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Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool
to study local heating effects and other local thermal properties of systems driven by external fields.
Although various experimental protocols and theoretical definitions have been proposed to determine
the local temperature, the thermodynamic meaning of the measured or defined quantities remains
unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both
in the noninteracting and strongly-correlated regimes, we elucidate the underlying physical meaning
of local temperature as determined by two definitions: the zero-current condition that is widely
used but not measurable, and the minimal-perturbation condition that is experimentally realizable.
We show that, unlike the zero-current condition, the local temperature determined by the minimal-
perturbation protocol establishes a quantitative correspondence between the nonequilibrium system
of interest and a reference equilibrium system, provided the probed system observable and the
related electronic excitations are fully local. The quantitative correspondence thus allows the well-
established thermodynamic concept to be extended to nonequilibrium situations.

PACS numbers: 05.70.Ln, 71.27.+a, 73.23.Hk, 73.63.Kv

I. INTRODUCTION

Probing the variation of local temperatures in systems
out of equilibrium has become a subject of intense exper-
imental interest in physics [1–5], chemistry [6–8] and life
sciences [9–12]. With the development of high-resolution
thermometry techniques, measurement of some sort of
temperature distributions of nonequilibrium systems has
been realized, such as in graphene-metal contacts [4], gold
interconnect structures [5], and living cells [12].
Local electronic and phononic excitations occur in na-

noelectronic devices subject to a bias voltage or thermal
gradient, and hence the devices are supposedly at a lo-
cal temperature somewhat higher than the background
temperature. Such local heating affects crucially the de-
vice properties [13–16], and have significant influence on
some physical processes, such as thermoelectric conver-
sion [17–19], heat dissipation [8, 19], and electron-phonon
interactions [20, 21]. All these studies, however, leave
open the question of what precisely is a “local tempera-
ture” in a nonequilibrium system, a concept that has a
well-established meaning only in global equilibrium.
Over the past decade, numerous experimental [15, 22–

28] and theoretical [29–41] efforts have been made to pro-
vide practical and meaningful definitions of local temper-
ature for nonequilibrium systems that bear a close con-
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ceptual resemblance to the thermodynamic one. How-
ever, it has remained largely unclear how to physically
interpret the defined local temperature, and how to as-
sociate the measured value with the magnitudes of local
excitations at a quantitative level.

This work aims at elucidating these fundamental issues
through analytical and numerical analysis on nonequilib-
rium quantum dot (QD) systems. In particular, we shall
focus on the definition of local temperature based on the
zero-current condition proposed by Engquist and Ander-
son [42], and that based on the minimal-perturbation
condition as proposed in Refs. [32, 39]. To enable an
analytical analysis and quantitatively accurate numeri-
cal studies, in this work we shall concentrate on the low-
background-temperature regime, so that the local excita-
tions on a QD is dominated by the scattering events and
correlation effects among electrons, while phonon modes
are not promoted.

The remainder of this paper is organized as follows.
In Sec. II the model and methodology used in this work
is introduced. In Sec. III we present analytical anal-
ysis on local temperatures of bias-driven QD systems.
A quantitative correspondence relation is proposed. In
Sec. IV, numerical calculation results are given for QDs
in both noninteracting and strongly-correlated regimes.
The physical meaning of local temperatures is further
elaborated. Concluding remarks are given in Sec. V.
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II. METHODOLOGY AND MODEL

A. Zero-current condition

The definition of local temperature based on the zero-
current condition (ZCC) has been used extensively in the
literature [31, 34, 36, 37, 43–47]. The basic idea is to
couple an ideal potentiometer/thermometer (the probe)
to the nonequilibrium system of interest. By varying
the temperature (Tp) and chemical potential (µp) of the
probe until the electric current (Ip) and heat current (JH

p )
flowing through the probe both vanish, the local tem-
perature (T ∗) and local chemical potential (µ∗) of the
system are determined as T ∗ = Tp and µ∗ = µp, respec-
tively. In short, the ZCC is expressed as (hereafter we
set e = ~ = kB = 1)

Ip(Tp = T ∗, µp = µ∗) = 0, (1a)

JH
p (Tp = T ∗, µp = µ∗) = 0. (1b)

The ZCC is often referred to as the “local equilibrium
condition”, as the determined local temperature can be
understood from the perspective of the zeroth law of ther-
modynamics. However, such a macroscopic definition of
local temperature does not reflect themicroscopic change
of the system state in a nonequilibrium situation. More-
over, it is important to note that, unlike charge currents,
we have no means to directly measure heat currents, since
in the latter case we have no equivalent apparatus like the
ammeter in the electronic case [16]. This is an often ig-
nored but very important issue that severely limits the
experimental application of the ZCC-based definition.

B. Minimal-perturbation condition

The minimal-perturbation condition (MPC) based def-
inition is conceptually different. Consider an open quan-
tum system whose dynamics is described by a quantum
master equation for the system reduced density matrix ρ

ρ̇(t) = −i [Hsys, ρ] +Renv[ρ], (2)

where Hsys is the system Hamiltonian, and Renv[ρ] is a
superoperator that represents the dissipative interactions
between the system and its environment. As initially pro-
posed by Dubi and Di Ventra [32, 33], to determine the
local temperature of the system (T ∗), one could couple
an external probe to the system. This would introduce
an additional dissipation term Rp[ρ] on the right-hand
side of Eq. (2), which accounts for the system-probe in-
teractions. T ∗ is determined by tuning the temperature
of probe (Tp) so that the coupling probe has minimal
perturbation to the system dynamics (the additional dis-
sipation term Rp[ρ] gets minimized). The T ∗ determined
in this way then reflects directly the change of system
states.

While in principle the MPC should be imposed on ρ
that directly reflects the change of system states, in prac-
tice it is difficult to monitor the evolution of ρ in exper-
iments. Therefore, for practical purpose, we choose to
impose the MPC on the expectation value of a certain
system observable O = 〈Ô〉 = tr(ρÔ) [39].
Consider, for instance, a QD connected to two leads (L

and R), with the lead temperatures (chemical potentials)
being TL and TR (µL and µR), respectively. By locally
coupling a probe to the QD, the expectation value of a
local observable O = 〈Ô〉 is subjected to a perturbation,
δOp(Tp, µp), which depends explicitly on Tp and µp.
An experimentally feasible way to determine T ∗ and µ∗

is to vary µp and Tp, until the electric current through
the probe vanishes and simultaneously the perturbation
δOp(Tp, µp) gets minimized [32, 39]:

Ip(Tp = T ∗, µp = µ∗) = 0, (3a)

T ∗ = argmin
Tp

|δOp(Tp, µp)| . (3b)

As it is evident, the use of Eqs. (3a) and (3b) does not
require the measurement of heat currents.
Theoretically it is rather difficult to find analytical so-

lutions for µ∗ and T ∗ through Eqs. (3a) and (3b), since
they usually lead to coupled nonlinear equations. For
simplicity, and also for a more transparent physical un-
derstanding, we adopt a two-step approach to determine
T ∗ and µ∗ – we first determine µ∗ as a weighted sum of
µL and µR (see Eq. (4) below), and then T ∗ is determined
by imposing the MPC of Eq. (3b). As will be shown later
in Sec. III A, the approximation made for µ∗ does not al-
ter the conclusions and understanding reached through
this work.
For a QD subjected to a bias voltage V = µR − µL,

the local chemical potential µ∗ is first determined as [39]

µ∗ = ζLµL + ζRµR. (4)

Then the local temperature T ∗ is measured by varying
Tp, with µp fixed at the value determined by Eq. (4)

δOp(Tp, µp) = ζLOp(TL, µL) + ζROp(TR, µR)

−Op(Tp, µp). (5)

Here, Op(Tα, µα) denotes the local observable 〈Ô〉 mea-
sured by setting Tp = Tα and µp = µα (α = L or R); and
the weight coefficients ζL and ζR are determined by

ζα = 1−

∣

∣

∣

∣

Ip(Tα, µα)

Ip(TL, µL)− Ip(TR, µR)

∣

∣

∣

∣

. (6)

It has been verified in Ref. 39 that Eq. (4) is a reasonable
and convenient approximation for µ∗.
At zero bias T ∗ determined by Eq. (3b) recovers ex-

actly the physical equilibrium temperature. While in
many cases the MPC-defined T ∗ is numerically close to
that obtained by the ZCC [39], the former does not re-
quire the measurement of heat currents, and hence its ex-
perimental realization is feasible. Despite this added ben-
efit, it remains unclear how T ∗ determined by Eq. (3b)
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is quantitatively related to the electronic excitations in a
nonequilibrium system, and what is the underlying ori-
gin of the difference between the ZCC and MPC based
definitions. This leads us to question to what extent can
we assign to the MPC quantity the meaning of a “ther-
modynamic temperature” as in the equilibrium case.

C. Quantum impurity model for quantum dots

To address the above fundamental issues, we carry
out analytical and numerical analysis on QD systems de-
scribed by the single-impurity Anderson model (SIAM)

[48]. The total Hamiltonian is Ĥ = Ĥdot+Ĥlead+Ĥcoup.

The dot is represented by Ĥdot = ǫd n̂d + Un̂↑n̂↓, with
n̂d =

∑

s n̂s =
∑

s â
†
s âs. Here, â†s (âs) creates (annihi-

lates) an electron of spin–s on the dot level of energy ǫd,
and U is the on-dot electron-electron (e-e) Coulomb inter-

action energy. Ĥlead =
∑

αks ǫαk d̂
†
αks d̂αks represents the

noninteracting leads, and Ĥcoup =
∑

αks(tαk â
†
s d̂αks +

H.c.) describes the dot-lead couplings, respectively. Here,

d̂†αks (d̂αks) creates (annihilates) a spin–s electron on the
state |k〉 of lead α (α = L, R or p), and tαk is the coupling
strength between the dot level and lead orbital |k〉. The
influence of noninteracting leads can be captured by the
hybridization functions Γα(ω) ≡ π

∑

k |tαk|
2δ(ǫ − ǫαk).

For numerical convenience, a Lorentzian form of Γα(ω) =
∆αW

2
α/[(ω−Ωα)

2 +W 2
α] is adopted, where ∆α is the ef-

fective dot-lead coupling strength, and Ωα and Wα are
the band center and width of lead–α, respectively.
As for the local observable Ô that is necessary for the

experimental utilization of MPC, we examine two choices

– the local magnetic susceptibility χm ≡ ∂〈m̂z〉
∂Hz

|Hz→0 and

the local charge susceptibility χc ≡ −∂〈n̂d〉
∂ǫd

. Here, m̂z =

gµB(n̂↑ − n̂↓)/2 is the dot magnetization operator, with
Hz being the magnetic field, g the gyromagnetic ratio,
and µB the Bohr magneton.

III. THERMODYNAMIC MEANING OF LOCAL

TEMPERATURE AND CORRESPONDENCE

RELATION

A. Analytical analysis on a single-level QD

Consider a single-level QD in a stationary state, its
retarded/advanced single-electron Green’s function of
spin–s is [49]

Gr
s(ω) = [Ga

s(ω)]
† =

1

ω − ǫd − Σr
s(ω)

. (7)

Here, Σr
s(ω) = Σr

res(ω) + Σr
ee(ω) is the retarded self-

energy, and Σr
res(ω) and Σr

ee(ω) arise from the dot-
lead couplings and the electron-electron interactions, re-
spectively. The lesser Green’s function of the dot is

G<
s (ω) = Gr

s(ω)Σ
<
s (ω)G

a
s (ω), with the lesser self-energy

Σ<
s (ω) = Σ<

res(ω) + Σ<
ee(ω) [49, 50].

The spectral density function of the dot is As(ω) ≡
1
2π

∫

dt eiωt〈{âs(t), â
†
s(0)}〉 = − 1

π Im[Gr
s(ω)] and A(ω) =

∑

s As(ω). The energy distribution of electric and heat
currents flowing into lead–α is [51, 52]

jkαs(ω) = (−1)k+1 i

π
(ω − µα)

k Γα(ω)

×
{

G<
s (ω) + 2ifTα,µα

(ω)Im[Gr
s(ω)]

}

. (8)

Here, k = 0 and 1 correspond to the electric and heat
currents, respectively; and fTα,µα

(ω) = 1/[e(ω−µα)/Tα+1]
is the Fermi function. The total electric and heat currents
flowing into lead–α are obtained by integrating jkαs(ω)
over the entire energy range as Iα =

∑

s

∫

dω j0αs(ω) and
JH
α =

∑

s

∫

dω j1αs(ω).

B. Noninteracting dots

For noninteracting dots (U = 0), the e-e interacting
self-energies [Σr

ee(ω) and Σ<
ee(ω)] vanish. For simplicity,

consider all leads have the same bandwidth Wα = W
(α = L,R and p), and the band centers are set to lead
chemical potentials. The lead hybridization functions are

Γα(ω) =
∆αW

2

(ω − µα)2 +W 2
= ∆αηα(ω). (9)

Here, ηα(ω) is proportional to the density of states of
lead–α. The electric current is expressed as

Iα =2

∫

dω Γα(ω)A(ω)

×

{
∑

α′ Γα′(ω)fTα′ ,µα′ (ω)
∑

α′ Γα′(ω)
− fTα,µα

(ω)

}

. (10)

At ∆p = 0, we have A(ω) = A0(ω), with A0(ω) being
the dot spectral function in the absence of the probe.
By setting Tp = Tα and µp = µα (α = L or R) respec-

tively, it is straightforward to see that

Ip(TL, µL)

Ip(TR, µR)

∣

∣

∣

∣

∆p→0

= −
∆R

∆L
. (11)

The weight coefficients {ζα} in Eq. (6) are determined as

ζL =
∆L

∆L +∆R
and ζR =

∆R

∆L +∆R
. (12)

Therefore, the local chemical potential is [cf. Eq. (4)]

µ∗ =
∆L

∆L +∆R
µL +

∆R

∆L +∆R
µR. (13)

The expectation values of local observables O = χc

and χm can be expressed as

O = C′
O

∑

α

∫

dω
Γα(ω)

∑

α′ Γα′(ω)

∂A(ω)

∂ǫd
fTα,µα

(ω). (14)
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Here, C′
O is a constant prefactor dependent on the specific

choice of O.
Denote O0(TL, µL, TR, µR) as the expectation value of

Ô in the absence of the probe, and its deviation from the
equilibrium value is

O0(TL, µL, TR, µR)−O0(Teq, µeq, Teq, µeq)

= C′
O

∫

dω

{

ΓL(ω)fTL,µL
(ω) + ΓR(ω)fTR,µR

(ω)

ΓL(ω) + ΓR(ω)

∂A0(ω)

∂ǫd

− fTeq,µeq
(ω)

∂A0(ω)

∂ǫd

∣

∣

∣

∣

Tα=Teq, µα=µeq

}

. (15)

Here, Teq and µeq are the temperature and chemical po-
tential of the QD at equilibrium, respectively.

1. The case of wide-band limit

In the wide-band limit (W → ∞), the dot spectral
function

As(ω) =
1

π

∑

α ∆α

(ω − ǫd)2 + (
∑

α ∆α)2
(16)

is independent of µα and Tα. Consequently, the equi-
librium and nonequilibrium dots have identical spectral
functions, i.e., A0(ω;µL, µR) = A0(ω;µeq, µeq) = A0(ω).
The expectation values of local observables O = χc and
χm can be expressed in a compact form of

O = CO
∑

α

∆α

∫

dω
∂A(ω)

∂ǫd
fTα,µα

(ω), (17)

with CO = C′
O/

∑

α ∆α. The perturbation of local ob-
servable O by the coupled probe assumes the following
general form [cf. Eq. (5)]:

δOp(Tp, µp) = −CO ∆p

∫

dω
∂A(ω)

∂ǫd

{

fTp,µp
(ω)

−
∆LfTL,µL

(ω) + ∆RfTR,µR
(ω)

∆L +∆R

}

. (18)

Apparently, imposing the MPC on χm or χc would lead
to exactly the same T ∗, since the right-hand side of
Eq. (18) differs only in the constant prefactor CO for dif-
ferent choice of O.
Let us now examine in detail how the excitations in-

duced by a bias voltage or thermal gradient affect the
local observable O. Equation (15) now reduces to

O0(TL, µL, TR, µR)−O0(Teq, µeq, Teq, µeq) =

− CO (∆L +∆R)

∫

dω
∂A(ω)

∂ǫd

{

fTeq,µeq
(ω)

−
∆LfTL,µL

(ω) + ∆RfTR,µR
(ω)

∆L +∆R

}

. (19)

detector

nonequilibrium

detector

equilibrium

FIG. 1. Schematic illustration of Eq. (20). The local observ-
able O0 of a nonequilibrium QD can be made equivalent to
that of a reference equilibrium QD, provided the two dots
have the same local temperature T ∗.

By comparing Eqs. (18) and (19), we immediately rec-
ognize that

O0(TL, µL, TR, µR) = O0(T
∗, µ∗, T ∗, µ∗), (20)

provided that

δOp(Tp, µp)

∆p

∣

∣

∣

∣

Tp=T∗, µp=µ∗,∆p→0

= 0 (21)

can be achieved. In relation to Eq. (3b), Eq. (21) further
requires that the perturbation to the local observable O
by the coupled probe minimizes to zero.

Equation (20) is the central result of this work. As
illustrated in Fig. 1, it establishes a quantitative relation
between the local property of a nonequilibrium dot and
that of a reference equilibrium dot. The physical signif-
icance of T ∗ is thus clarified: the electronic excitations
induced by a bias voltage or temperature gradient can
be equivalently characterized as thermal excitations in-
duced by a uniform equilibrium temperature. This then
provides a microscopic interpretation of the MPC-based
definition of local temperature.

It is worth emphasizing that, the approximation of
Eq. (4) for µ∗ does not invalidate the quantitative re-
lation of Eq. (20). This is because µ∗ appears only in
the Fermi function during the derivation of Eq. (20), and
thus the specific form or value of µ∗ has no effect on the
equality in Eq. (20).

In contrast, within the same conditions, the ZCC of
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Eqs. (1a) and (1b) amounts to
∫

dω (ω − µ∗)k A(ω)

{

fT∗,µ∗(ω)

−
∆LfTL,µL

(ω) + ∆RfTR,µR
(ω)

∆L +∆R

}

= 0. (22)

The integral in Eq. (22) has a distinct different form from
that in Eq. (19), suggesting that in general the local tem-
perature T ∗ determined by the ZCC does not guarantee
the equality in Eq. (20).

2. The case of finite band-width

For leads with a finite band width, As(ω) depends ex-
plicitly on the lead chemical potential µα. Consequently,
the nonequilibrium dot spectral function A0(ω;µL, µR)
differs from the equilibrium counterpart A0(ω;µeq, µeq).
Nevertheless, as will be shown below, the correspondence
relation of Eq. (20) still holds under a small applied bias
voltage V = µR − µL.
From Eq. (4), we have µL = µ∗ − ζRV and µR =

µ∗+ζLV . Define η(ω;µ∗) ≡ W 2/
[

(ω − µ∗)2 +W 2
]

, and
ηα(ω) can be expanded as

ηL(ω) = η(ω;µ∗)− 2ζR

[

η(ω;µ∗)

W

]2

(ω − µ∗)V +O(V 2),

(23)

ηR(ω) = η(ω;µ∗) + 2ζL

[

η(ω;µ∗)

W

]2

(ω − µ∗)V +O(V 2).

(24)

We thus have

∆L ηL(ω) + ∆R ηR(ω) = (∆L +∆R) η(ω;µ
∗) +O(V 2).

(25)
This leads to the equality of

A0(ω;µL, µR) = A0(ω;µ
∗, µ∗) +O(V 2). (26)

The perturbation to local observable O can thus be ex-
pressed as

δOp(Tp, µp)

∆p

∣

∣

∣

∣

Tp=T∗, µp=µ∗,∆p→0

=− CO

∫

dω
∂A0(ω)

∂ǫd

{

fT∗,µ∗(ω)

−
ζL ηL(ω)fTL,µL

(ω) + ζR ηR(ω)fTR,µR
(ω)

ζL ηL(ω) + ζR ηR(ω)

}

+O(V 2).

(27)

Substituting Eqs. (25) and (26) into Eq. (15) leads to

O0(TL, µL, TR, µR)−O0(T
∗, µ∗, T ∗, µ∗)

=− CO(∆L +∆R)

∫

dω
∂A0(ω)

∂ǫd

{

fT∗,µ∗(ω)

−
ζL ηL(ω)fTL,µL

(ω) + ζR ηR(ω)fTR,µR
(ω)

ζL ηL(ω) + ζR ηR(ω)

}

+O(V 2).

(28)

By comparing Eqs. (27) and (28), one easily recognizes
that

O0(TL, µL, TR, µR) = O0(T
∗, µ∗, T ∗, µ∗) +O(V 2), (29)

provided the zero perturbation of Eq. (27) is reached.

C. Interacting dots

For QDs with a finite U , the e-e interacting self-
energies [Σr

ee(ω) and Σ<
ee(ω)] depend explicitly on system

parameters such as Coulomb energy U , dot level ǫd, tem-
perature Tα, and chemical potential µα, and thus usually
assume a complicated form. This makes an analytical
analysis rather difficult. Therefore, the correspondence
relation for interacting QDs are to be verified numeri-
cally by employing the accurate hierarchical equations of
motion (HEOM) approach, as described in the following
Sec. III D.

D. Hierarchical equations of motion approach for

quantum impurity systems

To verify the above analytical analysis, and to demon-
strate that Eq. (20) underscores the physical significance
of T ∗, we perform numerical calculations on the QD sys-
tems with an accurate and universal HEOM approach
[53–59]. The detailed derivation of the HEOM formalism
have been presented in Refs. 53 and 55. The HEOM the-
ory is formally rigorous, and the numerical approach has
been routinely used to investigate the equilibrium and
nonequilibrium properties of strongly-correlated quan-
tum impurity systems [60–68].
The numerical results of the HEOM method are guar-

anteed to be quantitatively accurate provided they con-
verge with respect to the truncation level of the hierarchy
Ntrun. For the noninteracting (interacting) QDs studied
in this work, the convergence is achieved at Ntrun = 2
(4), unless otherwise specified.

IV. NUMERICAL ANALYSIS AND

DISCUSSIONS

Figure 2(a) shows T ∗ determined by the MPC and the
ZCC for a noninteracting QD of varying ǫd under a fixed
bias voltage. The ZCC predicts an almost constant T ∗

over a large range of ǫd. In contrast, the MPC results
in a conspicuous fluctuation of T ∗ around ǫd = −0.7∆
(∆ = ∆L + ∆R is taken as the unit of energy), where
the magnitude of T ∗ deviates significantly from the ZCC
value. The vertical lines in Fig. 2(a) enclose a region (re-
gion II) in which the MPC-determined T ∗ varies sharply
with increasing ǫd. In this region the zero-perturbation
condition, Eq. (21), is out of reach no matter how Tp is
varied, while in the other regions (I and III) Eq. (21) is
satisfied for any ǫd, as exemplified in Fig. 2(d).
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FIG. 2. Calculated (a) T ∗ and (b) relative deviation between
χm
0 (T, V ) and χm

0 (T ∗, 0) versus ǫd for a noninteracting QD
under a bias voltage V . (c) Dot spectral function A(ω) and
(d) δχm

p versus Tp for different ǫd. The QD parameters are (in
units of ∆): U = 0, TL = TR = T = 0.1, µR = −µL = V/2 =
0.2, ∆L = ∆R = 0.5, ΩL = ΩR = 0, and WL = WR = 20.
The vertical lines and regions are explained in the main text.

We now examine the correspondence relation for lo-
cal properties, which is cast in a simplified form of
O0(T, V ) = O0(T

∗, 0) in the case TL = TR = T .
Figure 2(b) shows the relative deviation [χm

0 (T ∗, 0) −
χm
0 (T, V )]/χm

0 (T, V ) obtained numerically. With T ∗ de-
termined by the MPC, such deviation appears to be
vanishingly small in regions I and III, where the zero-
perturbation condition, Eq. (21), is always achievable;
while in region II the deviation remains appreciable. This
clearly verifies our analytical conclusion that the zero
perturbation condition for determining T ∗ is a prerequi-
site for the correspondence relation to hold. In contrast,
with T ∗ determined by the ZCC, the correspondence re-
lation does not apply over the large range of ǫd examined.

The existence of the three distinct regions for the
MPC-determined T ∗ can be understood as follows. As
shown in Fig. 2(c), the dot spectral function A(ω) ex-
hibits a single peak centered at ǫd and broadened by ∆.
Under a finite voltage, most of the electronic excitations
occur within an energy window (µL−ωL, µR+ωR), where
ωα is the full width at half maximum of ∂

∂ω fTα,µα
(ω). For

a dot in region I (such as ǫd = −1.5∆), the bulk of the
dot spectral peak lies below the excitation window, and
the dot level is off-resonant with the lead states. Con-
sequently, the electronic excitations are largely local on
the dot, and the MPC-determined T ∗ precisely captures
the magnitudes of these local excitations.

In contrast, for a dot in region III (such as ǫd = 0),
the center of the dot spectral peak resides precisely in
the excitation window, indicating that the dot level is in
strong resonance with the lead states. Therefore, excita-
tions occur mostly inside the leads to create hot electrons

(holes) above (below) the Fermi energy, and hence are
rather nonlocal. In such a case, the MPC-determined T ∗

quantifies the magnitude of these nonlocal excitations. In
this respect, it is more appropriate to interpret T ∗ as an
“effective temperature”, rather than a local temperature.

Finally, for a dot in region II (such as ǫd = −0.7∆), the
spectral peak lies at the edge of the excitation window.
The dot is thus in a near-resonance situation, and local
and nonlocal excitations could both take place. Since
the local and nonlocal excitations are intrinsically dif-
ferent, their influence on the local properties cannot be
adequately addressed by a single thermodynamic param-
eter T ∗. This thus explains why the zero-perturbation
condition of Eq. (21) is out of reach in region II.

Analytical analysis is somewhat difficult for interacting
QDs, and therefore we resort to a numerical analysis by
employing the HEOM approach. For a QD with U > 0,

the local observables χm = − 1
2g

2µ2
B

(

∂〈n↑〉
∂ǫ↑

−
∂〈n↓〉
∂ǫ↑

)

and χc = −2
(

∂〈n↑〉
∂ǫ↑

+
∂〈n↓〉
∂ǫ↑

)

are nonequivalent because

∂〈n↓〉
∂ǫ↑

6= 0. Therefore, the MPC-determined local temper-

ature depends on the specific choice of local observable
O. Nevertheless, our calculations have shown that over
a wide range of parameters the use of χm and χc result
in very close values of T ∗ (see Fig. 3).

As it has been pointed out in Sec. II B, in principle,
the MPC can be imposed directly on the system reduced
density matrix ρ, and the determined T ∗ would truly re-
flect the change of system state and be independent of
any observable. However, in practice, it is difficult to
monitor the change of ρ, and we have to choose a phys-
ical observable so that the MPC-based definition could
become experimentally realizable.

Figure 3(a) and (b) depict the variation of T ∗ with
increasing U at a high (T = ∆) and low (T = 0.1∆)
background temperature, respectively. Similar to the
noninteracting situation, the ZCC predicts an almost
constant T ∗ over a large range of U , while the MPC
again gives rise to a sharp transition of T ∗ within a
small region (region II) of U . The relative deviations
[O0(T

∗, 0) − O0(T, V )]/O0(T, V ) (O = χm and χc) are
shown in Fig. 3(c) and (d). While the ZCC-defined
T ∗ does not conform to the correspondence relation of
Eq. (20), the MPC-determined T ∗ leads to rather minor
deviations so long as the zero perturbation of Eq. (21)
can be achieved (in regions I and III). Here, the regions I,
II, and III correspond to the off-resonant, near-resonant,
and resonant situations, respectively, as supported by the
positions of the dot spectral peaks with respect to the ex-
citation energy window.

Figure 4 depicts the HEOM calculated dot spectral
functions of interacting QDs with different values of
U . As shown in Fig. 4(a), at a relatively higher back-
ground temperature (T = ∆) the renormalized Hubbard
peak gradually moves into the excitation energy window
with the increase of U . For instance, for the QD with
U = 1.5∆ the renormalized Hubbard peak resides largely
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within the excitation window, and hence the QD is in a
resonant situation.
At a low background temperature (such as T = 0.1∆)

the deviation between χm
0 (T, V ) and χm

0 (T ∗, 0) (with the
MPC-determined T ∗) assumes a small but finite value in
region III; see Fig. 3(d). This is because Kondo reso-
nant states start to emerge as U increases. As shown
in Fig. 4(b), for the QD with U = 5∆ a prominent
Kondo spectral peak forms at the center of the excita-
tion energy window. The presence of Kondo resonance
states is clearly demonstrated by the inset of Fig. 4(b),
in which the peak height increases continuously with the

lowering of temperature. Under a bias voltage, Kondo
resonant states facilitate electron co-tunneling processes,
which can be understood as the concurrence of local spin-
flip and nonlocal electron-transfer excitations. As in the
case of noninteracting electrons, such mixed-ranged exci-
tations cannot be fully captured by the single parameter
T ∗, and hence the correspondence relation for local ob-
servables does not hold.

V. CONCLUDING REMARKS

Based on the above analysis, we can now answer the
question of how to physically interpret the defined or
measured local temperature. The ZCC-based definition
does give a T ∗ that is higher than the background T , in-
dicating the presence of local heating. However, the mag-
nitude of T ∗ can hardly be associated with the changes
in system local observables. In contrast, the MPC-based
definition establishes a quantitative correspondence be-
tween the nonequilibrium system of interest and a ref-
erence equilibrium system. The correspondence relation
holds as long as the following three conditions are met:
(i) the perturbation induced by the probe minimizes to
zero; (ii) the monitored observable is a local property;
and (iii) the electronic excitations driven by the external
source are fully local.
Finally, from the experimental perspective the MPC-

based definition is obviously more practical, as it does not
require measuring the heat currents directly. Even if the
zero perturbation to a local observable is out of reach,
the MPC of Eq. (3b) always provides a definitive mea-
surement for the magnitude of T ∗. In fact, the nonzero
minimal perturbation indicates the presence of a nonlocal
contribution to local heating from electronic excitations
in the environment. In view of the fact that local thermal
probes as those suggested in this work are now being de-
veloped, we hope our studies will provide a firmer basis
for understanding the ensuing quantities they measure.
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[57] R. Härtle and A. J. Millis, Phys. Rev. B 90, 245426

(2014).
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