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The elastic dipole tensor is a fundamental quantity relating the elastic field and atomic structure of a point
defect. We review three methods in the literature to calculate the dipole tensor and apply them to hydrogen
in α-zirconium using density functional theory (DFT). The results are compared with the dipole tensor
deduced from earlier experimental measurements of the λ-tensor for hydrogen in α-zirconium. There are
significant errors with all three methods. We show that calculation of the λ-tensor, in combination with
experimentally measured elastic constants and lattice parameters, yields dipole tensor components that
differ from experimental values by only 10–20%. There is evidence to suggest that current state-of-the-art
DFT calculations underestimate bonding between hydrogen and α-zirconium.

Elastic interactions between point defects and other de-
fects play a central role in the evolution of microstruc-
tures in materials. The simplest analysis treats the point
defect as a misfitting sphere, in an elastically isotropic
medium, where it interacts with the hydrostatic stress
fields of other defects [1]. But there are many point de-
fects with lower symmetry, such as split interstitials, diva-
cancies, impurity-vacancy complexes, and small clusters
of point defects where the misfitting sphere model is inac-
curate. In contrast the elastic dipole tensor captures the
symmetry of the point defect. It forms a bridge between
the atomic structure of the defect and its long-range elas-
tic field. For these reasons Leibfried and Breuer stated
in 1982 the dipole tensor ‘is, without exaggeration, the
most important . . . concept needed in defect physics’ [2].

In this work we review three methods from the liter-
ature to calculate the elastic dipole tensor. We analyze
the approximations made by each of them, and we ap-
ply state-of-the-art density functional theory (DFT) tech-
niques to see whether each of them can reproduce the
dipole tensor for H in α-Zr deduced from experimental
measurements of the λ-tensor by MacEwen et al.[3]. As
far as we know this is the first comparison between dipole
tensor components deduced from experimental measure-
ments of the λ-tensor and calculations from first princi-
ples. We find significant disagreement and discuss possi-
ble sources of error in the calculations and experimental
measurements.
α-Zr alloys are used extensively in water-cooled nu-

clear reactors for fuel cladding. Delayed hydride cracking
[4] in these alloys is an important phenomenon arising
from elastic interactions involving H point defects. H is
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produced primarily by a corrosion reaction and enters the
metal where it is attracted to cracks and notches by their
elastic fields. H occupies tetrahedral interstitial sites in
the hexagonal close packed (hcp) crystal structure of α-Zr
[5, 6] where it forms three equivalent bonds to Zr-atoms
in the basal plane and a fourth non-equivalent bond
along the c-axis (see Fig.1 in the Supplemental Mate-
rial). Therefore the defect has trigonal symmetry, which
directly affects its interaction with cracks and notches,
and hence its diffusion in their stress fields.

To determine the elastic dipole tensor of a point defect
we assume the defect is in an equilibrium position in the
host crystal. Let fm/q be the force that atom m exerts on
atom q in this equilibrium state, the locations of which
are m and q. Since the system is in equilibrium the total
force acting on atom q,

∑

m fm/q is zero. Following Stone-
ham [8] we call the forces fm/q defect forces. Consider the
change in total energy when the atoms are displaced from
their equilibrium positions by an infinitesimal amount:

δE = −
1
2

∑

m

∑

q 6=m

f m/q
k δ(qk −mk), (1)

where the summation on k is implied, and the factor 1
2 is

to correct for the double counting of each interaction. It
follows that if eh is an infinitesimal, homogeneous strain,
such that δ(qk −mk) = eh

k j(q j −m j) the change in energy
is as follows:

δE = −V

(

1
2V

∑

m

∑

q 6=m

f m/q
k (q j −m j)

)

eh
k j , (2)

where V is the total volume occupied by atoms in the sum
over m. Using δE = −V 〈σk j〉eh

k j we recognise the term
in braces as the average stress 〈σk j〉 in volume V .
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Consider a periodic supercell containing a point defect
d at d. Both sums in Eq. (2) are taken over all atoms in
the supercell, and V is now the volume of the supercell.
We may rewrite 〈σk j〉 as follows:

〈σk j〉= pk j/V + sk j , (3)

where the first term on the right involves the dipole tensor
pk j in the form suggested by Gillan [7]:

pk j =
∑

m6=d

f m/d
k (d j −m j), (4)

If the defect forces, f m/d , can be evaluated this expres-
sion provides a route to calculate the dipole tensor, which
we call the defect forces method. Expressions for the to-
tal force on a given atom in some models of interatomic
forces do indeed comprise a sum of forces exerted by its
neighbors. Examples include pair potentials, embedded
atom potentials and tight binding models, and Eq. (4)
may then be applied directly. But in many other cases,
including DFT with a plane wave basis, the total force on
an atom is not expressible as a sum of contributions from
neighboring atoms. Nevertheless, the force exerted by
each neighbor on a host or impurity atom d can always
be calculated by the following procedure. Once the total
force on each atom has been brought to zero, atom d is
removed from the system while the positions of all other
atoms are fixed. The remaining electrons are then made
self-consistent with the new potential, while still keeping
all nuclei fixed. Each neighboring atom now experiences
a net force. That net force must be equal and opposite to
the force the neighbor exerted on atom d when atom d
was present.

The second term on the right of Eq. (3) arises from
atomic interactions not involving atom d:

sk j =
1

2V

∑

m6=d

∑

q 6=m,d

f m/q
k (q j −m j), (5)

This term represents the contribution to the average
stress in the supercell arising from interactions between
host atoms only. In Eq. (4) this term is neglected because
it is assumed only the defect atom is a source of stress.
But interactions between surrounding host atoms may be
altered by the defect atom through 3-body and higher or-
der interactions. The affected host atoms then become
part of the point defect, contributing to the stress it gen-
erates. This is particularly clear with small self-interstitial
clusters where the distinction between host and defect
atoms is often untenable.

Since in general the distinction between host and de-
fect atoms cannot be maintained the stress method is
based on the following expression [9, 36–38]:

pk j = V

�

∂ E

∂ eh
k j

�

eh
k j=0

= V 〈σk j〉. (6)

The derivative in Eq. (6) is evaluated numerically by ap-
plying small strains to the supercell and calculating the
changes in the total energy. Following the application of
each small, but finite, homogeneous strain to the super-
cell the forces on all atoms are relaxed.

The average stress 〈σi j〉 in the supercell may be relaxed
by allowing the supercell vectors to change, which strains
the supercell by eh

kl . The forces on all atoms are relaxed
when the supercell vectors are changed. Assuming the
concentration of point defects is sufficiently small that the
elastic constants of the material are unchanged, the total
elastic energy of the supercell then becomes:

Eel = −pi je
h
i j +

V
2

ci jkl e
h
i je

h
kl . (7)

Minimizing this elastic energy leads to the strain
method [9] of determining the dipole tensor:

pi j = V ci jklε
h
kl , (8)

where εh
kl is the homogeneous strain for which

∂ Eel/∂ eh
i j = 0.

In summary, the defect forces method Eq. (4), the stress
method Eq. (6) and the strain method Eq. (8) are based
on different assumptions. In principle the stress and
strain methods should agree in the limit of infinitely large
supercells. Different numerical errors may be expected
with each method. In the present case an H atom is as-
sumed to occupy a tetrahedral site in α-Zr. We will assess
the accuracy of each method by comparing its prediction
for H in α-Zr with experimental measurements.

MacEwen et al. [3] measured changes in the lattice
parameters in α-Zr as a function of interstitial deuterium
concentration, at temperatures between 727K and 777K,
using time of flight neutron diffraction. The λ-tensor
is defined by λi j = dεi j/dCD, where CD is the atomic
fraction of D-atoms, and εi j is the eigenstrain tensor
caused by D-atoms. They obtained: λ11 = 0.033 and
λ33 = 0.054.

As shown by Nowick and Berry [10] the λ-tensor and
the dipole tensor are related:

pi j = ΩZr ci jkl λkl , (9)

whereΩZr is the atomic volume of α-Zr. It is assumed that
the elastic constants of the alloy are the same as those of
α-Zr. In the Supplemental Material we derive Eq. (9) and
obtain the following dipole tensor components for H in α-
Zr at T = 0 K: p11 = 1.57 eV and p33 = 1.96eV.

To calculate the dipole tensor of H in α-Zr we use DFT,
as implemented in VASP [11], employing either the lo-
cal density approximation (LDA) [12, 13] or the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approxima-
tion [14]. For Zr the semi-core 4s and 4p states are
treated as valence states, together with the 5s and 4d
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states in a projector augmented wave (PAW) pseudopo-
tential [15, 16] with an outermost core radius of 2.5au.
A standard PAW pseudopotential in VASP is used for H
with an outermost core radius of 1.1 au. The plane-
wave energy cutoff is 400eV. Fermi-surface smearing is
implemented using the second-order Methfessel-Paxton
(MP) method [17] with a smearing width of 0.1 eV. The
atomic relaxations caused by the H-atom are deemed
complete when the maximum force on any atom is less
than 1meV/Å. The charge density is considered consis-
tent with the Kohn-Sham potential when the total elec-
tronic energy changes by less than 10−7 eV between suc-
cessive iterations.

Supercells of 96, 150, 200, 288 and 392 Zr-atoms and
1 H-atom in a tetrahedral interstitial site are used with pe-
riodic boundary conditions applied in all directions. The
real space supercells and the Γ -centered Monkhorst-Pack
[18] k-point grids for each supercell are given in Table I.
Lattice parameters and elastic constants vary slightly with
the supercell size owing to small differences in the k-point
sampling and other numerical errors.

The enthalpy of solution ∆HH is calculated as the to-
tal energy of an H-containing supercell, minus the sum
of the total energy of the pure α-Zr supercell and half
the energy of an H2 molecule. It includes the difference,
−0.01 eV, between the zero-point energy for an H-atom
in a tetrahedral site in α-Zr and half the zero-point energy
of an H2 molecule. The zero-point energies are obtained
by solving the three-dimensional Schrödinger equation,
as described in the work of Nazarov et al. [19].

The volume of formation, ΩH, of interstitial H is cal-
culated as the volume of the supercell containing H with
supercell vectors that minimize the total energy minus
the total volume of the pure α-Zr supercell. ∆HH and ΩH
are compared to experimental measurements in Table I.

The dipole tensor in Eq. (4) is evaluated using the re-
laxed defect forces and the relaxed positions of the Zr
atoms relative to the H-interstitial, taking care to ensure
that complete shells of neighbors are included. Assuming
the residual forces on the Nat atoms are randomly dis-
tributed we calculate their standard deviation σ f . An es-
timate of the error in pi j is thenσ f

∑

n

�

�n j − d j

�

� eV , which
increases with the volume of the supercell. It is vital that
the tolerance on the maximum force experienced by any
atom in the relaxation is as small as possible.

To implement the stress and strain methods a potential
energy surface (PES) is constructed by applying homoge-
neous strains to each supercell containing the H-atom of
-0.01, -0.005, 0, 0.005, 0.01 biaxially in the basal plane,
and independent strains of -0.01, -0.005, 0, 0.005, 0.01
normal to the basal plane. At each of these 25 configura-
tions the total energy is calculated, following relaxation
of all atomic forces in the supercell. These energies are
fitted to a paraboloid using the method of least squares.

The stress method is to evaluate the derivatives of

FIG. 1: (a) Elastic dipole tensor components, as
computed by the defect forces method, plotted against
the inverse of the number, Nat, of Zr-atoms in the
supercell. Circles show PBE results, squares show LDA
results. Components of the dipole tensor derived from
experimental results are shown by horizontal bands, the
widths of which indicate their errors. Red symbols show
p33, and blue show p11. (b) Elastic dipole tensor
components, as computed by the stress (σ superscript)
and strain (ε superscript) methods. Circles show values
obtained by the stress method, and squares by the strain
method.

the PES at zero biaxial strain eh
11 = eh

22 and zero nor-
mal strain eh

33 yielding −2p11 = −2p22 and −p33. The
strain method is to find the strains εh

11 = ε
h
22 and εh

33 at
the minimum of the PES. Setting pi j = V ci jklε

h
kl we ob-

tain p11 = p22 = V
�

(c11 + c12)εh
11 + c13ε

h
33

�

and p33 =
V
�

2c13ε
h
11 + c33ε

h
33

�

.

As the simulation cell increases in size the signal to
noise ratio decreases owing to the larger number of small
residual random forces on all atoms. In addition, the
small but finite tolerance on the minimization of the elec-
tronic energy, and the k-point sampling, lead to numeri-
cal errors in the predicted lattice constants of pure Zr in
simulation cells of different sizes, which generate small
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Zr atoms Supercell k-point grid a(Å) c(Å) c11 + c12(GPa) c33( GPa) ∆HH(eV) ΩH(Å3)

2(PBE) 1a× 1a× 1c 12× 12× 6 3.24056(2) 5.18235(6) 217.9(6) 175(1)
2(LDA) 1a× 1a× 1c 12× 12× 6 3.1628(1) 5.0732(5) 223(2) 173(3)
96(PBE) 4a× 4a× 3c 3× 3× 2 3.2422(2) 5.1818(7) 219(2) 172(5) -0.46 3.26
150(PBE) 5a× 5a× 3c 3× 3× 2 3.23955(7) 5.1877(4) 217(1) 171(2) -0.43 3.72
200(PBE) 5a× 5a× 4c 3× 3× 2 3.23889(7) 5.1844(3) 206(1) 172(3) -0.43 3.23
288(PBE) 6a× 6a× 4c 2× 2× 2 3.2442(3) 5.173(1) 222(8) 169(15) -0.46 3.39
392(PBE) 7a× 7a× 4c 2× 2× 2 3.24056(9) 5.1836(4) 201(1) 165(4) -0.44 3.5
Exp. 3.226(a) 5.130(a) 223(b) 173(b) -0.66(c) 2.78(d)

TABLE I: Parameters used for supercells and some results. Columns are: number of Zr atoms in each supercell, size of
supercell in real space, k-point grids, optimal lattice parameters calculated for each supercell of pure Zr, calculated
elastic constants of pure Zr, calculated solution enthalpy and formation volume of hydrogen in Zr. Estimated errorbars
for lattice constants and elastic constants are in parentheses. Experimental data from (a) measurements at 300K [26]
extrapolated to 0K using thermal expansion coefficients in [27], (b) measurements at 4K in [28], (c) [29], (d) [3].

stresses in the system before H is introduced. To quantify
these errors we employed a boot-strapping method[20].
We randomly removed 13 of the 25 strain configurations
and fitted a paraboloid through the remaining 12 DFT to-
tal energies. Repeating this procedure 100 times we de-
termined the standard deviation of the strains that mini-
mize the total energy of the supercells containing H, and
the resulting standard deviation of the elastic dipole ten-
sor is used as its errorbar.

For the defect forces method, the sum in Eq. (4) did not
converge in the 96-atom supercell, but converged values
within the errorbars of the simulations were obtained in
the larger supercells. The results are displayed in Fig. 1a
for both PBE and LDA functionals, together with the val-
ues deduced from experiment. The larger errorbars in
the 392-atom supercell prevent refinement of the dipole
tensor components deduced for smaller supercells. Tak-
ing the average of the dipole tensor components in the
150, 200, 288 and 392-atom supercells computed with
the PBE functional we obtain for the defect forces method
p11 = 1.92± 0.12eV and p33 = 2.99± 0.12 eV.

The dipole tensor components obtained by the stress
and strain methods using the PBE functional are shown
in Fig. 1b. For the three smaller supercell sizes the circles
and squares of a given color are quite close to each other,
indicating reasonable agreement between the stress and
strain methods. We note the errorbars do not vary sys-
tematically with supercell size, and they are not identi-
cal for both components of the dipole tensor. Using the
stress method we obtain the following components of the
dipole tensor: p11 = 2.22 ± 0.10 eV , p33 = 3.22 ± 0.16
eV . The components derived using the strain method are
p11 = 1.66± 0.11 eV , p33 = 3.66± 0.15 eV .

We may use the strain method to evaluate the λ-tensor
for direct comparison with the experimentally measured
components, λ11 = 0.033 and λ33 = 0.054. We obtain
λ11 = 0.034 ± 0.003 and λ33 = 0.069 ± 0.007. Domain
et al. [6] obtained λ11 = 0.033 and λ33 = 0.100 . Using

our calculated values of λ11 and λ33, and the same elastic
constants and lattice parameters as were used to calculate
p11 and p33 from the experimental values of λ11 and λ33
(see the Supplemental Materials for details), we obtain
p11 = 1.74±0.12 eV and p33 = 2.36±0.18 eV. These are
the most reliable estimates of the dipole tensor because
they use experimentally determined elastic constants and
lattice parameters in combination with the calculated λ-
tensor. We call this the λ-tensor method.

It is seen in Table I, and in ref.[6], that the structural
and elastic properties of pure α-Zr are reproduced quite
well by DFT with the PBE functional. The heat of solu-
tion is smaller and ΩH is larger than experimental data
in Table I. Domain et al. [6] obtained ∆HH = −0.60eV
and ΩH = 3.9 Å3, whereas Burr et al. [24] obtained
∆HH = −0.46eV using CASTEP 5.5 [25], which agrees
well with calculated values of ∆HH in Table I using VASP.

Based on the work of MacEwen et al. [3], the er-
rors in the experimental measurements of the λ-tensor
are about ±10%. Whereas the experimental and calcu-
lated values of λ11 are within the errors of the exper-
iment and the calculation, the calculated value of λ33
is too large. There are possible sources of systematic
error in the theory and the experiment. The sensitiv-
ity of the calculated dipole tensor components to the
exchange-correlation functional is evident from the large
differences between the PBE and LDA results in Fig 1a.
In the experiment [3] it is possible that some D was
not in solution but trapped at defects such as disloca-
tions and grain boundaries, even though the experiments
were undertaken at elevated temperatures. This would
lead to an underestimate of the measured components
of the λ-tensor and hence of the dipole tensor. How-
ever, it would not affect the experimentally measured ra-
tio λ33/λ11 = 1.64 ± 0.33. The range of calculated val-
ues of λ33/λ11 = 2.03± 0.40 overlaps with the range of
experimental values.

We suggest the overestimates of λ33 and ΩH and the
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underestimate of the magnitude of ∆HH, in comparison
with experimental measurements, are consistent with an
underestimate of the attractive interaction between H
and Zr-atoms along the c-axis of α-Zr in PBE-DFT.

In conclusion, the λ-tensor method provides the most
accurate calculations of the dipole tensor: p11 = 1.74±
0.12 eV and p33 = 2.36 ± 0.18 eV. These are 10 − 20%
higher than the values, p11 = 1.57 ± 0.11 eV and p33 =
1.96± 0.14 eV, deduced from the experimental measure-
ment of the λ-tensor. The source of the overestimates for

p11 and p33 is the excessive calculated value of λ33. DFT
calculations of the dipole tensor using the defect forces
method, stress method and strain method are prone to
large numerical errors.
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