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Proximity effects resulting from depositing a graphene layer on a TMD substrate layer change
the dynamics of the electronic states in graphene, inducing spin orbit coupling (SOC) and staggered
potential effects. An effective Hamiltonian that describes different symmetry breaking terms in
graphene, while preserving time reversal invariance, shows that an inverted mass band gap regime is
possible. The competition of different perturbation terms causes a transition from an inverted mass
phase to a staggered gap in the bilayer heterostructure, as seen in its phase diagram. A tight-binding
calculation of the bilayer validates the effective model parameters. A relative gate voltage between
the layers may produce such phase transition in experimentally accessible systems. The phases are
characterized in terms of Berry curvature and valley Chern numbers, demonstrating that the system
may exhibit quantum spin Hall and valley Hall effects.

Graphene has many interesting properties intensively
studied in recent years [1]. Prominent among these, pos-
sible intrinsic spin orbit coupling (SOC) on its charge
carriers was estimated by Kane and Mele to be rather
weak, ' 1 µeV [2]. Improved estimates that include con-
tributions from d-orbitals yield larger values, ' 24 µeV
[3], although still rather weak for experimental observa-
tion. Several ways have been proposed to enhance SOC
in graphene for uses in spintronics [4]. Enhancing sp3

hybridization by adding hydrogen or fluorene atoms [5],
as well as decorating with heavy adatoms [6], or different
substrates [7], have been proposed to produce large SOC.
Depositing graphene on metallic substrates has also re-
sulted in strong SOC [8].

The availability of 2D crystals allows for novel stacked
heterostructures with strong proximity effects. Elec-
tronic modulation due to such substrates has been stud-
ied in graphene, such as hBN or twisting of another
graphene layer [9–16]. Lattice commensurability in these
heterostructures depends on factors such as isotropic
expansion, relative sliding between layers, and relative
twists [13, 17, 18].

An interesting family of 2D crystals, transition metal
dichalcogenides (TMD) can be used as substrates for
graphene [19–23]. Monolayer semiconductor TMD such
as MoS2 and WS2 have a direct band gap and honeycomb
crystal structure [24]. The bands near the Fermi energy
are formed predominantly from d-orbitals of the metal
atom [25], with slight admixture from the p-orbitals of
the chalcogen. The SOC in the valence bands is much
larger than in the conduction bands, with strength that
varies with the transition metal [26]. Successful growth
of graphene on MoS2 and WS2 has been demonstrated
experimentally [22, 27–30]. First principles calculations
on some of these systems have proved challenging [21–
23], with reported results that differ qualitatively and
quantitatively.

Motivated by these works, we study the topological
properties of the minimal time reversal invariant effective
model of graphene that incorporates geometrical and or-
bital perturbation effects expected in these systems. Al-
though the effective Hamiltonian of the system can be
obtained by a variety of methods [21, 22], its topological
phases remain unexplored. We focus on the Berry curva-
ture and associated valley Chern number and identify dif-
ferent quantum phases that may appear as Hamiltonian
parameters vary. The phase diagram shows that under
the right conditions, it is possible to achieve band inver-
sion of spin-split bands in graphene that acquire inter-
esting characteristics from the proximal TMD layer. We
further identify that a relative voltage difference between
the graphene and TMD layer (as obtained by an applied
external field) can drive a transition between two topo-
logically inequivalent phases, separated by a semimetallic
phase.

The reduction of the spatial symmetries of graphene,
and the enhancement of SOC in these systems results in
the generation of spin resolved gaps at the Dirac point.
The interplay between sublattice symmetry breaking and
enhanced SOC parameters determines the size and topo-
logical nature of the gaps in the system. As the gaps are
dominated by SOC, the system becomes a quantum spin
Hall insulator, with symmetry-protected edge states. In
contrast, when the gaps are dominated by the sublattice
staggered symmetry, the system becomes a valley Hall
insulator.

Identification of experimentally relevant parameters is
carried out utilizing a tight binding calculation with ap-
propriate graphene and TMD characteristics. Different
lattice orientations and relative layer displacement are
also found to exhibit such phase transition, with shifts in
the values of external field at which it occurs.

Effective model and characteristics. The proximity of
the TMD monolayer to graphene breaks inversion sym-
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metry, which allows for the presence of Rashba SOC, in
addition to sublattice asymmetry terms in the effective
Hamiltonian [31]. A minimal low energy model will in-
clude terms that respect time reversal symmetry [23, 32],
and arise due to the symmetries in the TMD states,
Heff = H0 +H∆ +HS1

+HS2
+HR, with

H0 = ~vF (τzσxs0px + τ0σys0py)

H∆ = ∆s0σzτ0

HS1
= S1τzσzsz

HS2
= S2τzσ0sz

HR = R(τzσxsy − τ0σysx)

(1)

where σi, τi, and si are 2 × 2 Pauli matrices with i =
0, x, y, z, (0 is for the unit matrix) operating on different
degrees of freedom. σi acts on the pseudospin sublattice
space (A,B), τi on the K, K′ valley space, and si on the
spin [31]. We use the ‘standard’ basis ΨT = (ΨT

K ,Ψ
T
K′),

with ΨT
K,K′ = (A ↑, B ↑, A ↓, B ↓)K,K′ , and H0 describes

pristine graphene [2]. The parameters vF ,∆, S1, S2, and
R are constants of the model, to be obtained from DFT or
tight-binding calculations (as we describe below). They
would naturally be expected to depend on the micro-
scopic details of the system, such as orientation and rel-
ative displacements of the monolayers, as well as on ap-
plied electric fields or pressure. As we will see below, it is
such dependence that may give rise to interesting phases.
H∆ characterizes the (staggered) sublattice asymme-

try in the graphene A and B atoms, as expected from
proximity to the TMD monolayer; this term is well-
known to open gaps in the otherwise linear dispersion
of H0, and create sizable topological-valley currents in
graphene-hBN superlattices [16, 32]. The intrinsic SOC
term, HS1 , opens a spin gap in the bulk structure with
opposite signs at K, K′ valleys, while preserving spatial
symmetries of the hexagonal lattice. Finally, as mirror
symmetry (z → −z) is broken by the TMD substrate,
the dynamics is expected to contain a Rashba effective
Hamiltonian HR [2], and a diagonal SOC term HS2 . Al-
though a valley mixing term is possible in principle, we
find it to be essentially null in all our calculations.

Typical band structures for this Hamiltonian are
shown in Fig. 1. The left panel illustrates an ‘inverted
band’ regime, evident in the local dispersion around each
of the valleys near the graphene neutrality point, pro-
duced by the anticrossing of bands with opposite spins
and due to the presence of the Rashba term. The middle
panel shows a transition point, where the gap has closed
and exhibits a dispersion with nearly full spin polariza-
tion. The right panel shows a ‘direct band’ regime with a
simple parabolic dispersion for each of the two spin pro-
jections. As we will see below, the inverted band regime
is achieved whenever |S1+S2| > ∆, while the direct band
regime is achieved in the opposite case.

One can analyze the topological features of the sys-
tem by calculating the Berry curvature Ωn(k) and Chern
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FIG. 1. (Color online) Typical band structure of effective
model near the K valley. Left panel shows an ‘inverted band’
regime, with strong spin mixing of the different states, as
indicated by the red/blue shading, and typical of |S1 + S2| >
∆. Middle panel shows a spin split semimetallic phase, while
right panel shows a ’direct band’ regime where a finite bulk
gap develops with nearly full spin polarization, obtained when
|S1 + S2| < ∆.

number per valley of the occupied bands using [33]

Ωn(k) = −
∑
n′ 6=n

2Im〈Ψn′k|vx|Ψnk〉〈Ψnk|vy|Ψn′k〉
(εn − εn′)2

,

Cn =
1

2π

∫
dkxdkyΩn(kx, ky), (2)

where n is the band number, and vx(vy) is the velocity op-
erator along the x(y) direction [34]. Figure 2 shows Berry
curvature for the two lowest energy (valence) bands, and
total curvature near each of the K, K′ valleys, in two
different parameter regimes. Notice plots for each band
obey Ω(K-valley) = −Ω(K′-valley), as required by time
reversal symmetry [33]. The left two columns in Fig.
2, for the inverted band regime, exhibit a non-monotonic
k-dependence for the curvature in each valley, with inver-
sion at each K point, Ω1(0) ' −Ω2(0), so that the total
valley curvature is nearly null. In contrast, the right two
columns for the direct band regime show the same cur-
vature for both bands in each valley. The non-vanishing
Berry curvature in each valley may give rise to interesting
edge states in systems with borders, as seen in graphene
ribbons and TMD flake edges [35–37].

The total Chern index at each valley yields CK = −CK′

for all parameter values, so that the overall Chern num-
ber vanishes, as expected for systems protected by time
reversal symmetry [33, 38]. However, the spin splitting
and mixing of the two valence bands in different regimes
results in CK = ±1, with an overall sign change across
the semimetallic phase transition where the gap closes.
In a system with zero Rashba term (R = 0), the Chern
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FIG. 2. Berry curvature Ωn at K and K′ valleys for both in-
verted and direct band gap regimes. Left two columns show
results for the inverted band regime corresponding to Fig.
1a. Right two columns are for the direct band regime corre-
sponding to Fig. 1c. Upper (middle) plots describe Berry cur-
vature of the lowest (highest) energy valence bands in Fig.1,
n = 1(2). Lower plots show the total valence band Berry
curvature, ΩT = Ω1 + Ω2. The different Berry curvature dis-
tribution between K and K′ is evident in both cases.

number can be shown to yield C = sgn(∆τz + S1sz), in-
dicating the competition between the intrinsic SOC and
staggered perturbations. Although an analytic expres-
sion for the Chern number is not feasible in general, nu-
merical evaluation for different parameter regimes reveals
the important roles of both S1 and S2, as well as R, on
determining the topological features of the system. We
will return to this point in detail below.

Tight binding model. The relevant effective model de-
pendence on microscopic details of the graphene-TMD
heterostructure can be obtained from a tight-binding
model of the structure. We focus on graphene and MoS2,
with lattice constants 2.46 and 3.11 �A, respectively. A
superlattice of 5×5 graphene and 4×4 MoS2 unit cells
results in a nearly commensurate moire pattern with
a small residual strain (∼1.1 %), as seen in Fig. 3a.
The corresponding Brillouin zone has similar features to

that of graphene, with valleys at K,K′ = 2π
aα

(
1√
3
,± 1

3

)
,

aα = 5aG = 4aMo, folding the valleys of graphene and
MoS2 onto the same points; see Fig. 3b, as well as details
in [39].

The tight-binding couples nearest neighbors 〈ij〉 in an
optimal basis where MoS2 is represented by three or-
bitals, dz2 , dxy and dx2−y2 [25],

HMo =
∑
iνs

ενsα
†
iνsαiνs +

∑
〈ij〉νµs

tiν,jµα
†
iνsαjµs + h.c.

(3)

ενs considers the on-site energies of Mo-atom i, orbital
ν, and spin s, while tiν,jµ describes hopping between Mo
orbitals. The SOC in MoS2 is introduced via atomic
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FIG. 3. (Color online) Graphene-MoS2 heterostructure. (a)
Top view of bilayer structure supercell in real space. Black
circles are A and B atoms of graphene, while blue (green) are
Mo (S2) atoms. (b) Brillouin zones of the reciprocal lattices:
First BZ for a monolayer of graphene and MoS2 with position
of K and K’ valleys. Upon folding onto the heterostructure
reciprocal lattice, corner valleys from both layers are mapped
onto the same point. (c) Band dispersion of graphene-MoS2

along high symmetry lines Γ-K-M-Γ. Inset: Zoom near K val-
ley shows graphene bands appear gapped and spin polarized
due to proximity to MoS2. Blue (red) bands are for spin up
(down) states.

contributions [25]. For graphene we adopt the usual pz-
orbital representation with two-atom basis [1, 39]. The
substrate generates an electric field normal to the layer,
causing a Rashba SOC term [2], HR = itR

∑
〈ij〉αβ ẑ ·

(sαβ × d◦ij)c
†
iαcjβ , where α, β describe spin up and down

states, and d◦ij is the unit vector that connects neighbor
atoms A and B. Although the Rashba interaction is weak
in graphene (tR = 0.067meV [40]), it is an important
term that breaks inversion symmetry.

The interlayer coupling between graphene pz orbital
and MoS2 d-orbitals is given by

H =
∑
〈ij〉,νσ

tνi,jc
†
i,σαjν,σ + h.c. (4)

The parameters used are described in [39], although the
detailed values do not affect the main conclusions nor
qualitative behavior, providing only an overall scaling.

The tight-binding model considers the possibility of
a difference in electronegativity between the two lay-
ered materials creating a relative shift of their neutrality
points. This polarization shift could be thought to arise
from an effective potential difference across the layers,
as it would be possible to apply if the graphene-MoS2

structure is placed between capacitor plates. We explore
the consequences of such relative voltage on the effective
band structure on graphene, assuming that the other pa-
rameters (hopping integrals and lattice constants) remain
unchanged with voltage. One could obtain the appro-
priate parameters from first principles calculations, al-
though the van der Waals nature of the bonding between
layers, as well as the rather fine-scale of the relevant fea-
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tures make those calculations quite challenging [21, 22].
Results for a nearly zero relative shift of the neutrality
points are in Fig. 3c, which show how the low energy spec-
trum exhibits a finite gap for fully spin polarized bands.
This band alignment agrees well with recent experiments
in such bilayer system [29].

As the relative voltage between layers is varied, the
tight-binding spectrum shows a low-energy band struc-
ture similar to that of the effective model, Fig. 1. We
have carried out a systematic fit of the low energy dis-
persion with the model parameters in Eq. 1, as the volt-
age changes. The fits are excellent (to less than 1 %)
up to an energy 0.3 eV away from the graphene Dirac
point, with nearly linear dispersion at higher energies
[29]. The effective model describes not only the low-
energy band dispersion, but also the full spin and pseu-
dospin structure of the states, illustrating the generality
of the model [39]. Fit parameters vary smoothly with
gate voltage, as shown in Fig. 4b; we assign VGate = 0
when graphene Dirac point is 20 meV higher than the top
valence band in MoS2, while a zero relative shift of their
neutrality points is at VGate ' 0.9eV. The staggered po-
tential ∆ increases smoothly with voltage, while R, S1,
and S2 vary much less [41]. Most importantly, we see
that the gap closes near the gate voltage where the sum
∆ + S1 + S2 + R/3 ' 0. Figure 4a and b also show the
valley Chern number jumps by 2π at the closing of the
gap, as anticipated from the discussion above, although
here the competition involves ∆ and all three SOC coef-
ficients. We emphasize that the closing of the gap and
corresponding phase transition from an inverted mass to
a direct gap regime is rather generic, and as suggested
by these calculations, accessible experimentally [42].

Notice that the model studied is one particular exam-
ple of a large class of Hamiltonians that describe systems
that possess similar symmetry properties with different
parameters. More examples are graphene and other
TMD heterostructures. In graphene-WS2, the inverted
band phase exists over a wider range of gate voltage,
with gap closing at VGate = 1.2 eV. This larger voltage
can be understood as arising from the larger SOC in WS2,
nearly three times stronger than in MoS2 [24]. We also
explored structures with a relative shift of the lattices, or
possible rotations of the two layers involved [39]. We find
that gaps open generically near the graphene neutrality
point, with regimes of inverted masses, at times over only
narrow regions of gate voltage. This suggests that in a
macroscopic sample with a distribution of strains, one
may expect variation of the effective Hamiltonian pa-
rameters over long range scales. This may produce ‘edge
states’ separating different regions in the 2D bulk with
different topological features, resulting in interesting ef-
fects even away from the sample edges [39].

The topology of the inverted mass regime in the struc-
ture suggests that edge states would exist at bound-
aries, as discussed in the past [33]. In fact, zigzag edge
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FIG. 4. (Color online) (a) Phase diagram for Graphene-TMD
system in Eq. 1 in the S2-∆ projection with R = 0.1meV,
and S1 ∈ [−0.16, 0.16]meV. Trivial insulating phase in blue
CK = 1, and mass inverted phase in yellow CK = −1, divided
by the semimetallic phase, white curve. Blue line shows the
line cut for graphene-MoS2 system as a function of VGate. (b)
Gate voltage dependence of effective Hamiltonian parameters
used to fit the tight-binding band structure results. Black line
shows evolution of band gap, which closes at VGate = 0.86
eV. For VGate < 0.86 eV, in the inverted band regime, spin
orbit contribution dominates over the staggered term, given
approximately by ∆+S1 +S2 < 0, slightly shifted by Rashba
term. In the opposite regime, staggered potential dominates
and creates a trivial band gap.(c) Chern numbers for K valley,
as in (a). Switch near VGate = 0.5 eV is due to a band crossing
at the K point, while jump at VGate = 0.86 eV indicates gap
closing that separates inverted mass regime from direct band
regime. VGate = 0 corresponds to graphene Dirac point 20
meV higher than the top valence band in MoS2.

graphene nanoribbons based on the effective Hamiltonian
show different regimes. A quantum spin Hall effect is seen
for the mass inverted bands, while a valley Hall effect is
present in the direct band regime.

Conclusions. We have built and studied a het-
erostructure of graphene deposited on a monolayer of
transition metal dichalcogenides (TMD) in order to ex-
plore proximity effects. An effective Hamiltonian with
perturbations that preserve time reversal is able to faith-
fully reproduce the results from tight binding calcula-
tions of the structure near the graphene Dirac points.
The TMD proximity results in sizable spin orbit cou-
pling imparted onto graphene, in a degree proportional
to the intrinsic SOC in the TMD. This strong effect is
found to compete with the staggered potential also in-
troduced, resulting in different regimes where the het-
erostructure changes phase from an inverted mass band
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structure, with possible quantum spin Hall effect and
the consequent spin filtered edge states, to a direct band
structure with possible valley Hall effect and the appear-
ance of valley currents. These phases could in principle
be controlled by an effective potential difference between
the layers, and may even be present throughout the 2D
bulk, as strains fields would affect the relevant phases
present. Experimental identification and optimization of
parameters to observe this interesting topological phase
transition would be a fascinating development.

Acknowledgments. We acknowledge support from
NSF-DMR 1508325, the Saudi Arabian Cultural Mission
to the US for a Graduate Scholarship, and hospitality of
the Aspen Center for Physics, supported by NSF-PHY
1066293. M. M. A. acknowledges the support from NSF
grant DMR-1410741 and NSF grant No. DMR-1151717.

∗ aalsharari@ut.edu.sa
[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[3] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl,
and J. Fabian, Phys. Rev. B 80, 235431 (2009).

[4] D. Pesin and A. H. MacDonald, Nature Mat. 11, 409
(2012).

[5] A. Avsar, J. H. Lee, G. K. W. Koon, and B. Özyilmaz,
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