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We study the mass transport dynamics of an adsorbed layer near a discontinuous incommensurate
striped-honeycomb phase transition via numerical simulations of a coarse-grained model focusing on
the motion of domain walls rather than individual atoms. Following an initial step profile created
in the incommensurate striped phase, an intermediate hexagonal incommensurate phase nucleates
and grows, leading to a bifurcation into two sharp profiles propagating in opposite directions as
opposed to broad profiles induced by atomic diffusive motion. Our results are in agreement with
recent numerical simulations of a microscopic model as well as experimental observations for the
Pb/Si(111) adsorbate system.

I. INTRODUCTION

Recently, there have been extensive studies of both
the statics and dynamics of the Pb/Si(111) system1–3.
At equilibrium, the system can exist in a striped incom-
mensurate (SI) phase with stripes of domain walls sep-
arating commensurate domains, as well as in a hexag-
onal incommensurate (HI) phase with a hexagonal pat-
tern of domain walls3. In growth processes, the system
displays spontaneous self-organization and height selec-
tion of Pb islands beyond the monolayer regime. The
most striking feature of this system is that the observed
rate of island growth implies a rate of mass transport or-
ders of magnitude faster than that from the usual atomic
diffusion mechanism2–4. Theoretical models5–7 indicate
that domain wall motion in an incommensurate phase
can provide the basic mechanism for such fast dynamics.
This anomalous fast mass transport dynamics was sub-
sequently confirmed in another experimental study fol-
lowing the refilling of a hole region in the adsorbate layer
in real time8. The results also showed an unexpected bi-
furcation of the initial step profile into two sharp fronts,
with a hexagonal phase in between, propagating in op-
posite directions at a speed much faster than that due to
simple atomic diffusion.

Previously, we performed a molecular dynamics (MD)
simulation7 study of an atomistic model that admits both
the SI and HI phases. We found that for an initial step
profile separating a bare substrate region (or a hole) from
the rest of the SI phase, the domain wall dynamics leads
to a bifurcation of the initial step profile into two inter-
faces propagating in opposite directions at a superfast
speed with a HI phase in between, in agreement with
the experimental observation on the Pb/Si(111) system8.
This theoretical study indicates that there are two central
ingredients for the observed anomalous superfast mass
transport mechanism with profile bifurcation. The first
is the existence of a discontinuous transition between two
incommensurate phases such as the SI and the HI phases
corresponding to different coverages. The second is the

ability of the SI phase to transform itself rapidly into
the HI phase near the boundary of the two phases, and
the ultrafast domain wall dynamics in the HI phase with
a negligible Peierls pinning barrier. However, the simu-
lation study was limited to relatively small system sizes
and short time scales when compared to the experimental
systems, and the propagating fronts observed in the sim-
ulation studies was not as sharp as the experimentally ob-
served. To overcome the system size and time scale limits
and clarify the basic physics behind the observed anoma-
lous mass transport mechanism like the one observed for
Pb/Si(111) system, we consider in this work a simple
continuous density field description of a strained over-
layer by the Phase Field Crystal (PFC) model10. Unlike
the conventional PFC model, which retains density vari-
ation at microscopic atomic length scales, here we em-
ploy a coarse-grained PFC model where the fundamental
length scale corresponds to the separation between the
domain walls. Thus the origin of the formation of do-
mains and domain walls due to the competition of lat-
tice mismatch strain energy and the adsorbate-substrate
binding energy do not appear explicitly in the model. In-
stead, a periodic array of domains in the incommensurate
phase is built into the model via a preferred length scale
that corresponds to the separation between the domain
walls. This model allows for both an SI and a honeycomb
incommensurate (HoI) phases. There is a discontinuous
transition between the SI and the HoI phases. This will
lead to the bifurcation of the propagating fronts just as
that observed in the Pb/Si(111) system8 resulting from
the discontinuous SI-HI transition. The PFC model also
has negligible conversion barriers between the SI and HoI
phases as well as that for the Peierls barrier for the HoI
model, which are the other ingredients for the anoma-
lous mass transport mechanism. The main advantage of
this simple coarse-grained model is that it allows us to
study much larger system sizes and get a clear qualita-
tive physical picture of the mass transport mechanism in
these systems.
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II. COARSE-GRAINED PHASE-FIELD
CRYSTAL MODEL

The long-time dynamics of the adsorbed overlayer in
the incommensurate phase is essentially controlled by
the nature and interaction of the topological defects that
characterize such a phase, which consist of an array of in-
teracting domain walls forming the SI, HI or HoI phases.
To model such topological defects in the simplest way, we
use a phase-field description, where the physically rele-
vant continuous density field is the adsorbed layer cov-
erage. Phase-field models are based on free-energy func-
tionals, which are constructed by considering symmetries
and conservation laws11. In order to take into account
the structural changes of the domain-wall structure of
the adsorbed layer, we follow the approach of the two-
dimensional phase-field crystal model10, described by the
free-energy functional

F =

∫
dxdy{1

2
r(ρ− ρo)2 +

1

2
(ρ− ρo)(∇2 + q20)2(ρ− ρo)

+
1

4
(ρ− ρo)4 − ρ V (x, y)}, (1)

where ρ(x, y) is the density field, r < 0 and qo are ef-
fective dimensionless parameters, and ρo is a dimension-
less reference density. For convenience, we set ρo = 1
and qo = 1. The fundamental length scale is set by
2π/q0 which corresponds to the spacing between do-
main walls. The last term represents a pinning po-
tential V (x, y). Unlike the conventional PFC model10,
where the density field corresponds to the atomic density
coarse-grained over vibrational time scales, we consider
the present model as described in Eq. (1) as a coarse-
grained description of the overlayer, which averages out
spatial variations at the microscopic scales, but incor-
porates the domain wall patterns. The domain walls are
light (heavy) for a compressively (tensile) strained adsor-
bate layer. Correspondingly, for a compressively strained
system the regions near maxima in the phase field ρ(x, y)
correspond to a commensurate domain, whereas the re-
gion around the minima of the density constitute the do-
main walls. For a tensile strained overlayer, we just need
to reverse the interpretation of the maxima and minima
of the density as domain walls and commensurate do-
mains, respectively. Note that in this interpretation of
the model, there is no atomic spatial resolution, but only
the spatial resolution of the domain wall structure. It
does incorporate the essential ingredient for fast mass
transport with profile bifurcation, which is the existence
of a structural phase transition with discontinuity in the
density. Just as in the standard PFC model10, the model
of Eq. (1) displays a first-order transition between the
SI and HoI phases with light (heavy) domain walls for
decreasing (increasing) density.

The main assumption for the dynamics is that the den-
sity field ρ(x, y, t) should evolve in time in a way that
reduces the total free energy F . Since density field is

conserved, it satisfies the continuity equation

δρ

∂t
= −∇ · ~J, (2)

where the current density is given phenomenologically by

~J = −Γ∇∂F
∂ρ

, (3)

where Γ is a kinetic coefficient setting the fundamental
time scale for the domain wall motion. This should be or-
ders of magnitude smaller than the atomic diffusion time
scale at low temperatures since it is controlled by the rel-
atively small Peierls energy barrier12 pinning the domain
walls and governing the conversion of the SI phase to the
HoI phase, rather than the corrugation of the adsorption
potential which controls atomic diffusion. Due to the dis-
continuous transition described by Eq. (1), the depen-

dence of the current density ~J on the density field ρ does

not follow, in general, the usual Fick’ s law ~J = −D∇ρ.
This is consistent with the behavior found in the exper-
iments for Pb/Si(111), which has been argued8 to imply
an apparent anomalous diffusion. From Eqs. (2) and (3),
the time evolution of ρ is then described by the Cahn-
Hilliard dynamic equation13

∂ρ

∂t
= Γ∇2 ∂F

∂ρ
. (4)

III. NUMERICAL RESULTS

The time evolution was determined by numerical inte-
gration of the dynamical equation, Eq. (4), on a uniform
square grid of size Lxdx×Lydy with dx = dy = π/4 and
Lx = Ly = 256 − 512, and time steps dt = 0.05 − 0.1.
Figure 1 shows a portion of the phase diagram near the
SI to HoI phase transition as a function of the average
density ρ̄ (for V (x, y) = 0) for the light domain wall
case. In the range ρh < ρ̄ < ρs, the honeycomb and
striped phases coexist while for ρ̄ < ρh and ρ̄ > ρs, the
equilibrium phases correspond to the HoI and SI phases,
respectively, as shown in Fig. 2. For small |r| or small ρ̄,
there is also a uniform phase without domain-wall pat-
terns, which is of no interest here. The time evolution
of an initial state with a density profile containing a hole
with a lower density (ρ < ρh) will be different for an
initial SI or a HoI phase. For an initial SI phase, the de-
crease in the average density after creating the hole can
bring the system near or into the coexistence region. If
the average density ρ̄ after the creation of the hole is in
the range ρh < ρ̄ < ρs, then an HoI region centered at
the hole can coexist with the remaining SI phase at long
times. For an initial HoI phase, however, the decrease in
the density moves the system further away from the coex-
istence region and there is just a spreading of the density
without an expanding interface, following the creation of
a hole, eventually tending to a uniform profile.
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FIG. 1: Phase diagram showing the striped incommensurate
phase (SI), honeycomb incommensurate phase (HoI), and the
coexistence region (dark area) in the range ρh < ρ̄ < ρs. L
corresponds to a uniform phase without domain-wall patterns.

(a) (b)

FIG. 2: Domain wall patterns corresponding to the (a) hon-
eycomb incommensurate phase and (b) striped incommensu-
rate phase. The dark areas correspond to domain wall regions
where the phase field ρ(x, y) is closest to its minimum value.

We will consider in detail an initial state in the SI phase
when the density is higher but close to the coexistence
phases boundary ρs. From now on we set the parameter
r = −0.1. In Fig. 3 we show snapshots of the density
field for increasing times when a hole with local density
ρ < ρh is created in an initial striped phase such that
the average density ρ̄ after the creation of the hole is
still higher than ρs. An intermediate HoI phase starts to
nucleate around the edge of the hole and grows with time,
leading to a bifurcation of the initial step profile at edge
into two profiles propagating in opposite directions. The
outward front corresponds to a SI-HoI interface, where
the local stripe pattern is converted into a honeycomb
pattern, while the inwards front is a step edge refilling the
hole. However, the resulting HoI region decays back into
a SI phase for sufficiently long times (Figs. 3e and 3f).
As shown in Fig. 4, the time evolution of the radius of
the expanding circular interface depends on the density
of the initial striped phase, being faster for an initial
density closer to the SI-HoI phase boundary, ρs, of the
coexistence region in the phase diagram of Fig. 1.

For comparison, in Fig. 5 we show the time evolution,

FIG. 3: Snapshots of the density field when a ”hole”, namely,
a circular region of radius R = 40dx (white circle) with an
average density ρ̄ = 0.6 < ρh, is introduced in the stripe
phase, for increasing times: (a) t = 0, (b) t = 6, (c) t = 9, (d)
t = 21 , (e) t = 78, and (f) t = 126 in units of 4.8 × 105dt.
The initial striped phase has an average density of ρ̄ = 0.98
and ρ̄ = 0.951 after introduction of the hole.

in the same time interval, when the average density af-
ter the introduction of the hole is within the coexistence
range, ρh < ρ̄ < ρs. Here the HoI region centered at the
hole remains at long times.

The nucleation and growth of the intermediate HoI
phase in Fig. 3 and the time evolution of the radius of
the expanding HoI-SI interface in Fig. 4 are qualitatively
consistent with MD simulations of an atomistic model7

and with experimental observations for the Pb/Si(111)
system8. A sign of the decay of the HoI region at long
times could be the partial recovery of density in the
hexagonal phase found in the experiment. For this sys-
tem, the boundary of the coexistence region between HoI
phase and SI phase, at coverage values ρh and ρs, in Fig.
1 should correspond to the experimentally observed dis-
continuous jump at the hexagonal-stripe phase boundary
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FIG. 4: Radius of the expanding SI-HoI interface as a function
of time (in units of 4.8 × 106dt) for initial stripe phases with
different average densities ρ̄, for a hole of radius R = 20dx.

FIG. 5: Snapshots of the density field for increasing times
when the average density after introducing a hole with density
ρ̄ = 0.8 is inside the coexistence region. The average density
of the initial striped phase is ρ̄ = 0.945 , and ρ̄ = 0.934 after
the introduction of the hole. (a) t = 4, (b) t = 21, and (c)
t = 126 in units of 4.8 × 105dt.

between coverage θ ≈ 1.26 ML and θ ≈ 1.28 ML . In
this system, fast dynamics are observed experimentally
at lower coverages, as long as it exceeds some critical
value, θc ≈ 1.24 ML. The existence of this lower critical
coverage for this system is most likely due to the exis-
tence of other commensurate phases at or slightly above
coverage1 1.2 ML. This is beyond the scope of our sim-
ple model, which focuses only on the SI and HoI phases
near a single commensurate phases at a slightly higher
coverage than the SI/HoI boundary. Other more micro-
scopic models5,6 can account for this critical coverage as
a competition between the lattice mismatch strain energy
and the adsorbate-substrate binding energy for increas-
ing coverage.

In the refilling experiment for Pb/Si(111)8, the hole is
not empty. There is an initial density corresponding to
a tightly bound layer of low coverage (1/3 monolayer β
phase) in the hole, which is only partially equilibrated.
To mimic the effect of this partially equilibrated layer, we
allow for a random, quenched pinning potential V (x, y)
in Eq. (1) localized only inside the hole. We take the
simplest model for the random potential, defined by the

FIG. 6: Snapshots of the density field with quenched disorder
inside the hole for increasing times: (a) t = 5, (b) t = 8, (c)
t = 21, (d) t = 42, (e) t = 72, and (c) t = 126 in units of
4.8 × 105dt. Average density of the initial striped phase is
ρ̄ = 0.98, and ρ̄ = 0.943 after the introduction of the hole
with density ρ̄ = 0.5. The disorder strength here is ∆ = 0.08.

correlations

〈V (x, y)V (x′, y′)〉 = ∆2δ(x− x′)δ(y − y′), (5)

where ∆ is a measure of the strength of the disorder.
As shown in Fig. 6, disorder inside the hole leads to a
distorted honeycomb phase inside the hole with struc-
tural defects. For holes of sufficiently larger sizes, this
should correspond to an amorphous glassy phase even
for weak disorder strength17. Such a phase corresponds
to the disordered phase around the inner refilling edge ob-
served experimentally8. This leads to a static hexagonal-
amorphous interface between the two profiles propagat-
ing in opposite directions. However, the hexagonal in-
termediate phase decays back into the SI phase for suf-
ficiently long times (Fig. 6f). Interesting enough, the
amorphous phase inside the hole still remains at such
long times.

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented numerical results based
on an appropriately coarse-grained PFC model to illus-
trate the basic physics behind bifurcation of the initial
coverage profile in the fast mass transport mechanism
observed experimentally1–3,8 for the Pb/Si(111) adsorp-
tion system. The new model is similar to the traditional
PFC model10, but the interpretation of the phase field
and the fundamental length scale are different. It fo-
cuses on the domain wall pattern and not the density
variation inside the commensurate domains at a micro-
scopic scale. It shares with the conventional PFC model
the advantage that numerical work can be performed for
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system sizes orders of magnitude larger than in micro-
scopic MD simulation studies7. Our results for the mass
transport mechanism are qualitatively similar to the pre-
vious MD work of an atomistic model7. Taken together,
they clearly demonstrate that the essential ingredient for
the mass transport with a bifurcation of the initial profile
is the presence of two incommensurate phases with a first
order transition between the two incommensurate phases
involving a discontinuity in the coverage. In the work
presented here, the two incommensurate phases involved
are the SI phase and the HoI phase, but qualitatively
it has the same feature as the SI-HI phase transition in
the Pb/Si(111) adsorption system. This mass transport
mechanism is fast because the HI and the HoI phases
have negligible Peierls pinning barriers while the conver-
sion of the SI phase to the HI or HoI phase near the
phase transition boundary also involves barriers much
lower than those for atomic diffusion. The SI-HI tran-
sition corresponds to the Pb/Si(111) adsorption system3

and many heteroepitaxial metallic overlayers14, while the
SI-HoI transition occurs for a system such as Xe/Pt(111),

Xe/Graphite and Kr/Graphite9. In these cases, the com-

mensurate state is a (
√

3 ×
√

3)R30◦ phase, which can
undergo a transition into the SI phase and then to the
HoI phase15,16. Our results here demonstrate that the
phenomena of fast mass transport should not be just con-
fined to the Pb/Si(111) system alone, but is expected to
be a general feature for a wide class of surface adsorption
systems under appropriate conditions.
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