fermi surface a total Berry phase φB = −2π,
which would likely be indistinguishable from a zero Berry
phase. Therefore it agrees well with Read’s theory,
which was constructed microscopically.5

Unlike fermions at ν = 1/2, a system of bosons at
ν = 1 does not have particle-hole symmetry microscop-
ically. As we will see in Sec. V, a particle-hole symme-
try emerges nevertheless at low energy in Read’s theory.
Such a possibility was raised recently in Ref. [15]. This
further emphasizes the point that LLL descriptions of
composite fermi liquids naturally lead to quantum vor-
tex liquid theories with associated Fermi surface Berry
phases. Particle-hole symmetry is not a prerequisite
though the quantum vortex liquid theory is fully capable
of incorporating it.

C. Compressible states with unpolarized spins

It will be very illuminating to consider elec-
trons/bosons with unpolarized spins. In general, when
the spin is not fully polarized (when the Zeeman cou-
pling is weak), we expect two fermi surfaces formed by
the composite fermions. In the quantum vortex theory
Eq. (4), this requires the total Berry phase φB = −2πν
to be distributed in some way among the two fermi sur-
faces. A special situation is when the system possesses
the full SU(2) spin-rotation invariance, in which case the
total Berry phase must be divided evenly between the
two fermi surfaces. This gives a Berry phase φ′B = −πν
for each fermi surface.

A very interesting special case is when ν = 1. With
single-component boson (fully polarized spins), the to-
tal Berry phase is φB = −2π, which does not seem
to have any nontrivial consequence. However, with full
spin SU(2) symmetry, the Berry phase on each fermi
surface becomes φ′B = −π, which appears to be Dirac-
like! Again we can conveniently represent the theory as
a quantum-electrodynamics with two Dirac fermions:

L[ψα, aµ] =
∑
α=↑,↓

ψ̄α(i/∂ + /a+ µγ0)ψα

− 1

2π
εµνλaµ∂νAλ +

1

4π
εµνλAµ∂νAλ, (11)

5 More precisely, we see no observable difference between this
theory with the Berry phase φB = −2π and Read’s original
theory with zero Berry phase, at least for the quantities we can
consider (such as transport properties).
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where the emergent U(1) gauge field aµ is coupled to
two flavors of two-component Dirac fermions ψα, one for
each spin. We choose the gamma matrices to be γ0 =
iτ2, γ1 = τ3, γ2 = τ1, where τ i are Pauli matrices in
the Dirac pseudo-spin space. The Dirac fermions are at
finite chemical potential µ. Aµ denotes the probe (non-
dynamical) gauge field that couples with the physical
charge current. Two-component bosons at total filling
ν = 1 were studied numerically in Ref. [31], and a fermi-
liquid-like state was found. It will be interesting to see
if any signature of the Berry phase proposed here can be
detected numerically.

One can actually understand the necessity of Dirac
fermions here using familiar results from field theory lit-
erature: it is well known[32] that the monopole operator
for Eq. (11) – one that changes aµ-flux by 2π – carries
SU(2) spin-1/2. Now the monopole operator is a local
operator that carries physical charge one (see Eq. (6)),
so it must corresponds to the physical boson operator.
This means the physical boson must carry spin-1/2 – ex-
actly what we required. If we used simple fermi surfaces
(without Berry phase) instead, the physical boson – the
monopole – would carry no spin.

We emphasize the importance of the full spin SU(2)
symmetry (or at least a U(1) o Z2 subgroup). If only
the Sz component is conserved, we can have a state in
which all the −2π Berry phase is enclosed within one
fermi surface while the other fermi surface has no Berry
phase. This would look identical to the original Read’s
theory with two simple Fermi surfaces.

IV. TRANSPORT SIGNATURES OF THE
BERRY PHASE

We now discuss physical consequences of the Berry
phase in terms of transport properties. First consider
electrical transport. The electrical conductivity tensor σ
is the sum of two contributions. The background Chern-
Simons term for the probe field Aµ in the Lagrangian

lead to a background Hall conductivity σbgxy = e2

nh which
will add to the conductivity tensor σ∗ coming from the
composite fermion/vortex liquid. Thus

σij = σ∗ij +
e2

nh
εij (12)

Here εij is antisymmetric and εxy = 1. The compos-
ite fermion contribution is readily seen, from the vortex
liquid interpretation, to be

σ∗ij = δij
e4

(nh)2σv
(13)

where σv is the RPA expression for the conductivity of
the composite fermions (i.e the vortex conductivity). As
a function of wavenumber q, the composite fermion con-

ductivity σv takes the well-known form

σv =
e2KF l

4π~
, q � 2

l
(14)

=
e2KF

2π~q
, q � 2

l
(15)

where l is the impurity induced mean free path for the
composite fermions. The final answer for the measured
longitudinal conductivity is vey similar to that within
the standard HLR-RPA theory.

Following the reasoning of Ref. [13], the longitudinal
thermal conductivity will be metallic but will have a dra-
matic violation of the Wiedemann-Franz law. This too
is a feature of both the vortex and HLR theories.

However, thermoelectric properties seem to be differ-
ent between the two theories at leading order: it was
pointed out in Ref. [33], in the context of Dirac compos-
ite fermions for ν = 1/2, that the charge-neutrality of
the composite fermion leads to a nonzero Nernst effect.
The same argument applies to any theory of the form
Eq. (4), and leads to a nonzero Nernst effect. For the
HLR-RPA theory in Eq. (2), the Nernst coefficient van-
ishes at leading order[33], but (similarly to the thermal
Hall effect discussed below) a nonzero value is expected
beyond leading order, even though it is not clear to us
how to calculate the correction quantitatively.

Below we consider two additional effects that are man-
ifestly related to the existence of the Berry phase: the
first is the thermal hall conductance, and the second is
the spin hall conductance (when spins are unpolarized).

A. Thermal Hall conductance

It is well known that a Berry phase enclosed by a fermi
surface gives not only electric hall conductance, but also
thermal hall conductance. We now calculate the thermal
hall conductance κxy of the vortex theory Eq. (4) using
the standard RPA (Ioffe-Larkin) approach.

The calculation can be best understood using a slave-
particle (parton) representation of the theory. We de-
compose the physical electron into two particles:

c = bf, (16)

where b is a boson and f is a fermion.6 Flux-attachment
corresponds to putting b into a Laughlin state at ν̃ = ν.
In the quantum vortex theory Eq. (4), the f fermion
encloses a Berry phase φB = −2πν. The Ioffe-Larkin
composition rule requires the thermal hall conductance
be the the sum of the two slave particles:

κxy = κbxy + κfxy = (1− ν)
π2k2BT

3h
. (17)

6 If the physical particle C is a boson, the slave particle b would
be fermion. The rest of the argument will be unchanged.
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Here we comment on the validity of Ioffe-Larkin ap-
proximation on thermal hall conductance. Unlike for
charge resistance, Ioffe-Larkin is usually not well jus-
tified for thermal conductance. For example, for in-
compressible state at ν = 1/3, Ioffe-Larkin gives κxy =
κbxy +κfxy = 2 which is wrong. This is because the gauge
field aµ gives another contribution to thermal transport
which cannot be neglected. Likewise for HLR-RPA the-
ory in Eq. (2), the low-energy dynamics of the gauge
field has a Chern-Simons term, which is expected to con-
tribute to κxy even though it is hard to calculate quan-
titatively. Therefore the naive Ioffe-Larkin result for the

HLR-RPA theory, which would give κxy =
π2k2BT

3h for
any CFL state regardless of filling, cannot be trusted.
However, for the quantum vortex theory in Eq. (4), the
low-energy dynamics of the gauge field, by design, has
no Chern-Simons term. Thus we expect the gauge field
to contribute only to the diagonal part of thermal hall
conductance (assuming higher derivative terms are irrel-
evant). The vortex theory in Eq. (4) is a very special
case in which Ioffe-Larkin is justified for calculating κxy
and the result in Eq. (17) can be trusted.

The case with ν = 1 bosons is especially interesting
here: the vortex theory predicts that κxy = 0 while the
standard RPA theory gives nonzero κxy. As we will see
in Sec. V, this is related to the emergent particle-hole
symmetry for ν = 1.

For fermions at ν = 1/2, the vortex theory predicts

κxy = 1
2
π2k2BT

3h which is consistent with the particle-hole
symmetry in the lowest Landau level.

B. Spin Hall conductance

We now discuss spin hall conductance with unpolar-
ized spins. We should first clarify what we mean by
spin hall conductance here: we are not referring to spin-
charge hall conductance, meaning a spin current induced
by a transverse electric field. Rather we are referring to
spin-spin hall conductance, meaning a spin current in-
duced by a transverse gradient of Zeeman energy. For-
mally the spin-spin hall conductance is represented as a
Chern-Simons term of the gauge field that couples to the
spin degree of freedom, while the spin-charge hall con-
ductance is a mutual Chern-Simons term between the
spin and charge gauge field. The latter makes sense only
if the spin rotation group is U(1), with only Sz conser-
vation; while the former makes sense even if we have the
full SU(2) symmetry.

The physics is sharpest when we have full SU(2) sym-
metry, and we expect the rest of the analysis to hold
when the breaking from SU(2) to U(1) is weak. In this
case the vortex theory gives a nonzero spin hall conduc-
tance due to the Berry phase:

σspinxy = −ν, (18)

where the unit is taken such that the spin-singlet in-
teger quantum hall effect of fermions at ν = 2 has

σspinxy = 2. This result is by no means obvious from the
standard HLR theory. Notice the interesting minus sign
in Eq. (18): it implies that the spin hall conductance al-
ways has opposite sign with the charge hall conductance.

For ν = 1 the above analysis implies that σspinxy = −1.
This is actually a familiar result in the field theory con-
text: it is simply the “parity anomaly” of the Dirac com-
posite fermions[34–36] in Eq. (11): namely a half-level
Chern-Simons term is needed if the SU(2) symmetry is
gauged. We will see in Sec. V that this is also consistent
with the emergent particle-hole symmetry.

V. EMERGENT PARTICLE-HOLE SYMMETRY
FOR BOSONS AT ν = 1

A. Particle-hole transformation for bosons

Electronic quantum Hall systems in the lowest Lan-
dau level at a filling factor ν can be viewed in two dif-
ferent ways. We can build them up by starting with an
empty Landau level and adding electrons, or by starting
with the fully filled Landau level and removing electrons
(adding holes). This is known as a particle-hole transfor-
mation. At filling factor ν = 1/2, this operation becomes
a symmetry (for instance with a 2-body Hamiltonian act-
ing within the LLL). As described in previous sections,
recent work has described a theory for the composite
fermi liquid at ν = 1/2 that incorporates this symmetry.

In contrast for bosonic quantum Hall systems in the
lowest Landau level, the concept of particle-hole trans-
formations apparently makes no microscopic sense. For
instance bosons at ν = 1 can form a composite fermi liq-
uid state. Is there an analog of particle-hole symmetry
in this state?

In this section we will see that, indeed there is a
reasonable definition of particle-hole transformation for
bosons. This definition enables construction of particle-
hole conjugates of familiar bosonic quantum Hall states.
In addition at filling ν = 1 the well-developed theory[7]
of the composite fermi liquid is shown to have an emer-
gent particle-hole symmetry. At ν = 1 an alternate in-
compressible non-abelian state - the bosonic Pfaffian -
has been studied for a long time. The particle-hole trans-
formation we define enables construction of the particle-
hole conjugate of this state which we dub the bosonic
anti-Pfaffian as a topologically distinct incompressible
state. Depending on the microscopic Hamiltonian, this
state may be preferred over the usual bosonic Pfaffian.
We also describe further variations on these bosonic Pfaf-
fian states which follow naturally by pairing the neu-
tral vortex/composite fermions. These are topologically
distinct from the standard bosonic Pfaffian or the anti-
Pfaffian we introduce below.

For fermions the particle-hole transformation inter-
changes the ν = 0 state with the ν = 1 integer quan-
tum hall state. Both the empty and filled Landau levels
are “vacua” with trivial excitations and hence can be



10

interchanged by a symmetry. For bosons, apart from
the empty vacuum (ν = 0), there are other interest-
ing vacuua with trivial excitations: the bosonic Inte-
ger Quantum Hall (bIQHE) states which have been dis-
cussed recently[37, 38]. For microscopic models, see
Refs. [39–44]. These states have electrical Hall con-
ductivity σxy = 2n (n = integer), and thermal Hall
conductivity κxy = 0. The simplest such state (with
σxy = 2, κxy = 0) can occur for some interactions at
boson filling factor ν = 2.

Consider now a particle-hole transformation that in-
terchanges bosons at ν = 0 with the bIQHE ground state
at ν = 2. It is natural that under this transformation a
generic filling factor ν will go to 2−ν. Using this we can
define particle-hole conjugates of bosonic quantum hall
states: thus the Laughlin states at filling ν = 1

2m lead to

a sequence of states at filling ν = 2− 1
2m .

To understand physically what this transformation de-
scribes, consider the bIQHE state at ν = 2. Now imagine
doping holes into the system (i.e, by removing the mi-
croscopic bosons). As the excitations of the bIQHE state
are just the physical bosons themselves, the holes will be
bosons with opposite electric charge. If the hole filling
is νh they can form a Laughlin state at νh = 1

2m . This
leads to the particle-hole conjugate of the usual Laughlin
state of particles.

We can readily write down a wave function that
implements the particle-hole transformation. Let
ψp(z1, .....zN ) be a lowest Landau level wave function of
N bosonic particles at coordinates z1, .....zN where the
total number of flux quanta is Nφ. As usual the par-

ticle filling factor is νp = N
Nφ

. The bIQHE occurs at

ν = 2. With Nφ flux quanta this requires an additional
M = 2Nφ − N particles. Let ψbIQH(z1, ......., zN+M )
be the ground state wave function of the bIQHE state.
Then the particle hole transformed version of ψp is con-
structed as

ψh([wi]) = N
∫

ΠN
i=1d

2ziψbIQH([zi], [wi])ψ
∗
p(zi). (19)

(The prefactor N on the right is a normalization con-
stant). Here the wi are M coordinates representing the
holes and zi are N coordinates of particles. The hole
filling factor is clearly νh = M

Nφ
= 2 − νp as expected.

Note that this is the precise analog of particle-hole con-
jugation of fermion wave functions.

B. Bosons at/near ν = 1

The particle-hole transformation maps the filling ν =
1 to itself. If ν = 1 + x, then under C, x → −x. At
ν = 1 a compressible composite Fermi liquid (CFL)
state becomes possible. In addition an incompressible
non-abelian state (the bosonic Pfaffian) is also possible
and is obtained from the composite fermi liquid through
pairing.

It is conceivable that the low energy effective field the-
ory of the CFL has an emergent C symmetry such that
for ν = 1 + x, x → −x. The standard HLR-RPA the-
ory does not have such a symmetry. Now let us search
for such a symmetry in the dual vortex theory of the
CFL developed by Read. The composite fermion ψv
in this theory should be viewed as an electrically neu-
tral fermion that carries 2π vorticity. The effective La-
grangian takes the form

L = ψ̄v

(
i∂t − µ− a0 −

(∇− ia)2

2mv

)
ψv

− 1

2π
εµνλAµ∂νaλ +

1

4π
εµνλAµ∂νAλ. (20)

This form of the effective theory was never explicitly
written down in Ref. [7]; however it can be inferred from
the results in that paper. An alternate derivation of
this action was provided by Alicea et. al[45] using a
duality transformation to vortices, and attaching flux
to the vortices to convert them to fermions. This theory
was also studied recently[46] in the context of field-driven
superconductor-insulator transition.

The action above in Eq. (20) is equivalent to Eq. (4),
in which the −2π Berry phase is dynamically equivalent
to zero. Now define an anti-unitary C operation under
which

CψvC
−1 = ψv. (21)

This implies that the boson density ρv = ψ̄vψv is even
under C. If we now choose the transformations

Ca0C
−1 = a0,

CaiC
−1 = −ai, (22)

we see that C is a symmetry of the Lagrangian as written.
Thus if the low energy physics of a microscopic boson
system at Landau level filling ν = 1 is described by this
Lagrangian then it has an emergent C symmetry. It is
readily seen that terms violating this particle-hole sym-
metry all involve higher derivatives of the gauge field and
hence should be irrelevant7. For example it was shown in
Ref. [45] that the leading C-violating term takes the form
(∇ × a) · (∇ × ∇ × a) and is expected to be irrelevant.
The possibility of an emergent particle-hole symmetry

7 This is verifiably true in situations where the low energy fixed
point is a Fermi liquid as happens when the microscopic inter-
action is at least as long ranged as 1

r
or a weak non-Fermi liquid

as happens with 1
r1+ε

interactions when ε is small. For short
ranged interactions we do not have good control over the fixed
point but a controlled expansion can be developed by taking
ε small[47, 48]. However only gauge field configurations with
small momentum q are expected to be important and so higher
derivative terms involving the gauge field are expected to not
affect the ultimate infrared behavior
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for the theory in Eq. (20) was raised first in Ref. [15].8

Note that if we vary with respect to A0 we get

∇× a = B − 2πρ

= B(1− ν). (23)

Thus under C, as ai is odd, we have 1 − ν → ν − 1
exactly as expected of a particle/hole symmetry. Exactly
at ν = 1 the density operator ρ− B

2π is odd under C again
as expected.

Notice that κxy = 0 for Read’s theory, as discussed in
Sec. IV A. This can be viewed as a consequence of the
emergent particle-hole symmetry, since the boson integer
quantum hall state at ν = 2 has κxy = 0.

C. Bosonic Jain sequence

As for fermions near ν = 1/2, one can access a se-
quence of incompressible states for bosons near ν = 1 by
putting the composite fermions into filled Landau levels.
In the standard HLR theory, this gives the bosonic Jain
sequence[49]

νJainHLR =
p

p+ 1
, (24)

where p is an integer denoting number of filled CF Lan-
dau levels. Notice p = −1 appears strange because it
actually corresponds to a superfluid. The particle-hole
conjugate of the Jain sequence is then

νJainanti−HLR = 2− νJainHLR =
p+ 2

p+ 1
, (25)

which corresponds to shifting p to −p−2. Some of these
Jain states with “negative flux attachment” has been
studied numerically in Ref. [50].

In Read’s theory, the two sequences are united and
takes the form

νJainRead =
p− 1

p
, (26)

where the values with positive p gives the HLR sequence
and those with negative p gives the anti-HLR sequence.
The superfluid phase here corresponds to p = 0.

D. Bosonic Pfaffian-like states

It is extremely interesting to consider paired states
of composite fermions that correspond to topologically

8 Ref. [15] used the Hamiltonian formalism and an approximate
treatment which naturally suggests the emergence of an antiuni-
tary particle-hole symmetry for bosons at ν = 1. This formalism
also gives an explicit representation for the physical charge den-
sity in terms of composite fermion degrees of freedom valid at
all length scales.

ordered incompressible fractional quantum Hall states
of bosons at ν = 1. It is well known that, if we start
with the HLR description of the composite fermi liquid,
px − ipy (i.e l = -1 pairing gives the standard bosonic
Pfaffian (Moore-Read) state[51]. This is a non-abelian
quantum Hall state with three quasiparticles denoted
1, f and σP . Physically the f corresponds to the Bo-
goliubov quasiparticle associated with the paired state
and is an electrically neutral fermion. The σP is a non-
abelion and corresponds physically to the π vortex of
the “pair condensate”. It carries physical electric charge
qσP = 1/2. The fusion rules are given by

f × f ∼ 1

f × σP ∼ σP
σP × σP ∼ b+ bf, (27)

where b is the physical charge-1 boson. The topological
spin of the Ising-like anyon σP :

θ(σP ) = e
3iπ
8 , (28)

gives the Abelian part of the braiding statistics of σP .
This also leads to thermal Hall conductance κxy ∼ c− =
3/2, where c− is the chiral central charge9.

Given the particle-hole conjugation defined in this pa-
per we can clearly construct an alternate bosonic anti-
Pfaffian state by starting with the bIQHE state and
forming a Pfaffian state of holes with filling factor νhole =
1. Similar construction of the anti-Pfaffian state has
been studied previously[52, 53] for electrons at ν = 1/2.
A wave function for the bosonic anti-Pfaffian state may
be constructed from that of the standard bosonic Pfaf-
fian using Eq. (19). This anti-Pfaffian state has the same
three quasiparticles 1, σAP , f and charge assignments,
and fusion rules. We have changed the subscript of σ
to AP to denote that it is the non-abelion of the anti-
Pfaffian state. The topological spin of σAP is different
from the Pfaffian state:

θ(σAP ) = e−
3iπ
8 , (29)

Correspondingly the thermal Hall conductance κxy ∼
c− = −3/2. Thus just like their fermionic counterparts
the bosonic Pfaffian and anti-Pfaffian are topologically
distinct paired states. A different route to access the
bosonic anti-Pfaffian is to start with the HLR CFL and
pair the composite fermions in an l = 5 angular momen-
tum channel. It is readily seen that this leads to the
same topological order as the one just described.

We described these paired states starting with the
HLR description of the composite fermi liquid. But what
if we start instead with Read’s theory Eq. (20)? We now

9 Formally the topological quantum field theory corresponding to
this familiar bosonic Pfaffian state may be written as Ising ×
U4(1)/Z2.
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show that l = −1 pairing of the neutral vortex composite
fermions actually leads to a state that is distinct both
from the standard bosonic Pfaffian as well as the bosonic
anti-Pfaffian introduced above. It is actually convenient
to discuss the general case of pairing with angular mo-
mentum l of these neutral vortex composite fermions.
This will clarify the general structure of these various
paired states, and establish their connections to those
obtained from the HLR construction.

As the composite fermions in the present theory are
single component the pairing is necessarily in an odd an-
gular momentum channel. This then necessarily breaks
the particle-hole symmetry. 10 As is well known[51],
such a pairing leads to a non-Abelian topological order
in the weak-pairing regime. The details of the topolog-
ical order, however, depends on the angular momentum
of the pairing channel l = −k, where k is an odd integer.
We denote these topological orders as k-Pfaffian states.

Details of the k-Pfaffian states (k odd) are as fol-
lows: there are two topologically distinct nontrivial
quasi-particles, hence three degenerate ground states on
a torus. We denote the two quasi-particles as f and
σ, where f represents the composite fermion ψv and is
therefore a fermion, and σ represents π-vortex in the
paired state, and is non-Abelian due to Majorana zero
modes associated with the vortex. Since the physical
charge is carried by the gauge flux, f carries no physical
charge and σ carries charge qσ = 1/2. The fusion rules
are given by

f × f ∼ 1

f × σ ∼ σ
σ × σ ∼ b+ bf, (30)

where b is the physical charge-1 boson. The only data
that depends on k is the topological spin of the Ising-like
anyon σ:

θσ = e
iπ
8 k, (31)

which gives the Abelian part of the braiding statistics
of σ (see, for example, Ref. [54] for more details). This
also leads to thermal Hall conductance κxy ∼ c− = k/2,
where c− is the chiral central charge. The familiar
bosonic Pfaffian state from HLR theory with px − ipy
pairing (l = −k = −1) corresponds to l = −k = −3 in
Read’s theory. The shift by −2 is a further manifesta-
tion of the −2π Berry phase associated with the neutral
composite fermions that we have discussed in this paper.
More generally, a Berry phase mπ shifts the topological
index k (mod 16) of a superconductor[54] from k = −l

10 This does not mean that particle-hole symmetric gapped state is
impossible at ν = 1 (see the end of Sec. VII). It does mean, how-
ever, that the particle-hole symmetric state cannot be accessed
through a weak pairing starting from Read’s theory. Strong
pairing can give a particlel-hole symmetric gapped state.

to k = −l + m. For Dirac fermion with m = ±1 this is
a well-known property.

Thus as promised px − ipy pairing (l = −1) in Read’s
theory gives a state different from the usual (HLR)
bosonic Pfaffian state11.

It is natural to ask which of these k-Pfaffian states
will be favorable for a simple bosonic system at ν = 1,
for example with contact interaction? This of course
can only be determined by numerical work. There is
an interesting scenario one may anticipate: if the sys-
tem has approximate particle-hole symmetry, for exam-
ple when it is close to Read’s state in parameter space,
then k-Pfaffian and (−k)-Pfaffian states will be compet-
itive in energy. For example, it is interesting to deter-
mine whether bosonic anti-Pfaffian state, which is the
particle-hole conjugate (Eq. (19)) of the familiar Pfaf-
fian state, could be energetically competitive in some
parameter regime.

E. Particle-hole symmetry for spin-1/2 bosons

The particle-hole symmetry has an interesting twist
when the microscopic bosons carry spin-1/2, with full
SU(2) symmetry. When spin-1/2 bosons are placed in
a strong magnetic field (without Zeeman term) they can
form a number of quantum Hall states. Of particular
importance to us is the fate of such a boson system when
the total Landau level filling factor νtot = ν↑ + ν↓ = 2.
Then it is known that (with for instance a simple delta
function repulsion interaction) that the result is a boson
integer quantum Hall state. Further this state is singlet
under the pseudo-spin SU(2) symmetry. Its edge state
has counter propagating charge and spin modes. The
bulk is characterized by σxy = 2, κxy = 0 and σspinxy =
−2. As in the previous section we may now use this spin
singlet bIQHE state to define particle-hole conjugates at
other fillings 0 ≤ νtot ≤ 2.

We henceforth turn our attention to the special fill-
ing νtot = 1 where states with an emergent particle-hole
symmetry might be allowed. It is then clear that the
Dirac composite fermi liquid in Eq. (11) is such a state.
The emergent particle-hole symmetry acts on the com-
posite fermions like time-reversal:

C : ψ → σ2τ2ψ, (32)

where σi denotes Pauli matrices in spin space. Such a
form is required by the algebraic structure of the symme-
try group U(1)×SU(2)×C, namely that C should com-
mute with SU(2) rotations. Notice C2 = 1, in contrary
to the Dirac composite fermi liquid state for fermions at
ν = 1/2.

11 Formally the topological quantum field theory corresponding to
this state may be written Ising × U4(1)/Z2.
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As discussed in Sec. IV B, the spin hall conductance
for the above state is σspinxy = −1. This is also a con-
sequence of the emergent particle-hole symmetry, since
the singlet integer quantum hall state has σspinxy = −2
and the particle-hole symmetric state should have half
of its spin hall conductance.

VI. RELATION TO 3D BOSON TOPOLOGICAL
INSULATORS

If C is indeed an emergent symmetry for the bosonic
CFL at ν = 1, we can ask whether the bosonic CFL can
be realized in a microscopic system in which C is an exact
local UV symmetry (with in addition the U(1) of charge
conservation so that the full symmetry is U(1)×C). This
question was answered for the fermionic CFL at ν = 1/2
and lead to fruitful results[10]: the fermionic CFL, with
the particle-hole symmetry being exact, can be realized
on the surface of a 3D topological insulator with U(1)×C
symmetry.

It is then natural to consider bosonic analogs of topo-
logical insulator – also known as symmetry-protected
topological (SPT) states[55] – in three dimensions with
U(1)× C symmetry. A simple example[56–58] is a state
that has a response to an external electromagnetic field
characterized by a θ term with θ = 2π. In addition the
elementary probe magnetic monopole in this electromag-
netic field is a neutral fermion that is a Kramers singlet
under the anti-unitary C operation.

The surface of this boson SPT may be in one of sev-
eral phases. An example is a C-broken phase without
any topological order. There are two states related by
the C symmetry which have electrical Hall conductiv-
ity σxy = ±1, and thermal Hall conductivity κxy = 0.
Note that these differ precisely by the elementary 2d
bIQHE state. A different surface state breaks the global
U(1) symmetry (a surface superfluid) but preserves C. In
this superfluid the basic 2π vortex is a Kramers singlet
fermion while the 4π vortex is a trivial boson. In addition
to these symmetry broken phases, symmetry preserving
gapped topological ordered phase with anomalous sym-
metry implementation are possible.

As in the analogous discussion of fermions at ν = 1
2

in terms of 3d TI surfaces, with U(1) × C symmetry,
external B-fields are C-even and can be included in the
Hamiltonian. Then as discussed in Ref. [56], we can get
a gapless metallic state by starting from the superfluid
surface state and proliferating 2π vortices which are at
a finite density B

2π . The resulting vortex metal state
has exactly the same effective Lagrangian as Eq. (20)
but now arises in a system with microscopic U(1) × C
symmetry.

Similar analysis applies to spin-1/2 bosons with U(1)×
SU(2)×C symmetry: there is a bosonic topological insu-
lator in 3D with this symmetry, on the surface of which a
natural compressible state is described by the Dirac com-
posite fermi liquid in Eq. (11), without the background

Chern-Simons term for Aµ due to the exact particle-hole
symmetry. The defining characteristics of this insulator
is again a bulk θ-term with θ = 2π, which makes the
elementary magnetic monopole fermionic, with spin-1/2
under SU(2) and C2 = 1 under particle-hole. The sur-
face avatar of this monopole – the vortex – is nothing but
the composite fermion. We describe some more details
below, in connection with an amusing electromagnetic
duality in the 3d bulk.

A. Connection to bulk electromagnatic duality

The fermionic version of the Dirac CFL at ν = 1/2 is
deeply connected with a duality between two fermionic
topological insulators in three space dimensions, one pro-
tected by C symmetry and the other protected by time-
reversal symmetry[11, 12, 59, 60]. We now show that the
bosonic version is also connected with a duality in three
dimensions.

Consider a three dimensional fermion system with
U(1) charge conservation, time-reversal T and SU(2)
spin-rotation symmetries, compactly denoted as (U(1)o
T )× SU(2) (the o symbol simply means that the U(1)
charge is even under T ). We also have T 2 = 1, which is
different from the usual cases with fermions.

With these symmetries, there is a nontrivial topologi-
cal insulator state for the fermions. The simplest surface
state has two Dirac fermion, one for each spin:

L[ψα] =
∑
α=↑,↓

ψ̄α(i/∂ + µγ0)ψα, (33)

which is very similar to Eq. (11) except there is no gauge
field. Again we have T : ψ → σ2τ2ψ with T 2 = 1.

Now let us “gauge” the entire topological insulator
(bulk and surface), by coupling the fermions to a dy-
namical compact U(1) gauge field. The non-triviality
of the topological insulator can be exposed by studying
monopoles of the U(1) gauge field. A monopole should
have the same quantum number with a 2π-flux tube
on the surface, since one can tunnel a monopole from
the vacuum into the bulk, which leaves a 2π-flux tube
on the surface. As we discussed under Eq. (11), a 2π-
flux tube is a spin-1/2 boson on the surface. Therefore
the monopole in the bulk is also a spin-1/2 boson. The
monopole charge (magnetic flux) itself is of course odd
under time-reversal.

Now the entire three-dimensional U(1) gauge theory
can be viewed from a very different angle: one can start
from a spin-1/2 boson system with U(1) × T × SU(2)
symmetry, notice here the first × symbol means that
the U(1) charge is now odd under T . One can then
put it into a “bosonic topological insulator” (BTI), such
that when the U(1) symmetry is gauged, the “monopole”
becomes a spin-1/2 fermion with T 2 = 1. This is obvi-
ously the same theory as the one above: one only needs
to switch the names of “charge” and “monopole”.
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It is conceptually very simple to construct such a BTI,
following the recipe introduced in Ref. [12]: we can start
from the U(1) gauge theory constructed from gauging
the fermion TI, then introduce physical spin-1/2 bosons
with U(1)× T × SU(2) symmetry into the system, and
initially make them trivially gapped. We can then hy-
bridize the physical boson with the monopole in the U(1)
gauge theory: 〈b†αMα〉 6= 0, where bα is the physical bo-
son andMα is the spin-1/2 monopole. Because the sym-
metry quantum numbers of the two particles are identi-
cal, such a mixing does not break any symmetry. But
it does break the U(1) gauge symmetry and makes the
gauge field gapped (and the fermion charge confined).
We are thus left with a non-fractionalized insulator in
a system of spin-1/2 bosons, which is exactly the BTI
we are interested in – the easiest way to see it is to
re-introduce a monopole, which will automatically be a
spin-1/2 fermion.

VII. TOPOLOGICAL ORDER: A NO-GO
CONSTRAINT

It is interesting to ask whether there is a gapped (in-
compressible) topological order at filling ν = 1 that pre-
serves both SU(2) and C symmetries. For fermions at
ν = 1/2, such a state (known as PH-Pfaffian) can be ob-
tained by pair-condensing the Dirac composite fermions.
If we try to do similar things here, we realize that a
spin and particle-hole symmetric pairing term cannot
fully gap out the Dirac composite fermions. In fact,
we can show that a fully gapped topological order with
spin and particle-hole symmetries cannot exist at ν = 1.
This means that spin-1/2 bosons at ν = 1 with the
full U(1)× SU(2)× C symmetry must be gapless. Such
“symmetry-enforced gaplessness” was first discussed[17]
for the surface states of certain fermion topological su-
perconductor. Our example here is a purely bosonic re-
alization of this phenomenon.

We now prove the statement: suppose there is a
fully gapped topological order at ν = 1 with particle-
hole and SU(2) spin-rotation symmetry. We label the
quasi-particles as {1, X1, X2, ...}. The physical boson bα
is topologically trivial since it has no mutual braiding
phase with any particle. So one can freely relabel quasi-
particles by attaching certain numbers of bα without
changing their topological sector. Now because the spin
SU(2) group does not admit fractional (projective) rep-
resentation (there is no such a thing as “spin-1/4”), each
quasi-particle must carry either integer or half-integer
spin. We can then relabel the quasi-particles by bind-
ing them with certain number of microscopic physical
bosons, and make all the topological quasi-particles spin-
singlet, which we denote as {1, X ′1, X ′2, ...}.

Now the topological order {1, X ′1, X ′2, ...} (which is the
same as the original topological order) is a purely spin-
singlet state. In particular, any local objects – those
with trivial mutual statistics with other particles – in

this theory must also be spin-singlet. But we know
that spin-singlet local objects in the system are bosons
with even-integer charge, because local bosons with odd-
integer charge all carry half-integer spin. Therefore the
topological order {1, X ′1, X ′2, ...} can also be realized in a
different system: a system of spinless bosons with even-
integer charge.

It is powerful to view this state from the standpoint of
the three dimensional boson SPT for which it is a surface
state. The observations in the previous paragraph imply
that the bulk boson SPT can be understood as an SPT
of the spin-singlet even charge sector formed out of the
elementary bosons. SPT states of spineless bosons with
the U(1)×C symmetry are well understood. It is known
that non-trivial such states when protected by the full
U(1) × C symmetry can be characterized by the non-
triviality of the elementary magnetic monopole which
carries flux g = 2π

qe
where qe is the elementary charge

of the bosons. But in the present problem the boson
SPTs in question are formed out of the even charge spin-
singlet sector which means that we must take qe = 2.
However then the monopole with flux π is not actually
allowed as a legal probe in this system as we also have
microscopic charge-1 bosons. We do have legal strength-
2π monopoles but in the even charge boson SPTs these
are known to be always trivial.

However we already know that in our bulk boson SPT
the 2π monopole is non-trivial: it is the bulk avatar of
the composite fermion, and hence is a spin-1/2 fermion.
We have thus reached a contradiction. It follows there-
fore that the surface of this boson SPT cannot be in a
symmetry preserving gapped surface topological ordered
state. This is bosonic example of the phenomenon of
“Symmetry enforced gaplessness”, first discovered in the
context of fermionic SPT phases[17].

Notice that our conclusion relies strongly on the ex-
istence of SU(2) invariance. For example, if the entire
SU(2) symmetry is absent, there is a U(1) × C invari-
ant topological order allowed on the surface of the boson
topological insulator, which is then also allowed as a C-
invariant topological order at ν = 1. It is a simple Z2

topological order {1, e,m, ε}, where the two nontrivial
bosons e and m both carry half-integer charge. This is
known as the eCmC state in the literature[56–58].

VIII. BEYOND THE LOWEST LANDAU
LEVEL LIMIT

So far we have emphasized the importance of the strict
lowest Landau level (LLL) limit, which formally corre-
sponding to me → 0. What about the more practical
situations with finite bare electron mass? How much of
the physics we discussed really need the strict LLL limit?
We now discuss these issues.

When me > 0, the Landau levels are separated by fi-
nite gaps, and it is not enough to restrict to only the
lowest level. However, as long as the me → 0 limit is not
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singular (which seems to be a very natural assumption),
the low energy physics should be adequately described
within the lowest Landau level–the higher Landau levels
are effectively “integrated out”, with additional terms
generated in the LLL such as three-body terms. This is
similar to the Hubbard model at half-filling: below the
Mott-Hubbard gap the physics is adequately described
by the localized spin degrees of freedom. Therefore we
expect that in the low energy limit, the LLL formulation
is still valid, and much of the physics discussed in this
paper still hold. In particular, the DC transport proper-
ties discussed in Sec. IV are expected to hold even with-
out the LLL restriction, since they are low energy (zero
frequency) properties of the system. This makes our the-
ories empirically testable since the strict LLL limit is no
longer required.

IX. DISCUSSION

We have discussed a candidate theory for compressible
states arising from partially filled lowest Landau level.
The key ingredients that differ from the traditional HLR-
RPA theory are the absence of Chern-Simons term for
the emergent gauge field, and a Berry phase on the emer-
gent fermi surface. Our arguments were based on micro-
scopic charge-neutrality of composite fermions in LLL.
The composite fermi liquid should thus be viewed as a
quantum liquid of neutral fermionic vortices. We showed
that the Berry phase has some direct consequences for
transport phenomena in the composite fermi liquids.

Our picture suggests that for the ν = 1/2 CFL state,
the π-Berry phase should be robust even in the absence
of particle-hole symmetry, as long as Landau level mix-
ing is suppressed. However in the absence of particle-
hole symmetry, it is hard to identify composite fermion
density with microscopic operator, and consequently it
is hard to detect such a Berry phase through correlation
functions at 2kf , as was done in Ref. [14]. It will be de-
sirable to understand the proposed theory from a micro-
scopic point of view. For example, could there be a mi-
croscopic symmetry in the lowest Landau level, that for-
bids a Chern-Simons term in the effective theory? Such
questions are natural directions for future work.

We also described a particle-hole transformation for
bosons that relies on removing particles from the boson
integer quantum Hall state. This leads to the possibility
of a bosonic anti-Pfaffian state at filling ν = 1. Fur-
ther px ± ipy pairing of the neutral vortex/composite
fermions leads to distinct topologically ordered states
from the standard bosonic Pfaffian or the anti-Pfaffian
we described. This distinction is a manifestation of the
−2π Fermi surface Berry phase in the neutral vortex liq-
uid theory of the compressible ‘normal’ state of bosons at
ν = 1. We showed that the existing LLL theory for this
compressible state has an emergent particle-hole sym-
metry. We emphasized the close parallels between this
theory and the particle-hole symmetric composite fermi

liquid of fermions at ν = 1/2.
A different aspect of our paper is our discussion of

compressible states of SU(2) symmetric two-component
bosons, and their relationship with surface states of three
dimensional bosonic topological insulators. In this con-
text we showed that such a boson system does not ad-
mit a gapped symmetry preserving state, thereby realiz-
ing the phenomenon of “symmetry enforced gaplessness”
discussed in our previous work for fermionic topologi-
cal superconductors. A general understanding of which
3 + 1-D SPT states admit gapped symmetry preserving
surface states is another target for future work.

During the completion of this work, we became aware
of another work by Haldane[61], through APS March
meeting 2016 where part of this work was also presented,
that also proposes a Berry phase on the composite fermi
surface. The Berry phase proposed by Haldane appar-
ently differs from ours by a sign. The exact relation
between the two works remains unclear.

Note added: Since the submission of the initial ver-
sion of this paper, another related paper[62] has ap-
peared on the arxiv, which also discussed composite
fermi liquid states for bosons at ν = 1, including one
with 2π-Berry phase on the composite fermi surface.

Acknowledgement: We thank N. R. Cooper, B. I.
Halperin, J. K. Jain, O. I. Motrunich, J. Checkelsky,
M. A. Metlitski, A. C. Potter, N. Read, and A. Vish-
wanath for helpful discussions on various issues. Part
of this work was performed when TS was visiting the
Aspen Center for Physics, which is supported by Na-
tional Science Foundation grant PHY-1066293. CW was
supported by the Harvard Society of Fellows. TS was
supported by NSF DMR-1305741. This work was also
partially supported by a Simons Investigator award from
the Simons Foundation to Senthil Todadri.

Appendix A: Fermi surface Berry phase and
quantum oscillations

We consider quantum oscillations, more specifically
SdH oscillation, of a fermi surface with Berry phase φB .
A widely quoted result from Ref. [25, 26] states that the
resistivity minima occurs at

BF
B

= n− φB
2π

, (A1)

where BF = 2πρ and is proportional to the Fermi sea
area, and n is some integer. This result was obtained by
considering semiclassical (Sommerfeld) quantization of
electron orbits on the fermi surface, taking into account
the effect of the Berry phase φB when electron moves
along the fermi sea.

However, the above result relies on the assumption
that the classical approximation of the “Fermi surface
area”, proportional to BF in Eq. (A1), is independent of
B. This will not be true if the system has an anomalous
Hall conductance. For an ordinary Fermi surface with
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Berry phase φB , one expects an anomalous Hall conduc-
tance σxy = φB

2π up to an integer. In the presence of this
anomalous Hall conductance, part of the electric charge
becomes the “anomalous charge” when the B-field is
turned on, with density ρA = σxyB/2π = φBB

4π2 . This
“anomalous charge” no longer contributes to the Fermi
surface area in the Sommerfeld quantization. Therefore
the coefficient BF in Eq. (A1) should be modified to

BF = 2π(ρ− ρA) = 2πρ− φB
2π

B (A2)

which exactly cancels the φB term on the right hand side.
The final form becomes identical to that of an ordinary
Fermi sea without a Berry phase. This is a sensible result

since for strong B-field, one expects the SdH oscillation
to crossover to the integer quantum hall effect, where the
integer quantization has no modification from φB .

Therefore what the shift in the SdH oscillation really
measures is the mismatch between Fermi surface Berry
phase and the anomalous Hall conductance. In special
circumstances the Berry phase on the Fermi surface does
not lead to an anomalous Hall conductance. One of
them is the fermionic vortex theory discussed in the main
text. Another more familiar example is Dirac fermions in
graphene or on topological insulator (TI) surface. For a
TI surface the missing Hall conductance is a bulk effect,
while for graphene it is due to the cancellation between
the four Dirac fermions.
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