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We develop a quantum-mechanical theory for Landau damping of surface plasmons in metal
nanostructures larger that the characteristic length for nonlocal effects. We show that the electron
surface scattering, which facilitates plasmon decay in small nanostructures, can be incorporated
into the metal dielectric function on par with phonon and impurity scattering. The derived surface
scattering rate is determined by the local field polarization relative to the metal surface, and is
highly sensitive to the system geometry. We illustrate our model by providing analytical results for
surface scattering rate in some common shape nanostructures.

I. INTRODUCTION

Surface plasmons are collective electron excitations
that provide unprecedented means for energy concen-
tration, conversion, and transfer at the nanoscale [1–3].
Plasmons can be resonantly excited in metal-dielectric
nanostructures giving rise to strong oscillating local fields
that underpin numerous plasmon-enhanced spectroscopy
phenomena, including surface-enhanced Raman scatter-
ing [4], plasmon-enhanced fluorescence and energy trans-
fer [5], or plasmonic laser (spaser) [6]. Among key char-
acteristics that impact numerous plasmonics applications
[7–10] is the plasmon lifetime, which, depending on the
plasmonic system size, is governed by several decay mech-
anisms [11–15]. While in large systems, the plasmon life-
time is mostly limited by radiation [16], in systems with
characteristic size L < c/ω, where c and ω are, respec-
tively, the light speed and frequency, the dominant de-
cay mechanism is excitation of electron-hole (e-h) pairs
by the plasmon local field accompanied by phonon and
impurity scattering or, for small systems, surface scat-
tering [17]. Recently, plasmon decay into e-h pairs has
attracted intense interest as a highly efficient way of hot
carrier generation and transfer across the interfaces with
applications in photovoltaics [18–27] and photochemistry
[28–32]. Plasmon-assisted carrier excitation is especially
efficient in smaller plasmonic systems, where light scat-
tering is relatively weak and the extinction is dominated
by resonant plasmon absorption. In such systems, the
carrier excitation rate is enhanced as well due to sur-
face scattering that provides an additional channel for
momentum relaxation [17].

Surface-assisted plasmon decay (Landau damping) has
been extensively studied experimentally [33–43] and the-
oretically [44–59] since the pioneering paper by Kawabata
and Kubo [44], who has shown that, for a spherical metal
nanoparticle of radius a, the surface scattering rate is
γsp = 3vF /4a, where vF is the electron Fermi velocity. In
subsequent quantum-mechanical studies carried within
random phase approximation (RPA) [45–51] and time-
dependent local density approximation (TDLDA) [52–59]
approaches, a more complicated picture has emerged in-
volving single-particle resonances in confined systems as
well as surface potential and nonlocal effects. These are
dominant at the spatial scale ξnl = vF /ω that defines the

characteristic length for nonlocal effects [60, 61] (e.g., for
noble metals, vF /ω < 1 nm in the plasmon frequency
range), whereas for larger systems with L ≫ vF /ω (i.e.,
several nm and larger), they mainly affect the overall
magnitude of γsp, while preserving intact its size depen-
dence [56, 58]. The latter implies that in a wide size range
vF /ω ≪ L ≪ c/ω, which includes most plasmonic sys-
tems used in applications, the detailed structure of elec-
tronic states is unimportant, and the confinement effects
can be reasonably described in terms of electron surface
scattering, which can be incorporated, along with phonon
and impurity scattering, in the metal dielectric function
ε(ω) = ε′(ω) + iε′′(ω). In the following, we adopt the
Drude dielectric function ε(ω) = εi(ω) − ω2

p/ω(ω + iγ),
where εi(ω) accounts for interband transitions, ωp is the
plasma frequency, and γ is the scattering rate. Thus,
it is expected that, for metal nanostructures within the
above size range, the scattering rate should be modified
as γ = γ0+γs, where γ0 is the bulk scattering rate and γs
stands for the surface scattering rate. In particular, the
standard expression, in terms of metal dielectric function,
for the plasmon decay rate [3],

Γ = 2ε′′(ω)

[

∂ε′(ω)

∂ω

]−1

, (1)

should describe plasmon damping due to both bulk and
surface-assisted processes if surface-modified ε(ω) is used
instead. For example, for ω well below the onset of inter-
band transitions, the rate (1) coincides with (modified)
Drude scattering rate: Γ ≈ γ = γ0 + γs.
The major roadblock in the way of carrying this pro-

gram forward has so far been the lack of any quantum-
mechanical model for evaluation of γs in a nanostruc-
ture of arbitrary shape. Due to enourmous complexity of
many-electron states in general shape confined systems,
calculations of γs were performed, within RPA [44–51]
and TDLDA [52–59] approaches, only for some simple
(mostly spherical) geometries. For general shape sys-
tems, the surface scattering rate was suggested, within
the classical scattering (CS) model [62–66], in the form
γcs = AvF /L, where L is interpreted as the ballistic scat-
tering length in a classical cavity, while the phenomeno-
logical constant A accounts for the effects of surface
potential, electron spillover, and dielectric environment.
However, the unreasonably wide range of measured A
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(0.3 ÷ 1.5 for spherical particles [17]) raised questions
about the CS model validity [67], while recent measure-
ments of plasmon spectra in nanoshells [38], nanoprisms
[41], nanorods [42], and nanodisks [43] revealed signifi-
cant discrepancies with its predictions. Furthermore, the
CS approach is questionable on physical grounds as well
since it involves carrier scattering across the entire sys-
tem even for L ≫ vF /ω, i.e., when the nonlocal effects
are expected to be weak.
On the other hand, surface scattering should depend

sensitively on the local fields accelerating the carriers to-
wards the metal-dielectric interface. This dependence
was, in fact, masked in all previous quantum-mechanical
studies of simple-shape systems [44–59], where a spe-
cific functional form of the local field, appropriate for the
given geometry, was used, while it is completely missing
in the CS approach. Moreover, for the most widely stud-
ied spherical geometry, the local field is uniform inside
the particle (apart from surface effects), which further
obscured its importance. Note, however, that our recent
RPA calculations of the surface plasmon lifetime in spher-
ical metal nanoshells with dielectric core [68] revealed
the crucial role of local fields; for thin shells, the field is
pushed out of the metal region, resulting in the plasmon
damping reduction. This result contrasts sharply with
the CS model predictions but, in fact, is consistent with
the measured light-scattering spectra of single nanoshells
[38]. Furthermore, recent measurements of plasmon spec-
tra in nanorods and nanodisks revealed strong sensitivity
of plasmon modes’ linewidth to the local field polariza-
tion relative to the system symmetry axis [43]. For gen-
eral shape systems, the local field orientation relative to
the interface can strongly affect the surface scattering
rate, and, therefore, must be properly accounted for in
any consistent theory of surface-assisted plasmon decay.
In this paper, we present a quantum-mechanical theory

for surface-assisted carrier excitation by alternating local
electric field Ee−iωt in metal nanostructures of general
shape. We observe that excitation of an e-h pair takes
place in a region of size vF /ω (see Fig. 1) and, therefore,
can be viewed as a local process in systems with charac-
teristic size L≫ vF /ω. We show that surface scattering,
which accompanies the e-h pair excitation, can be ac-
counted for, in a natural way, in the Drude dielectric
function by modifying the scattering rate as γ = γ0+ γs.
We derive the surface scattering rate γs in the form

γs = AvF

∫

dS|En|2
∫

dV |E|2 , (2)

where En is the local field component normal to the in-
terface and the integrals are carried over the metal sur-
face (numerator) and volume (denominator). The con-
stant A has the value A = 3/4 for hard-wall confining
potential, but can be adjusted to account for surface and
nonlocal effects. The full plasmon decay rate, including
bulk and surface contributions, still has the form (1), but
with modified ε(ω) that now includes the surface scatter-
ing rate (2). Surface-assisted carrier excitation is highly

F
E

w
+
h

-
e

i t
e

w-
E

(b)

L

i t

ext
e

w-
E

(a)

+
h

-
e

S

(c)

+
h

-
e

w-i t
eE

v
F
/w

FIG. 1. Schematics for surface-assisted excitation of an e-h

pair with energy ~ω. (a) An external optical field incident on
a metal nanostructure of characteristic size L, (b) excites a
surface plasmon that decays into an e-h pair, (c) accompanied
by momentum relaxation via carrier surface scattering in a
small region of size vF /ω ≪ L.

sensitive to the local field polarization relative to the
metal-dielectric interface, leading to very distinct rates
for different plasmon modes, which we calculate for some
common nanostuctures.
The paper is organized as follows. In Sec. II, we outline

our general approach to calculation of plasmon Landau
damping in metal nanostructures. In Sec. III, we derive
an explicit expression for surface-assisted absorbed power
and the corresponding scattering rate in netal nanostruc-
tures of arbitrary shape. In Sec. IV, we present analytical
and numerical results for surface scattering rates in some
common shape structures. In Sec. V, we discuss the ef-
fect of confining potential profile on the surface scattering
rate, and Appendices detail some technical aspects of our
calculations.

II. DECAY RATE OF SURFACE PLASMONS IN

METAL NANOSTRUCTURES

In this section, we outline our approach to calculation
of the plasmon decay rate for a metal nanostructure em-
bedded in dielectric medium. For simplicity, we restrict
ourselves by metal structures occupying some volume V
with a single surface S, so that the local dielectric func-
tion ε(ω, r) = ε′(ω, r) + iε′′(ω, r) equals ε(ω) and εd in
the metal and dielectric regions, respectively. For system
characteristic size L ≪ c/ω, the retardation effects are
unimportant, and plasmon modes are determined by the
Gauss law∇·[ε′(ωl, r)El(r)] = 0, where El(r) is the slow
component of plasmon local field and ωl is the plasmon
mode frequency. For brevity, we omit the mode index l
hereafter. The general expression for plasmon decay rate
Γ has the form [69]

Γ =
Q

U
, (3)

where U is the mode energy [70],

U =
ω

16π

∂ε′(ω)

∂ω

∫

dV |E|2, (4)

and Q is the absorbed power (loss function)

Q =
ω

2
Im

∫

dVE
∗ ·P. (5)
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Here, P(r) is the electric polarization vector and star
stands for complex conjugation. In the classical (local)
picture, the polarization vector is proportional to the lo-
cal field, Ploc(r) = E(r)[ε(ω, r) − 1]/4π, yielding the
absorbed power due to the bulk processes [70]

Q =
ωε′′(ω)

8π

∫

dV |E|2, (6)

which, along with the mode energy (4), leads to the stan-
dard form (1) of the plasmon damping rate.
Surface contribution to the absorbed power, Qs, comes

from the momentum relaxation channel provided by car-
rier scattering from the metal-dielectric interface. Since
surface scattering introduces nonlocality, Qs must be
evaluated microscopically. The general expression for Qs

can be obtained by relating P(r) to the electron polariza-
tion operator P (ω; r, r′) via the induced charge density:

ρ(r) = e

∫

dr′P (r, r′)Φ(r′) = −∇ ·P(r), (7)

where local potential Φ(r) is defined as eE(r) = −∇Φ(r)
(e is the electron charge). With help of Eq. (7), integrat-
ing Eq. (5) by parts, we obtain

Qs =
ω

2
Im

∫

dV dV ′Φ∗(r)P (ω; r, r′)Φ(r′), (8)

where P (ω; r, r′) includes only the electronic contribu-
tion, i.e., without phonon and impurity scattering effects.
Within RPA, P (ω; r, r′) is replaced by the polarization
operator for non-interacting electrons [71], yielding

Qs = πω
∑

αβ

|Mαβ|2 [f(ǫα)− f(ǫβ)] δ(ǫα − ǫβ + ~ω), (9)

where Mαβ =
∫

dV ψ∗
αΦψβ is the transition matrix el-

ement of local potential Φ(r) calculated from the wave
functions ψα(r) and ψβ(r) of electron states with ener-
gies ǫα and ǫβ separated by ~ω, f(ǫ) is the Fermi distri-
bution function, and spin degeneracy is accounted for.
In terms of Qs, the surface-assisted contribution to the

plasmon decay rate, i.e., the Landau damping (LD) rate,
has the form

Γs =
Qs

U
, (10)

where U is given by Eq. (4). Note that often in the
literature, Γs is identified with standard first-order tran-
sition probability rate, given by the expression similar to
Eq. (9) but divided by the factor ~ω/2. We stress that
in a system with dispersive dielectric function, where the
mode energy is U rather than ~ω [70], the standard tran-
sition rate must by rescaled by the factor ~ω/2U [69].
Calculation of Qs (and, hence, of Γs) hinges on the

transition matrix element Mαβ , which has so far been
evaluated, either analytically or numerically, only for
several simple geometries permitting separation of vari-
ables [44–58, 68]. For general shape systems, evaluation

of Mαβ presents an insurmountable challenge of find-
ing, with a good accuracy, the three-dimensional elec-
tron wave functions oscillating rapidly, with the Fermi
wavelength period λF , on the system size scale L≫ λF .
However, as we demonstrate in the following section, this
difficulty can be bypassed and even turned into an advan-
tage as Qs is derived in a closed form for any nanostruc-
ture larger than the nonlocality scale, i.e., for L≫ vF /ω.

III. ABSORBED POWER AND SURFACE

SCATTERING RATE

In this section, we evaluate the surface contribution
to the absorbed power (9) to show that it can be incor-
porated, in a natural way, into the general expression
for absorbed power (6) by modifying the metal dielectric
function ε(ω) to include surface scattering.
We start with the transition matrix element Mαβ =

∫

dV ψ∗
αΦψβ, where ψα(r) is the eigenfunction of the

Hamiltonian H = −(~2/2m)∆ for an electron with en-
ergy ǫα in a hard-wall potential well (this approximation
is discussed later). We consider the case when excitation
energy ~ω is much larger than the electron level spacing,
so that, in the absence of phonon and impurity scatter-
ing, the electron transition to the state ψβ(r) with en-
ergy ǫβ = ǫα + ~ω requires momentum transfer to the
interface. A direct evaluation of Mαβ , so far carried out
only for some simple geometries [44–58, 68], requires the
knowledge of ψα in the entire system volume. We note,
however, that for a typical plasmon frequency ~ω ≪ EF ,
where EF is the Fermi energy in the metal, the momen-
tum transfer q ∼ ~ω/vF takes place in a region of size
ξnl ∼ ~/q ∼ vF /ω, so that, for characteristic system size
L ≫ vF /ω, the e-h pair excitation takes place in a close
proximity to the metal surface (see Fig. 1). It is our
observation that, for an electron in a hard-wall cavity,
the boundary contribution to Mαβ can be extracted as a
surface integral of the form,

M s
αβ =

−e~4
2m2ǫ2αβ

∫

dS[∇nψα(s)]
∗En(s)∇nψβ(s), (11)

where ∇nψα(s) is the wave-function normal derivative
at a surface point s, En(s) is the corresponding normal
field component, ǫαβ = ǫα − ǫβ is the e-h pair excitation
energy, and m is the electron mass. The derivation of
Eq. (11) is given in Appendix A. Using the above matrix
element, Eq. (9) can be recast as

Qs =
e2~4

4πm4ω3

∫ ∫

dSdS′En(s)E
∗
n′ (s′)Fω(s, s

′), (12)

where Fω(s, s
′) stands for e-h surface correlation function

defined as

Fω(s, s
′) =

∫

dǫfω(ǫ)ρnn′(ǫ; s, s′)ρn′n(ǫ+ ~ω; s′, s).

(13)
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Here, the function fω(ǫ) = f(ǫ)− f(ǫ+ ~ω) restricts the
electron initial energy to the interval ~ω below EF , and

ρnn′(ǫ; s, s′) = ∇n∇′
n′ImG(ǫ; s, s′) (14)

is normal derivative of the electron cross density of states
ρ(ǫ; r, r′) = ImG(ǫ; r, r′) at surface points, where

G(ǫ; r, r′) =
∑

α

ψα(r)ψ
∗
α(r

′)

ǫ − ǫα + i0
(15)

is the Green function of a confined electron. Note that
neither the Green function G(ǫ; r, r′) nor the correlation
function Fω(s, s

′) can be evaluated with any reasonable
accuracy for a general shape nanostructure. However,
an explicit expression for Qs in terms of local fields can
still be derived by exploiting the drastic difference in
the length scales characterizing the electron and plas-
mon waves. Namely, while the electron wave-functions
oscillate with the Fermi wave length period λF , the lo-
cal fields significantly change on the much larger system
scale L ≫ λF . Below we outline the main steps of our
derivation of Qs and refer to Appendix B for detail.
First, we note that since excitation of an e-h pair with

energy ~ω near the Fermi level takes place in a region of
size vF /ω, the correlation function Fω(s, s

′) peaks in the
region |s−s

′| . vF /ω ≪ L and rapidly oscillates outside
of it (see below). On the other hand, in such a region,
the local field En is nearly constant, i.e., En(s) ≈ En(s

′),
and so Qs takes the form

Qs =
e2~4

4πm4ω3

∫

dS|En(s)|2F̄ω(s), (16)

where F̄ω(s) =
∫

dS′Fω(s, s
′) is, for L≫ vF /ω, indepen-

dent of the surface point s.
Evaluation of F̄ω is based upon multiple-reflection ex-

pansion for the electron Green function G(ǫ; s, s′) in a
hard-wall potential well [72]. For L ≫ λF , the direct
and single-reflection paths provide the dominant contri-
bution, while higher-order reflections are suppressed as
powers of λF /L≪ 1 (see Appendix B), and we obtain

ρnn′(ǫ; s, s′) = 2∇n∇′
nImG0(ǫ, s− s

′) (17)

where

G0(ǫ, r) =
m

2π~2
eikǫr

r
, kǫ =

√
2mǫ

~
, (18)

is the free electron Green function, and factor 2 comes
from equal contributions of direct and reflected paths at
a surface point. It is easy to see that, for ǫ ∼ EF and
~ω/EF ≪ 1, the integrand of Eq. (13) peaks in the region

|s− s
′| . 1

kǫ+~ω − kǫ
≈ vF

ω
(19)

and rapidly oscillates outside of it. This sets the length
scale vF /ω for correlation function Fω(s, s

′) in Eq. (12)

and leads to Eq. (16). The final step is to compute the
normal derivatives in Eq. (17) which, for L ≫ vF /ω, is
accomplished by approximating the surface by the tan-
gent plane at the surface point (see Appendix B), yielding

F̄ω =
m2k4F
2π~4

~ω, (20)

where kF =
√
2mEF/~ is the Fermi wave vector. Substi-

tuting this F̄ω into Eq. (16), we finally arrive at surface
contribution to the absorbed power

Qs =
3vF
32π

ω2
p

ω2

∫

dS|En|2, (21)

where we used that ω2
p = 4e2k3F /3πm. The above expres-

sion for Qs, which is our central result, is valid for any

metal nanostructure with characteristic size L ≪ c/ω in
an alternating electric field with frequency ω ≫ vF /L.
The surface contribution (21) should be considered in

conjunction with the bulk contribution to the absorbed
power. In fact, both contributions can be combined in the
general expression (6) by modifying the scattering rate in
the Drude dielectric function ε(ω) = εi(ω)−ω2

p/ω(ω+iγ)
as γ = γ0 + γs, where

γs =
3vF
4

∫

dS|En|2
∫

dV |E|2 , (22)

is the surface scattering rate. Then, the surface contri-
bution (21) is obtained as the first-order term of the ex-
pansion of Eq. (6) over γs, implying that surface scat-
tering rate enters on par with its bulk counterpart into
the metal dielectric function. While γs is independent
of the local field strength, it does depend strongly on its
polarization relative to the interface, and can be viewed
as averaged over the surface local scattering rate.
Finally, let us show that the full plasmon decay rate Γ

due to both bulk and surface scattering is still given by
the general expression (1), but with modified dielectric
function ε(ω) that now includes the surface scattering
rate (22). Indeed, using Eqs. (21) and (4), the surface
contribution to Γ, i.e., the LD rate, takes the form

Γs =
Qs

U
=

2ω2
pγs

ω3

[

∂ε′(ω)

∂ω

]−1

. (23)

The same expression is obtained by expanding Eq. (1)
[with modified ε(ω)] to the first order in γs. For ω well
below the interband transitions onset, the LD rate and
surface scattering rate coincide, Γs ≈ γs.

IV. EVALUATION OF SURFACE SCATTERING

RATES FOR SPECIFIC GEOMETRIES

Using our model, surface scattering rates for nanos-
tructure of arbitrary shape can be evaluated directly from
the local fields, without further resorting to quantum-
mechanical calculations. In this section, we employ our
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main result Eq. (22) to evaluate γs for some common
structures: spherical particles, cylindrical wires, and
spheroidal particles (nanorods and nanodisks).
We start by recasting the surface scattering rate (22)

as the ratio of two surface integrals,

γs =
3vF
4

∫

dS|∇nΦ|2
∫

dSΦ∗∇nΦ
, (24)

where real part of the denominator is implied. This rep-
resentation is especially useful for systems, whose shape
permits separation of variables, and, as we show below,
it allows us to obtain analytical results for some common
structures, such as nanorods and nanodisks, which so far
eluded any attempts of numerical evaluation of γs.

A. Spherical particles and cylindrical wires

Let us first apply Eq. (24) to the simplest case of a
sphere of radius a. In the quasistatic limit, the potentials
inside the sphere are given by regular solutions of the
Laplace equation, Φ ∝ rlYlm(r̂), where r is the radial
coordinate and Ylm(r̂) are the spherical harmonics (l and
m are, respectively, the polar and azimuthal numbers).
Then, a straightforward evaluation of Eq. (24) recovers
the surface scattering rate for the lth mode [45]:

γlsp =
3lvF
4a

. (25)

The same rate is obtained for the lth transverse mode in
an infinite cylindrical nanowire of radius a.

B. Nanorods and nanodisks

Nanorods and nanodiscs are often modeled by prolate
and oblate spheroids, respectively. Here we distinguish
between longitudinal and transverse modes oscillating
along the symmetry axis and within the symmetry plane,
characterized, respectively, by semi-axises a and b (see
Fig. 2). Using Eq. (24), the surface scattering rate for all
modes can be found in an analytical form (see Appendix
C), but here only the results for the dipole modes are
presented. For a nanorod (prolate spheroid) with aspect
ratio b/a < 1, we obtain the following rates for longitu-
dinal and transverse polarizations, respectively:

γLs =
3vF
4a

3

2 tan2α

[

2α

sin 2α
− 1

]

,

γTs =
3vF
4a

3

4 sin2α

[

1− 2α

tan 2α

]

, (26)

where α = arccos(b/a) is the angular eccentricity. For a
nanodisk (oblate spheroid) with b/a > 1, the rates (26)
still aply with α = i arccosh(b/a). Note that the CS rate
for a spheroidal particle is [65]

γcs =
vFS

4V
=

3vF
8a

(

1 +
2α

sin 2α

)

. (27)
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FIG. 2. Normalized surface scattering rates for prolate and
oblate spheroids are shown with changing aspect ratio b/a
along with the CS rate. Insets: Schematics of plasmon modes’
polarizations.

C. Numerical Results

Here we present calculated surface scattering rates for
spheroidal particles as the system shape evolves, with
changing aspect ratio b/a, from a needle to a pancake.
In Fig. 2, we plot the rates (26) normalized by the dipole
mode rate γsp = 3vF /4a for spherical particle of radius
a. At the sphere point a = b, the normalized rates for
prolate and oblate spheroids continuously transition into
each other (e.g., PL to OL and PT to OT), and depending
on the mode polarization, exhibit dramatic differences
in behavior with changing aspect ratio. The normalized
rate for the PL mode decreases with reducing b/a, in
sharp contrast to the CS rate, which shows the opposite
trend. In the needle limit b/a ≪ 1, the PL mode rate
depends linearly on b,

γPL
s ≈ 9πvF b

16a2
, (28)

while both the PT mode rate and CS rate are inversely
proportional to b,

γPT
s ≈ 9πvF

32b
, γcs ≈

3πvF
16b

. (29)

The similar behavior γPT
s and γcs for b/a≪ 1 originates

the fact that random ballistic scattering is dominated by
the shortest system length. Note, however, that the for-
mer exceeds the latter (γPT

s /γcs → 3/2) since directional
scattering is more efficient that random one.
For nanodisks (b/a > 1), the above trends are reversed:

with increasing b/a, as the nanodisk flattens, the normal-
ized rates are increasing for the longitudinal (OL) mode
and decreasing for the transverse (OT) mode (see Fig. 2).
In the pancake limit b/a≫ 1, the OL mode rate and CS
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FIG. 3. Normalized surface scattering rates for prolate and
oblate spheroids normalized by the CS rate are shown with
changing aspect ratio b/a.

rate are dominated by the pancake height a, which is now
the shortest length,

γOL
s ≈ 9vF

8a
, γcs ≈

3vF
8a

, (30)

with their ratio γOL
s /γcs → 3, while the OT mode rate

exhibits a more complicated behavior:

γOT
s ≈ 9vFa

16b2

[

ln

(

2b

a

)2

− 1

]

. (31)

To highlight the role of the local fields in surface scat-
tering, we show in Fig. 3 the evolution, with changing
b/a, of γs for all modes, normalized by the CS rate γcs.
Here, we have γs < γcs for the field polarization mostly
tangential to the system boundary (PL and OT modes),
and γs > γcs for mostly normal polarization (PT and OL
modes). Note that recent measurements [43] in cylinder-
shaped nanorods and nanodisks revealed strong polariza-
tion dependence of the plasmon spectrum linewidth.

V. CONCLUSIONS

In conclusion, let us discuss the assumptions and ap-
proximations we made in deriving the surface scattering
rate (2). First, we assumed that the metal nanostruc-
ture is characterized by a single metal-dielectric inter-
face. Our model can be straightforwardly extended to
systems with two or more interfaces, such as, e.g., core-
shell particles of various shapes or onion-like structures,
by including each interface contributions in the matrix el-
ement M s

αβ [see Eq. (11)]. Importantly, the surface con-

tribution Qs to the absorbed power, containing |M s
αβ |2

[see Eq. (9)], will now include interference terms due to

carrier scattering between the interfaces. If the two in-
terfaces are sufficiently close to each other, such interfer-
ence terms would lead to coherent oscillations (quantum
beats), with the period vF /ω, of the surface scattering
rate with changing interface separation. Such oscillations
were recently identified and studied in detail for spherical
metal nanoshells with dielectric core [68].

We assumed that the characteristic system size L is sig-
nificantly larger than the nonlocality scale vF /ω [60, 61],
i.e., L is at least several nm, and, correspondingly, the
optical energy ~ω is much larger than the electron level
spacing. Thus, in our analytical and numerical studies,
we disregarded quantum confinement effects that domi-
nate optical response of small metal clusters. Specifically,
the large electron level spacing in nanometer-sized clus-
ters leads to oscillatory behavior of the resonance width
[52, 53] (not to be confused with coherent oscillations de-
scribed above [68]) that would be seen in small aspect ra-
tio behavior of γs in Figs. 2 and 3. Such effects, however,
must be described within TDLDA approach [52–59], and
are out of scope of this paper.

Finally, let us discuss the effect of realistic confining
potential profile on the surface scattering rate. While the
hard-wall approximation is often used for systems larger
than several nm [44–51], recent self-consistent TDLDA
calculations for spherical particles indicate that, even
for relatively large systems, small deviations of the sur-
face barrier from rectangular shape can significantly af-
fect the overall magnitude of the plasmon decay rate
[55, 56, 58]. Importantly, the potential profile has distinct
effects on rapidly-oscillating electron wave-functions and
slowly-varying plasmon local fields, which both deter-
mine the transition matrix element (11). While, within
TDLDA, the Kohn-Sham wave-functions are directly de-
termined by the (self-consistent) confining potential, the
local fields are, instead, defined by the induced charge
density via the (screened) Coulomb potential and, there-
fore, depend on confining potential only through the elec-
tron density profile, i.e., indirectly. Hence, the deviation

of En from its classical behavior across the interface is
determined by the electron density spillover over the clas-
sical (hard wall) boundary [73], and, therefore, is largely
independent of the system overall shape. Furthermore,
recent TDLDA studies of relatively large (up to 10 nm)
nanoparticles revealed [55, 56] that the main impact on
plasmon linewidth comes precisely from the electron den-
sity tail and dielectric environment, implying that it is
the plasmon local field near the interface, rather than
electron wave-functions, that chiefly determines the plas-
mon decay rate in real structures. We now note that
we employed the hard-wall potential approximation only

for evaluation of the e-h correlation function (13), while
retaining explicit local field dependence in the surface
scattering rate. Therefore, for general shape systems,
the latter can still be obtained, in a good approximation,
from (2) using the classical local fields, but with the con-
stant A calculated self-consistently for some specific (e.g.,
spherical) system geometry.
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In summary, we developed a quantum-mechanical the-
ory for Landau damping of surface plasmons in metal
nanostructures of arbitrary shape. We derived an ex-
plicit expression for the surface scattering rate that can
be included, on par with the bulk scattering rate, in the
metal dielectric function. Our results can be used for cal-
culations of hot carrier generation rates in photovoltaics
and photochemistry applications.
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Appendix A: Transition matrix element

To extract surface contribution to the matrix element

Mαβ =

∫

dV ψ∗
αΦψβ , (A1)

we first apply the Hamiltonian H = −(~2/2m)∆ to the
wave function product as

ψ∗
αψβ =

1

ǫαβ
(ψβHψ

∗
α − ψ∗

αHψβ)

=
~
2

2mǫαβ
∇µ (ψ

∗
α∇µψβ − ψβ∇µψ

∗
α) , (A2)

where ǫαβ = ǫα−ǫβ is the excitation energy, and summa-
tion over repeating indices µ = (x, y, z) is implied. After
integrating by parts, the matrix element takes the form

Mαβ =
e~2

mǫαβ

∫

dV ψ∗
α(∇µψβ)Eµ, (A3)

where eEµ = −∇µΦ are the electric field components,
and we used that ∇µEµ = 0 inside the metal and ψα

vanish at the boundary S. Applying again the Hamilto-
nian H to Eq. (A3), we write

Mαβ =
e~2

mǫ2αβ

∫

dV [(Hψ∗
α)∇µψβ − ψ∗

α∇µ(Hψβ)]Eµ

=
−e~4

2m2ǫ2αβ

∫

dV [(∆ψ∗
α)∇µψβ − ψ∗

α∇µ(∆ψβ)]Eµ.

(A4)

Integration by part of the first term yields the surface
contribution

M s
αβ =

−e~4
2m2ǫ2αβ

∫

dSν(∇νψ
∗
α)Eµ∇µψβ , (A5)

while the rest represents the bulk contribution, which can
be manipulated to the form

M b
αβ =

e~4

m2ǫ2αβ

∫

dV (∇µψ
∗
α)(∇νEµ)∇νψβ . (A6)

Since the local fields change smoothly on the Fermi wave-
length scale, the bulk contribution is negligibly small.
Noting that only normal derivatives of ψα do not vanish
at the (hard-wall) boundary S, the surface contribution
to matrix element takes the form

M s
αβ =

−e~4
2m2ǫ2αβ

∫

dS [∇nψα(s)]
∗En(s)∇nψβ(s), (A7)

where ∇nψα(s) ≡ [n ·∇ψα(r)]r→s
−

is wave function’s

normal derivative at the boundary point s on the inner
side [n(s) is the outward normal to the surface at point s]
and eEn(s) = −∇nΦ(s) defines the corresponding nor-
mal field component.

Appendix B: Electron-hole surface correlation

function

1. Multiple-reflection expansion

The electron Green function in a hard-wall potential
well can be presented as infinite series in reflections from
the boundary as (suppressing energy dependence) [72]

G(r, r′) = G0(r−r
′)− ~

2

2m

∫

dSGn(r, s)G0(s−r
′), (B1)

where Gn(r, s) ≡ ∇nG(r, s) is normal derivative of the
Green function at surface point s on the boundary inner
side, satisfying

Gn(r, s) = 2G0
n(r − s)− ~

2

m

∫

dS′Gn′(r, s′)Ḡ0
n(s

′ − s).

(B2)

Here, G0(ǫ, r) = (m/2π~2)eikǫr/r, with kǫ =
√
2mǫ/~, is

the free electron Green function, and

Ḡ0
n(s

′ − s) =
1

2

[

G0
n(s

′ − s+) +G0
n(s

′ − s−)
]

(B3)

is its symmetric normal derivative at surface point s on
the inner (s−) and outer (s+) boundary sides. Iterations
of this system lead to the multiple-reflection expansion
[72]. For cavities with characteristic size L ≫ λF , the
leading contribution comes from the direct and single-
reflection paths [first term in Eq. (B2)], while the higher-
order terms account for multiple reflections due to the
surface curvature R ∼ L, and are suppressed by powers
of λF /R [72]. Since the Fermi wavelength in metals is
small, λF < 1 nm, the higher-order reflection paths can
be disregarded. Equation for Gnn′(s, s′) is obtained by
taking normal derivative of Eq. (B2). Keeping only the
first term, we obtain

Gnn′(s, s′) = 2G0
nn′(s− s

′). (B4)
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2. Evaluation of F̄ω

To evaluate ρnn′(ǫ; s, s′) = 2ImG0
nn′(s − s

′), we use
the fact that the size of characteristic region dominating
surface integrals in the correlation function F is |s−s

′| ∼
vF /ω ≪ L, and compute normal derivatives of G0(r−r

′)
with respect to the tangent plane z = 0,

Gzz′(ǫ, s− s
′) = 2

[

∂

∂z

∂

∂z′
G0(ǫ, r − r

′)

]

z,z′=0

= −2

[

∂2

∂z2
G0(ǫ, r − r

′)

]

z,z′=0

. (B5)

Introducing notations r =
√
s2 + z2, we write

∂2

∂z2
G0(ǫ, r) =

[

(

∂r

∂z

)2
∂2

∂r2
+
∂2r

∂z2
∂

∂r

]

G0(ǫ, r), (B6)

and, in the limit z = 0, we obtain

[

∂2

∂z2
G0(ǫ, r)

]

z=0

=
1

s

∂

∂s
G0(ǫ, s), (B7)

yielding

ρzz(ǫ, s) =
m

π~2s

∂

∂s

sin kǫs

s
. (B8)

To evaluate F̄ω , we note that for L≫ vF /ω, the surface
integral can be replaced by the integral over the tangent
plane,

F̄ω =
m2

π2~4

∫

dǫfω(ǫ)

∫

d2s

s2

[

∂

∂s

sin kǫs

s

][

∂

∂s

sinkǫ+~ωs

s

]

=
m2

4π~4

∫

dǫfω(ǫ)

[

kǫkǫ+~ω

(

k2ǫ + k2ǫ+~ω

)

(B9)

−
(

k2ǫ+~ω − k2ǫ
)2

arctanh

(

kǫ
kǫ+~ω

)]

.

The function fω(ǫ) = f(ǫ)−f(ǫ+~ω) restricts the energy
integral to the interval of width ~ω, and, after rescaling
the integration variable, we obtain

F̄ω = ~ω
2m4E2

F

π~8
g(~ω/EF ), (B10)

where the function

g(ξ) =

−1/2
∫

−1/2

dx

[

(1 + ξx)

[

(1 + ξx)2 − ξ2

4

]1/2

(B11)

− ξ2 arctanh

[

1 + ξ(x− 1/2)

1 + ξ(x+ 1/2)

]1/2
]

is normalized to unity, g(0) = 1. Then, we obtain

Qs =
e2

2π2~

E2
F

(~ω)2
g(~ω/EF )

∫

dS|En|2. (B12)

Finally, for optical frequency well below the Fermi energy,
~ω/EF ≪ 1, and using the relation ω2

p = 4πe2n/m =

4e2k3F /3πm, where n is the electron concentration, we
arrive at surface contribution to the absorbed power:

Qs =
3vF
32π

ω2
p

ω2

∫

dS|En|2. (B13)

Appendix C: Scattering rate for separable shapes

For system geometries that allow separation of vari-
ables, we present the potential as Φ(r) = R(ξ)Σ(η, ζ),
where ξ is the radial (normal) coordinate and the pair
(η, ζ) parametrizes the surface. With surface area el-
ement dS = hηhζdηdζ and normal derivative ∇n =

h−1

ξ (∂/∂ξ), where hi are the scale factors (i = ξ, η, ζ),
the surface scattering rate takes the form

γs =
3vF
4

R′(ξ)

R(ξ)

∫ ∫

dηdζ(hηhζ/h
2
ξ)|Σ|2

∫ ∫

dηdζ(hηhζ/hξ)|Σ|2
. (C1)

Below we evaluate γs for a spheroidal particle.
Spheroidal metal nanoparticles exhibit longitudinal

and transverse plasmon modes with electric field oscillat-
ing, respectively, along the axis of symmetry (semi-axis
a) and within the symmetry plane (semi-axis b). Inside
the prolate spheroid (b/a < 1), the potential has the form

Φn(r) ∝ P
|m|
l (ξ)Ylm(η, φ), where Pm

l (x) is the Legendre
function of first kind. Spheroid surface corresponds to
ξ = a/f where f =

√
a2 − b2 is half distance between the

foci, and the scale factors are given by

hξ = f

√

ξ2 − η2

ξ2 − 1
, hη = f

√

ξ2 − η2

1− η2
,

hφ = f
√

(ξ2 − 1)(1− η2). (C2)

The surface area and volume of the prolate spheroid are

S = 2π

(

b2 +
abα

sinα

)

, V =
4π

3
b2a, (C3)

where α = arccos(b/a) is the angular eccentricity. A
straightforward evaluation of Eq. (C1) yields:

γlms =
3vF
4f

(2l + 1)!(l − |m|)!
2(l + |m|)!

× [P
|m|
l (ξ)]′

P
|m|
l (ξ)

√

ξ2 − 1

1
∫

−1

dη
[P

|m|
l (η)]2

√

ξ2 − η2
. (C4)

For longitudinal and transverse dipole modes, i.e., (lm) =
(10) and (lm) = (11), respectively, we obtain γL,T

s =
(3vF /4a)fL,T , where

fL =
3

2 tan2α

[

2α

sin 2α
− 1

]

, fT =
3

4 sin2α

[

1− 2α

tan 2α

]

,

(C5)
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are the normalized (to spherical shape) rates. Within the
CS model, the decay rate has the form γcs = vFS/4V =

(3vF /4a)fcs, where

fcs =
aS

3V
=

1

2

[

1 +
2α

sin 2α

]

. (C6)

The rates for the oblate spheroid (b/a > 1) are described
by the above expressions with α = i arccosh(b/a).
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[34] C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J.
Feldmann, O. V. Wilson, and P. Mulvaney, Phys. Rev.
Lett. 88, 077402 (2002).

[35] S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas,
Phys. Rev. B 66, 155431 (2002).

[36] G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A
Klar, and J. Feldmann, Nano Lett. 4, 1853 (2004).

[37] A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallëe, J. R.
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