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We study a lattice model of interacting Dirac fermions in (2 + 1) dimension space-time with
an SU(4) symmetry. While increasing interaction strength, this model undergoes a continuous

quantum phase transition from the weakly interacting Dirac semimetal to a fully gapped and non-
degenerate phase without condensing any Dirac fermion bilinear mass operator. This unusual
mechanism for mass generation is consistent with recent studies of interacting topological insu-
lators/superconductors, and also consistent with recent progresses in lattice QCD community.
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Introduction. In the Standard Model of particle
physics, all the matter fields, quarks and leptons, ac-
quire their mass from “spontaneous symmetry breaking”,
or equivalently the condensation of the Higgs field [1–3].
The Higgs field couples to the bilinear mass operator of
the Dirac fermion matter fields (except for the neutrinos),
and hence the matters acquire a mass in the condensate.
In the context of correlated electron systems, mass gen-
eration (or gap opening) due to interaction is also often a
consequence of spontaneous symmetry breaking and the
development of certain long-range order. For example,
in a superconductor the Cooper pairs condense, which
spontaneously breaks the U(1) charge symmetry of the
electrons, and as a result the electrons acquire a mass gap
at the Fermi surface. So, consensus has that, in strongly
interacting fermionic systems (either in condensed mat-
ter or high energy physics), mass (or gap) generation is
usually related to spontaneous symmetry breaking and
the condensation of a fermion bilinear operator [4].

However, in condensed matter systems there exists an
alternative mechanism for mass generation, which does
not involve any spontaneous symmetry breaking or long
range order. The most well-known example is the frac-
tional quantum Hall state, where a partially filled Lan-
dau level, which would be gapless without interaction,
is driven into a fully gapped state by strong interaction.
This gapped state has an unusual topological order and
topological ground state degeneracy [5, 6]. Recently, it
was discovered that the phenomenon of “mass genera-
tion without symmetry breaking” can happen even with-
out topological order. This mechanism was discovered in
the context of interacting topological insulators, it was
found that some topological insulators/superconductors
can be trivialized by interaction. Or in other words their
boundary states, which without interaction are gapless
Dirac fermions or Majorana fermions at one lower dimen-
sion, can be completely gapped out by interaction with-
out topological degeneracy or condensing any fermion bi-

linear mass operator [7–19].
This new mechanism of mass generation was tested and

confirmed numerically by both condensed matter [20] and
lattice QCD [21–23] physicists, using quantum Monte
Carlo simulation methods. These works provide evi-
dence that the massless Dirac fermion phase and the
massive quantum phase without any fermion mass con-
densation are connected by a single continuous quantum
phase transition.
In this Letter, we construct a microscopic model in

(2 + 1) dimension (D) with four flavors of complex
fermions, by employing large-scale quantum Monte Carlo
(QMC) simulations in an unbiased manner. We find
that there indeed exists a single interaction-driven Dirac
semimetal (DSM) to featureless Mott insulator (FMI)
phase transition, which is continuous and does not in-
volve any spontaneous symmetry breaking. We also pro-
vide analysis of scaling behavior at this novel quantum
critical point.
Model and Method. We construct a model Hamiltonian

with four-flavors of fermion on a 2D honeycomb lattice
at half-filling with SU(4) symmetry:

Ĥ = Hband +Hint

Ĥband = −t
∑

〈l,r〉α

(−1)α(c†lαcrα + c†rαclα)

Ĥint = V
∑

r

(c†r1cr2c
†
r3cr4 + c†r4cr3c

†
r2cr1),

(1)

where α = 1, 2, 3, 4 in Ĥband stands for fermion flavors
and 〈l, r〉 denotes the nearest-neighbor sites. t is set as
the energy unit throughout this Letter. The lattice geom-
etry and Brillouin zone are shown in Fig. 1 (a) and (b),
respectively. This Hamiltonian has an SU(4) symme-
try and is invariant under the transformation ξr → Uξr
for any U ∈ SU(4), with ξr = (c†r1, cr2, c

†
r3, cr4)

T. The

(−1)α factor in the hopping term Ĥband is enforced by
the SU(4) symmetry.
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FIG. 1. (color online) Lattice geometry and phase diagram
for the SU(4) symmetric model in Eq. (1). (a) The honey-
comb lattice, whose unit cell is denoted by the yellow shaded
rectangle. (b) The Brillouin zone. (c) Phase diagram for the
model Eq. (1) obtained from QMC simulations. Two quan-
tum phases, Dirac semimetal and featureless Mott insulator,
are observed, which are connected by a continuous quantum
phase transition located at Vc/t = 2.00 ± 0.05.

It is straightforward to check that, if we keep the sys-
tem at half-filling, then analogous to the usual case in
graphene, all the lattice symmetries, such as 60◦ rota-
tion, reflection, translation, time-reversal, etc, together
with the SU(4) flavor symmetry and particle-hole sym-
metry crα → (−1)rc†rα prohibit the gap opening of the
Dirac fermions in the noninteracting limit, namely any
fermion bilinear mass operator of the Dirac fermion will
break at least one of the symmetries.

To explore the ground state properties of the model in
Eq. (1) in the presence of interaction, we employ projec-
tor determinantal quantum Monte Carlo method [24, 25],
details of this calculation are presented in Sec. I of the
supplemental material [26]. As discussed there, QMC
is immune from minus-sign-problem for both V > 0 and
V < 0 cases. Comparisons between exact diagonalization
and QMC simulations on a 2× 2 system (8 lattice sites)
are carried out for sanity check. Numerical verification
of the SU(4) symmetry of the model is also performed
and presented in Sec. IV of supplemental material [26].
In this Letter, we focus on the V > 0 case and the sys-
tem sizes simulated are L = 3, 6, 9, 12, 15, 18. We denote
Ns = 2L2 as the total number of lattice sites and N = L2

as number of unit cells.

Ground state phase diagram. The phase diagram of
the SU(4) symmetric model in Eq. (1) is presented
in Fig. 1(c). Two quantum phases, a gapless Dirac
Semimetal and a featureless Mott insulator, are ob-
served respectively. Furthermore, they are connected
by a continuous quantum phase transition located at
Vc/t = 2.00±0.05. While increasing interaction strength
V/t, we observe no spontaneous symmetry breaking. The

FMI is gapped in both fermionic and bosonic channels
(shown later) without any symmetry breaking.
The FMI is easy to understand from the V → +∞

limit. Since the interaction is on-site, it is easy to perceive
that, when V → +∞, the ground state is

|Ψg〉 =
∏

r

|Ψr〉 =
∏

r

1√
2

(

4
∏

α=1

ξ†r,α − 1

)

|0〉ξ, (2)

where |0〉ξ is the vacuum of ξ fermions, and Ĥint|Ψg〉 =
−V Ns|Ψg〉 (this state is at half-filling written with the
cr,α fermions). |Ψg〉 is a direct product state of SU(4)
singlets [18, 27–29]. Since obviously |Ψg〉 preserves all
the symmetries (including flavor, lattice, time-reversal
and particle-hole symmetries) of the system, any Dirac
fermion mass operator should have zero expectation value
in this state. Hence, the wave function |Ψg〉 describes a
symmetric featureless Mott insulator. Note our state has
a different flavor symmetry and number of states per site
compared with another featureless Mott insulator pro-
posed recently [30].
It is well-known that the (2+1)D massless Dirac

fermions are stable against weak short range interac-
tions [25]. The transition from the weakly interacting
DSM to the strongly coupled FMI as a function of V/t
is the main issue that we explore in this Letter. As it
will become clear in the following, a direct continuous
quantum phase transition from DSM to FMI is revealed
by our QMC simulations. More importantly, there is no
spontaneous symmetry breaking and no fermion bilinear
condensation across this transition.
O(6) order vectors and excitation gaps. To verify our

conclusion, we need to analyze the behavior of all the
Dirac fermion mass operators. Because there is only on-
site interaction in our model, we will focus on Dirac mass
operators that are defined on-site, which is most likely
favored by the interaction at the mean field level. We
begin with order parameters that transform as a vector
under SU(4) symmetry. Such order parameters can be
combined into two sets of SO(6) ∼ SU(4) vector φ and
pseudo-vector ψ [26]:

φr1 + iψr1 = (c†r1cr4 + c†r3cr2),

φr2 + iψr2 = (c†r1c
†
r3 + cr2cr4),

φr3 + iψr3 = (c†r1cr2 − c†r3cr4),

φr4 + iψr4 = i(c†r1cr4 − c†r3cr2),

φr5 + iψr5 = i(c†r1c
†
r3 − cr2cr4),

φr6 + iψr6 = i(c†r1cr2 + c†r3cr4), (3)

and the SO(6) symmetry rotates the six components
to one another, respectively. The fact that φ and ψ
are mass operators of the Dirac fermions is more explic-
itly in the basis of ξr fermions. In the long-wave-length
limit, we can express ξr in terms of the low-energy modes
ξK(ξK′) around the K(K ′) point in the Brillouin zone,
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FIG. 2. (color online) Extrapolation of structure factors (a)
P (Γ)/N and (b) Q(Γ)/N over the inverse system size 1/L by
cubic polynomials. The insets show the extrapolated values
at the thermodynamic limit. From the results, both of the
O(6) orders are absent across the DSM-FMI phase transition.

as ξr ∼ ξKe
iK·r + ξK′e−iK·r. The low-energy effective

band Hamiltonian reads

Hband ≃
∫

d2x ξ†KvF (+i∂xσ
x + i∂yσ

y)ξK

+ξ†K′vF (−i∂xσx + i∂yσ
y)ξK′ .

(4)

The operators φ+iψ are SU(4) flavor-mixing pairings of
the ξr fermions, which takes the form of MαβξK,αξK′,β

(α, β = 1, 2, 3, 4 label the flavors) with M being a (full
rank) 4 × 4 anti-symmetric matrix. The six orthogonal
basis of the 4× 4 anti-symmetric matrices correspond to
the six components in φ+iψ. It is easy to see that φ+iψ
can gap out the Dirac fermions, which are potentially
favored to order at the mean field level.

Due to the SU(4) symmetry, the correlation functions
〈φr,αφr′,α〉 must be identical for all α. The same condi-
tion holds for ψ. This is numerically checked and shown
in Sec. IV of supplemental material [26].

To determine whether the system develops long-range
orders in φ and ψ with increasing V/t, we measure their
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FIG. 3. (color online) Extrapolation of (a) single-particle
(fermionic) gap ∆sp(K) and (b) O(6) order correlation
(bosonic) gap ∆b(Γ) over the inverse system size 1/L by linear
and quadratic polynomials, respectively. The insets show the
extrapolated gap values at the thermodynamic limit. Both
excitation gaps open at Vc/t = 2.00 ± 0.05.

structure factors as follows,

P (k) =
1

12N

∑

γ=A,B

6
∑

η=1

∑

ij

eik·(Ri−Rj)〈φiγ,ηφjγ,η〉

Q(k) =
1

12N

∑

γ=A,B

6
∑

η=1

∑

ij

eik·(Ri−Rj)〈ψiγ,ηψjγ,η〉, (5)

where i, j label unit cells. Through the extrapolation of
P (Γ)/N and Q(Γ)/N over inverse system size 1/L, we
can obtain the value of 〈φ〉 and 〈ψ〉 in the thermody-
namic limit. The results for V/t = 1.8 ∼ 2.5 across the
phase transition are shown in Fig. 2 (a) and (b), and
insets are the extrapolated values. We notice that the
Q(Γ)/N is one order of magnitude smaller than P (Γ)/N .
Combining the results of P (Γ)/N and Q(Γ)/N , we con-
clude that neither φl nor ψl develops long-range order.
As for the dynamic properties, the single-particle

(fermion) gap can be extracted from dynamic single-
particle Green’s function as,

G(k, τ) =
1

8N

∑

γ=A,B

4
∑

α=1

∑

ij

eik·(Ri−Rj)[G(τ)]αiγ,jγ ,(6)
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FIG. 4. (color online) Extrapolation of structure factors di-
vided byN for (a) plaquette/columnar VBS order, (b) density
wave order, over inverse system size 1/L by cubic polynomi-
als, across the DSM-FMI phase transition. The results show
that neither of these two long-range orders exists near the
DSM-FMI phase transition.

where [G(τ)]αiγ,jγ = 〈Tτ [ciγ,α(τ)c†jγ,α(0)]〉. The Green’s

function scales as G(k, τ) ∝ e−∆sp(k)τ under the limit
τ → ∞ and ∆sp(k) is the single-particle gap. Similarly,
the bosonic gap ∆b(Γ) can be extracted from the follow-
ing dynamic correlation as,

P (k, τ) =
1

12N

∑

γ=A,B

6
∑

η=1

∑

ij

eik·(Ri−Rj)[P (τ)]ηiγ,jγ , (7)

where [P (τ)]ηiγ,jγ = 〈Tτ [φiγ,η(τ)φjγ,η(0)]〉. Note that the
bosonic gaps extracted from φl correlation and ψl cor-
relation should be equal, which has also been numeri-
cally confirmed (see suplemental material Sec. IV [26]).
Both results of the single-particle gap and the bosonic
gap are shown in Fig. 3. Through the extrapolation of
the gap, we observe that the single-particle gap opens
at V/t = 2.0 ∼ 2.05, while the bosonic gap opens at
V/t = 1.95 ∼ 2.0. This tiny difference between the crit-
ical points extracted from fermionic and bosonic gap is
attributed to finite-size effect, and the possibility of an
intermediate phase with either φr or ψr long-range or-
der can be ruled out, as otherwise, the single-particle gap
should open before the bosonic gap while increasing V .
Combining all data above, we conclude that the DSM-
FMI phase transition occurs at Vc/t = 2.00± 0.05.
Other possible long-range orders. In addition to the
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FIG. 5. (color online) Blue line: fit of the spatial correlation
of O(6) order parameter φ along a1 direction for L = 12, 15
systems as 〈φ(0, 0) · φ(x, 0)〉 at V = Vc. The obtained anor-
malous dimension η = 0.7 ± 0.1. Dark green line: 1

x4 , the

behavior of O(6) correlation at V = 0. Violet line: 1

x1.035 , the
behavior of O(6) correlation at the (2 + 1)D Wilson-Fisher
O(6) transition.

two sets of O(6) order parameters, there are other Dirac
fermion mass operators (or order parameters) which may
develop long-range order due to the interaction in Eq. (1).
All the possible Dirac mass operators are summarized
in supplemental material Sec. III [26]. The results of
four representative order parameters, including the pla-
quette/columnar valence bond solid (VBS) order, quan-
tum Hall-like insulating phase (loop current order), next-
nearest-neighbor (NNN) pairing order and the density
wave order, are numerically measured and two of them
(the plaquette/columnar VBS and density wave order)
are presented in Fig. 4 (the other two are presented in
supplemental material Sec. III [26]). From the extrapola-
tions of structure factors, we conclude that none of these
operators develop long-range order near the DSM-FMI
phase transition.

Continuous DSM-FMI phase transition. The data of
excitation gaps and all possible order parameters reveal
the unusual mechanism of fermion mass generation with-
out condensing any fermion bilinear mass operator. To
further explore the nature of the DSM-FMI transition, we
have also measured the 1st derivative of ground state en-

ergy 〈ρ〉 = 1
Ns

∂〈Ĥ〉
∂V

= 1
Ns

∑

r(c
†
r1cr2c

†
r3cr4+c

†
r4cr3c

†
r2cr1).

The results are presented in Fig. S6 in supplemental
material [26]. The converged 〈ρ〉 with L = 15 and
L = 18 changes continuously across the DSM-FMI phase
transition, indicating a continuous phase transition. Be-
sides, we have also measured the spatial correlation func-
tions of O(6) order parameter φ along a1 direction for
L = 9, 12, 15 at V = Vc, and the results are shown in
Fig. 5. In the log-log plot, convergence of the slope for
L = 12 and L = 15 can be seen. At the quantum critical
point, 〈φ(0, 0) · φ(x, 0)〉 decays at sufficiently long dis-
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tances as 1/x1+η, where η is the anomalous dimension.
Fit of the data gives η = 0.7 ± 0.1. Such anomalous di-
mension is much larger than that of the Wilson-Fisher
fixed point of (2 + 1)D O(6) transition with η = 0.035
obtained from ǫ-expansion [31]. Also, spatial correlation
of the O(6) order parameter of the noninteracting Dirac
fermions is shown in Fig. 5, which has a form of 1/x4.
Conclusions. We find a continuous DSM-FMI transi-

tion without any spontaneous symmetry breaking in a
simple model of four-flavor fermions with SU(4) sym-
metry. The quantum critical point at Vc/t = 2.00± 0.05
separate the gapless Dirac semimetal from the featureless
Mott insulator. Such new mechanism of mass generation
without fermion bilinear condensation is consistent with
previous studies from the lattice QCD community [21–
23]. More interestingly, in our investigations, the ex-
citation gaps and an exhaustive exclusion of symmetry
breaking are for the first time being directly accessed
and a large anomalous dimension η at the DSM-FMI
transition is revealed. The entanglement properties in
our model, especially close to the quantum critical point,

should also be very interesting and have become available
to measure in the DQMC framework recently [32–34]. It
is certain worthwhile to investigate such properties in the
future study.
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