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Intra-Landau level excitations in the fractional quantum Hall regime are not accessible via optical
absorption measurements. We point out that optical probes are enabled by the periodic potentials
produced by a moiré pattern. Our observation is motivated by the recent observations of fractional
quantum Hall incompressible states in moiré-patterned graphene on a hexagonal boron nitride sub-
strate, and is theoretically based on f−sum rule considerations supplemented by a perturbative
analysis of the influence of the moiré potential on many-body states.
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I. INTRODUCTION

When electrons in two-dimensions partially occupy a
macroscopically degenerate Landau level (LL), the char-
acter of the ground state and of its excitations both
change in a complex way as a function of filling factor
ν and LL kinetic energy index n. The charged excitation
gaps (chemical potential discontinuities) that appear at
many rational LL filling factors are efficiently exposed
by transport measurements because1 they give rise to
fractional quantum Hall (FQH) effects. It has however
been a stumbling block in explorations of FQH physics
that many other aspects of the uniquely subtle many-
electron states are hidden from view, and in particular
that excitations within a single LL of a two-dimensional
electron system (2DES) are optically dark. In this article
we propose an approach which can be used to make them
visible.

When two van der Waals materials form a heterojunc-
tion, misalignment and lattice constant differences give
rise to a periodic moiré pattern that makes all local ob-
servables periodic functions of position. Moiré patterns
are particularly important when formed in graphene
sheets because the high quality of these 2DESs helps
make their influence dominate over random inhomogene-
ity induced by uncontrolled disorder. Moiré patterns
formed in graphene on hexagonal boron nitride (hBN)
and graphene on graphene have recently2–6 been suc-
cessfully used to realize Hofstader butterfly systems with
fractal band spectra that are extraordinarily sensitive to
commensurability between magnetic-field and periodic
potential area scales. Here we show that they also en-
able coupling between light and intra-LL collective exci-
tations.

To illustrate our ideas we focus on the collective exci-
tations of the strongest fractional quantum Hall incom-
pressible states, those that occur at ν = 1/3 and ν = 2/3
which were first understood by Laughlin and are named
in his honor. The collective excitations of these states
are accurately described by the single-mode approxima-
tion of Girvin, MacDonald and Platzman7. Because of
analogies between these excitations and the roton modes
in superfluid Helium, collective excitation of FQH states

are known as magneto-rotons. Magneto-roton proper-
ties have been investigated using a variety of approaches,
for example by using exact diagonalization8,9 methods
or applying composite bosons10 or composite fermions11

ideas, and continue to be actively studied. Recent ad-
vances include the identification of a connection to Hall
viscocity12,13 and an analysis of their relationship to the
stability of FQH states14.

The experimental observation of the intra-LL collective
excitations of FQH states has been an ongoing challenge
because of the absence in homogenous fluids of dipole
coupling between light and any intra-LL neutral excita-
tion. Inelastic light scattering has provided indirect sig-
natures of intra-LL collective excitations15–18 which are
thought to be enabled by disorder which breaks transla-
tional symmetry and enables coupling between light and
finite-momentum excitations, but does not allow for mo-
mentum resolution. We show below that weak moiré pat-
terns expose collective excitations only at the moiré pat-
tern reciprocal lattice wavevectors, which can be tuned
by varying the van der Waals heterojunction twist angle.

Our paper is organized as follows. In Sec. II, we derive
a strong magnetic field f−sum rule and use it to show
quite generally that the contribution of intra-LL excita-
tion to the optical conductivity is finite in the presence
of a spatially varying potential. In Sec. III, we use per-
turbation theory to account for the influence of moiré
potential on incompressible FQH states. The perturba-
tive approach is valid when the periodic moiré potential
is weak compared to the collective mode excitation en-
ergies. In Sec. IV, we also make a single mode approx-
imation to provide an explicit expression for the optical
conductivity of the ν = 1/3 FQHE states. Finally in
Sec. V, we discuss possible experimental systems, includ-
ing graphene/hBN and twisted transition metal dichalco-
genides (TMD) bilayers.

II. STRONG MAGNETIC FIELD f−SUM RULE

We consider electrons in the lowest-LL and for the mo-
ment neglect possible spin or valley degrees of freedom.
When projected to the lowest LL, the Hamiltonian in-
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FIG. 1: (Color online)(a) Schematic illustration of a periodic
potential in real space due to a moiré pattern formed between
2D crystals with triangular Bravais lattices. (b) The first shell
of moiré reciprocal lattice vectors.

cludes only Coulomb interaction ĤC and moiré potential
V̂ terms, and is given up to a constant by:

Ĥ = ĤC + V̂ ,

ĤC =
1

2

∫
d2q

(2π)2
vC(q) ρ̄−q ρ̄q,

V̂ =
∑
G

VGρ̄G,

(1)

where

ρ̄q =
∑
j

exp[−iq · rj ]. (2)

is the LL projected density operator, and vC(q) =
2πe2/(ε|q|) is the Coulombic electron-electron interac-

tion. The potential V̂ is produced by the moiré pat-
tern, and is periodic as llustrated in Fig. 1(a). For

graphene/hBN19 the spatial variation of V̂ is accurately
characterized by a Fourier expansion that includes only
the six wave vectors in the first shell of moiré reciprocal
lattice shown in Fig. 1(b).20 The summation over G in
Eq. (1) is restricted to these six vectors. Because the
potential is real and the moiré pattern has21 three-fold
rotational symmetry, we have the following constraints:

VG1
= VG3

= VG5
= V ∗G2

= V ∗G4
= V ∗G6

. (3)

The magnitude of G in the first shell can be varied by
adjusting the twist angle θ. For small θ:

|G| = 4π√
3aM

, aM ≈ a/
√
x2 + θ2, (4)

where aM is the moiré periodicity, x = |a′ − a|/a, and a
and a′ are the lattice constants of the two layers22.

The optical conductivity σ(ω) of a material can be
probed by measuring optical reflection, transmission, or
absorption. Theoretically, the longitudinal conductivity
can be related to the density-density response function χ
using

σ(q, ω) = e2
iω

|q|2
Π(q, ω), (5)

where the polarization function Π satisfies

Π−1(q, ω) = vC(q) + χ−1(q, ω) (6)

Eq.(5) follows from the definition of the conductivity as
the current response to internal electric field, and from
the charge continuity equation. We introduce the dy-
namic structure factor S:

S(q, ε) =
1

N

∑
m>0

|〈Ψm|ρ̄q|Ψ0〉|2δ(ε− (Em − E0)), (7)

where N is the number of electrons, and |Ψm〉 and Em
are the exact many-body eigenfunctions and eigenvalues
of the many-body Hamiltonian, and the label m = 0
is reserved for the ground state. The density response
function χ can be expressed in terms of S:

Imχ(q, ω) = −πN
A

[S(q, ~ω)− S(−q,−~ω)],

Reχ(q, ω) = − 1

π

∫ +∞

−∞

Imχ(q, ω′)

ω − ω′ + i0+
dω′,

(8)

where A is the area of the system, and the second equa-
tion follows from Kramers-Kronig relations.

It follows from Eqs.(7) and (8) that in a system with
an energy gap both S(q, ε) and χ(q, ω) vanish at least as
fast as |q|2 at small |q|. From Eq.(6), we conclude that
to this order Π(q, ω) ≈ χ(q, ω) and that

σ(ω) = ie2ω lim
|q|→0

χ(q, ω)

|q|2
. (9)

In particular for the real part of the optical conductivity
which is responsible for optical absorption

Reσ(ω) =
πe2N

A
lim
|q|→0

ωS(q, ~ω)

|q|2
, ω > 0. (10)

It is instructive to evaluate the first moment f̄(q) of
S(q, ε). f̄ does not require knowledge of any many-body
eigenstates, but provides valuable insights into the be-
havior of the response functions σ and χ.

f̄(q) =

∫ +∞

0

εS(q, ε)dε =
1

N
〈ρ̄−q[Ĥ, ρ̄q]〉0, (11)

where 〈...〉0 denotes an expectation value in the ground
state |Ψ0〉. Since spatial inversion symmetry can be bro-

ken by the potential V̂ , we define the symmetrized first
moment:

f̄+(q) ≡ (f̄(q) + f̄(−q))/2 =
1

2N
〈[ρ̄−q, [Ĥ, ρ̄q]]〉0. (12)

The contributions of ĤC and potential V̂ to f̄+(q) can
be evaluated separately:

f̄+(q) = f̄
(C)
+ (q) + f̄

(V )
+ (q),

f̄
(C)
+ (q) =

1

2N
〈[ρ̄−q, [ĤC , ρ̄q]]〉0,

f̄
(V )
+ (q) =

1

2N
〈[ρ̄−q, [V̂ , ρ̄q]]〉0.

(13)
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f̄
(C)
+ (q) can be expressed as follows1:

f̄
(C)
+ (q) =

∫
d2k

(2π)2
vC(k)

[
1− cos(ẑ · (k× q))

]
×
[
˜̄s(k + q)− ˜̄s(k)

]
e−|k|

2/2,

(14)

where ˜̄s(k) = exp(|k|2/2)s̄(k). s̄(k) is the static struc-
ture factor with respect to the ground state of the full
Hamiltonian Ĥ:

s̄(k) =
1

N
〈Ψ0|ρ̄†qρ̄q|Ψ0〉. (15)

In Eq. (14), the factor
[
1 − cos(ẑ · (k × q))

]
scales as

|q|2, while the other factor
[
˜̄s(k + q)− ˜̄s(k)

]
vanishes at

q = 0. Since f̄
(C)
+ (q) is an even analytic function of q as

long as excitation gap is finite, it follows that its leading
long-wavelength behavior is ∼ q4 even in the presence of
the moiré perturbation.7

On the other hand f̄
(V )
+ (q) is finite at second order in

|q|, as shown below:

f̄
(V )
+ (q) =

1

2N

∑
G

VG〈[ρ̄−q, [ρ̄G, ρ̄q]]〉0

=
1

2N

∑
G

VG
[
(e`

2
BG

∗q/2 − e`
2
Bq

∗G/2)

× (e−`
2
Bq

∗G/2 − e−`
2
BG

∗q/2)e−`
2
Bq

∗q/2
]
〈ρ̄G〉0

≈− 1

2N

∑
G

[`2B(q×G) · ẑ]2VG〈ρ̄G〉0,

(16)

where magnetic length `B is
√

~/(eB) and q = qx + iqy.

〈ρ̄G〉0 is finite due to the potential V̂ . Eq.(16) relies on
the well-known7 commutation relations of LL projected
density operators. Since f̄(q) equals f̄(−q) up to second
order in |q|2 by definition (see Eq.(7)), we obtain the
following f−sum rule:∫ +∞

0

Reσ(ω)d(~ω) = −e
2

~
1

8Nφ

∑
G

`2B |G|2VG〈ρ̄G〉0,

(17)
where Nφ = A/(2πl2B) is the LL degeneracy. The final
form for Eq.(17) assumes that VG has a three-fold ro-
tational symmetry so that the longitudinal conductivity
tensor is isotropic. This sum rule proves that light is ab-
sorbed by intra-LL excitations when a moiré pattern is
established.

III. PERTURBATION THEORY

To gain deeper insight we assume that the poten-
tial |VG| is small compared to the Coulomb interaction
energy scale e2/(ε`B) and apply perturbation theory.
We denote the eigenstates and eigenenergies of the pro-

jected Coulomb interaction HC respectively by |Ψ(0)
k,m〉

and E
(0)
k,m, where k is the total momentum quantum num-

ber of a many-body state23 and m distinguishes states at
the same k. For filling factors at which the fractional
quantum Hall effect occurs, the Coulomb ground state

is translationally invariant and we denote it by |Ψ(0)
0 〉.

Treating the potential V̂ as a weak perturbation, we ob-
tain at first-order in |VG|:

|Ψk,m〉 ≈ |Ψ(0)
k,m〉+ |Ψ(1)

k,m〉,

|Ψ(1)
k,m〉 =

∑
G,n

VG〈Ψ(0)
k+G,n|ρ̄G|Ψ

(0)
k,m〉

E
(0)
k,m − E

(0)
k+G,n

|Ψ(0)
k+G,n〉.

(18)

We work out the matrix element for the projected den-
sity operator to first order in VG:

〈Ψk,m|ρ̄q|Ψ0〉

≈δk,q〈Ψ(0)
q,m|ρ̄q|Ψ

(0)
0 〉+ 〈Ψ(0)

k,m|ρ̄q|Ψ
(1)
0 〉+ 〈Ψ(1)

k,m|ρ̄q|Ψ
(0)
0 〉

≈δk,q〈Ψ(0)
q,m|ρ̄q|Ψ

(0)
0 〉

+
∑
G,n

δk,q+G

VG〈Ψ(0)
G,n|ρ̄G|Ψ

(0)
0 〉

E
(0)
0 − E(0)

G,n

〈Ψ(0)
q+G,m|ρ̄q|Ψ

(0)
G,n〉

+
∑
G,n

δk,q+G

VG〈Ψ(0)
q+G,m|ρ̄G|Ψ

(0)
q,n〉

E
(0)
q+G,m − E

(0)
q,n

〈Ψ(0)
q,n|ρ̄q|Ψ

(0)
0 〉.

(19)
To evaluate the conductivity, we need to retain only

terms up to first order in |q| in Eq.(19). We first
note that the matrix element for unperturbed states

〈Ψ(0)
q,m|ρ̄q|Ψ(0)

0 〉 scales as |q|2 at small |q|. This prop-
erty follows from the long-wavelength properties of the
static structure factor of the unperturbed ground state

|Ψ(0)
0 〉 established in Ref.[7]:

s̄0(q) =
1

N
〈Ψ(0)

0 |ρ̄†qρ̄q|Ψ
(0)
0 〉

=
1

N

∑
m

|〈Ψ(0)
q,m|ρ̄q|Ψ

(0)
0 〉|2

∝ |q|4, |q| → 0.

(20)

It follows that to first order in both |q| and VG,

〈Ψk,m|ρ̄q|Ψ0〉 ≈ 〈Ψ(0)
k,m|ρ̄q|Ψ

(1)
0 〉

≈
∑
G,n

δk,q+G

VG〈Ψ(0)
G,n|ρ̄G|Ψ

(0)
0 〉

E
(0)
0 − E(0)

G,n

〈Ψ(0)
q+G,m|ρ̄q|Ψ

(0)
G,n〉.

(21)
This in turn leads to the following expression of dynamic
structure factor:

S(q, ε)

≈ 1

N

∑
G,m

[∣∣∣∑
n

VG〈Ψ(0)
q+G,m|ρ̄q|Ψ

(0)
G,n〉〈Ψ

(0)
G,n|ρ̄G|Ψ

(0)
0 〉

E
(0)
0 − E(0)

G,n

∣∣∣2
× δ(ε− (E

(0)
q+G,m − E

(0)
0 ))

]
,

(22)
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FIG. 2: (Color online) Schematic illustration of the pertur-
bation theory analysis. (a)Energy spectrum of Coulomb-only
model at filling factor 1/3. The red dot represents the ν = 1/3
Laughlin incompressible ground state, the blue line marks the
magneto-roton mode and the gray bar the excitation contin-
uum. In the presence of a moiré superlattice potential, the
perturbed ground state contains admixtures of unperturbed
excited states at momenta G. This admixture enables intra-
LL optical response. (b) Schematic illustration of the optical
conductivity. When perturbation theory applies and |G|`B is
close to 1.5, the SMA is accurate. Thus the intra-LL optical
response is dominated by a single peak. When |G|`B > 1.5,
weaker optical responses are expected at multiple frequencies.
Tuning |G| provides a momentum-resolved spectroscopy of
FQH excitations.

where we have neglect the second order correction to the
excitation energy from the potential V̂ in the argument
of the δ-function.

IV. SINGLE MODE APPROXIMATION

To illustrate how moiré assisted optical absorption in
the quantum Hall regime can be interpreted, we focus on
the ν = 1/m case for which the fractional quantum Hall
gaps are largest and the simplifying single mode approx-
imation (SMA) is accurate. When the SMA applies, a
single collective mode exhausts a large fraction of the os-
cillator strength available at a particular wavevector, i.e.
only one state at wavevector k has a significant value of

〈Ψ(0)
k,n|ρ̄k|Ψ

(0)
0 〉 and that state can therefore be approxi-

mated by

|φ(0)k 〉 =
1√

Ns̄0(k)
ρ̄k|Ψ(0)

0 〉, (23)

where s̄0(k) is the static structure factor defined in
Eq.(20). It follows that the long wavelength dynamic
structure factor satisfies

S(q, ε) ≈
∑
G

∣∣∣VG〈Ψ(0)
0 |ρ̄

†
q+Gρ̄qρ̄G|Ψ

(0)
0 〉

N∆G

√
s̄0(q + G)

∣∣∣2δ(ε−∆q+G),

(24)
where ∆G is the Coulomb energy difference between

|φ(0)G 〉 and |Ψ(0)
0 〉, and

〈Ψ(0)
0 |ρ̄

†
q+Gρ̄qρ̄G|Ψ

(0)
0 〉

Ns̄0(q + G)
≈ i`2B(q×G) · ẑ. (25)

Therefor the dynamic structure factor to second order in
both VG and |q| is:

S(q, ε) ≈ 1

2

∑
G

`4B |q|2|G|2
|VG|2

∆2
G

s̄0(G)δ(ε−∆G). (26)

Applying Eq.(10) then yields the following remarkably
simple expression for the real part of optical conductivity:

Reσ(ω) ≈ N

4Nφ

e2

~
∑
G

`2B |G|2
|VG|2

∆G
s̄0(G)δ(~ω −∆G).

(27)
Since linear response of 〈ρ̄G〉0 to the moiré potential in
the SMA is

〈ρ̄G〉0 ≈ −2N
V ∗G
∆G

s̄0(G), (28)

Eq. (27) satisfies the f−sum rule of Eq.(17). The pertur-
bation theory and SMA are schematically demonstrated
in Fig. 2.

V. DISCUSSION OF EXPERIMENTAL
IMPLICATIONS

FQH states at filling factors 1/3, 2/3, 4/3 and 5/3
have been observed in moiré-patterned graphene on a
hBN substrate using capacitance2 and transport5 mea-
surement. Our theory predicts that if light absorption
measurements were performed in these samples, they
would have a finite intra LL signal, providing the first
truly spectroscopic probe of fractional quantum Hall col-
lective excitations. Intra-LL collective excitations have
a typical energy ∼ 0.1e2/(ε`B), which is about 10 meV
( in the the THz frequency range ) at 35T if we use
ε = 3.5 for the effective dielectric constant. In the SMA
[Eqs. (26) and (27)] the excited states at wave vectors G
saturate the f−sum rule. The SMA is particularly accu-
rate for the Laughlin state when G is close to the wave
vector of the magneto-roton minimum, and perturbation
theory requires |VG| to be small compared to ∆G. For
ν = p/3 Laughlin states, the roton minimum is located
around k`B ∼ 1.5. In aligned graphene/hBN the moiré
pattern has a period of 14nm. |G|`B is then about 2.2
at 35T, exceeding the value at which the single-mode-
approximation is most accurate and opening a door to
the poorly understood crossover between magneto-roton
collective modes and fractional particle-hole excitations.

The FQH effect in graphene is enriched by spin and
valley degrees of freedom24,25. For N = 0 LLs, elec-
tron states in opposite valleys are localized on opposite
sublattices. Because the moiré potential of graphene on
hBN26 is sublattice dependent when projected onto the
lowest Landau level, THz absorption could also be used
to detect valley polarization.

Twisted TMD bilayers are another candidate for moiré
assisted FQH spectroscopy. Common chalcogen TMD
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heterjunctions, for example WSe2/MoSe2, have partic-
ularly long period moiré superlattices when aligned.
The lattice constants of WSe2 and MoSe2 have a mis-
match of only 0.1% ∼ 0.2%27, much smaller that for
graphene/hBN. The recent observation of Shubnikov-de
Haas oscillations and quantum Hall states28 in high mo-
bility holes in monolayer WSe2 promises the future real-
ization of FQH states. Some differences between TMD
bilayers and graphene/hBN could prove interesting be-
cause: (1)The N=0 hole LLs of WSe2 and MoSe2 have
neither spin nor valley29 degeneracy, due to a combina-
tion of broken inversion symmetry and strong spin-orbit
coupling,27 simplifying theoretical models and the inter-
pretation of any signals that are observed. (2)The moiré
potential is expected to be weaker30, providing stronger
justification for the perturbative interpretation we pro-
pose, because a TMD monolayer consists of three atomic
layers with low-energy electrons located primarily in the
middle layer. The moiré potential in TMDs can be tuned
by an electric displacement field that is perpendicular to
the bilayers. (3) Because of the small lattice constant
mismatches of common chalcogen TMD heterjunctions
|G|`B can be tuned across the roton minimum of the 1/3
Laughlin using convenient twist angles. For example us-

ing a twist angle of ∼ 0.9◦ between WSe2/MoSe2 in a
35T magnetic field, |G|`B is close to 1.5. This propop-
erty should allow the roton minimum dispersion to be
measured accurately.

We have assumed that the moiré potential is weak
so that FQH states survive. When such assumption
breaks down, there can be phase transitions between
FQH and Wigner crystal states.31 We have mainly fo-
cused on Laughlin states. It will be at least equally
interesting32,33 to probe FQH states at filling factors close
to 1/2 optically, since these states are less well under-
stood theoretically.
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