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We predict strong non-reciprocity in the resonance spectra of Dirac quantum dots induced by
the Berry phase. The non-reciprocity arises in relatively weak magnetic fields and is manifest in
anomalously large field-induced splittings of quantum dot resonances which are degenerate at B = 0
due to time-reversal symmetry. This exotic behavior is unique to quantum dots in Dirac materials
and is absent in conventional quantum dots. The effect, which is governed by field-induced jumps in
the Berry phase of confined electronic states, is strong for gapless Dirac particles and can overwhelm
the B-induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The non-
reciprocity, predicted for a large family of two-dimensional Dirac materials, is accessible via Faraday
and Kerr optical rotation measurements and scanning tunneling spectroscopy.

I. INTRODUCTION

Recently, a new class of quantum dots embedded in
two-dimensional Dirac materials has been introduced[1].
The Dirac quantum dots are defined by nanoscale p-n-
junction rings induced by electrostatic potentials, with
Klein scattering at the p-n junctions serving as a vehicle
for confinement of electronic states[2–7]. Carrier con-
finement in these ring-shaped electron resonators arises
due to constructive interference of electronic waves scat-
tered at the pn junction[8, 9] and inward-reflected from
the ring. Confined states are manifest through reso-
nances appearing periodically in scanning tunneling spec-
troscopy maps[1]. Here we show that this mechanism for
electronic confinement can be exploited for accessing ex-
otic and potentially useful behavior which is not available
in conventional quantum dots.
In particular, we predict that the Berry phase, a signa-

ture topological characteristic of Dirac materials[10–16],
induces a strongly non-reciprocal effect of quantum dot
resonances,

εn,m 6= εn,−m, (1)

in the presence of a weak magnetic field B; here m and
n denote the azimuthal and radial quantum numbers, re-
spectively (for optical non-reciprocity, see Refs.[17, 18]).
As we will see, resonance splittings of the ±m states,
which are degenerate at B = 0, grow rapidly with mag-
netic field, approaching values as large as half the quan-
tum dot resonance period ∆ε. In particular, for the weak
B of interest, the effect dominates over the B-induced or-
bital and Zeeman splittings.

II. SEMICLASSICAL DESCRIPTION

This anomalous behavior can be understood from a
simple semiclassical picture describing confined electrons
in a gapless two-band system. Considering a confining
potential with circular symmetry, the resonance spec-
trum εn,m of the quantum dot can be obtained from the

WKB condition for ϕorb = 1
~

∮

C
dr · p, the usual orbital

phase accumulated along the classical path C:

ϕorb(ε,m) + ϕB(ε,m) = 2π(n+ γ), (2)

where ϕB is Berry phase and γ a constant[11, 15, 19].
The Dirac bandstructure gives rise to a geometric gauge
field that generates the Berry phase,

ϕB =

∮

C

dh · 〈h+|i∇h|h+〉 = S(C)/2. (3)

In Eq.(3), S(C) denotes the solid angle subtended by the
vector h = (hx, hy, hz) along a closed path C, with h

defined in terms of the two-band Hamiltonian

H = σ · h+ h0, H|h±〉 = (±|h|+ h0)|h±〉. (4)

Here h0 is a scalar function and σ = (σx, σy, σz) are Pauli
matrices. The Berry phase in a gapless system (hz = 0)
can only take the values ϕB = 0 or ±π [12, 14, 20, 21].

FIG. 1. Control of the Berry phase ϕB of confined Dirac elec-
trons using magnetic fields. Shown are semiclassical orbits
of a massless particle exhibiting topologically distinct orbital
behavior corresponding to (a) B < Bc and (b) B > Bc [see
critical field Bc in Eq.(7)]. The Berry phase, determined by
the solid angle subtended by h = (hx, hy , hz) in Eq.(3), jumps
from ϕB = 0 to ϕB = π at B = Bc, see insets [for gapless
systems hx,y = v qx,y and hz = 0, with qx,y the kinetic mo-
mentum (red vectors) and v the Fermi velocity]. Here we used
m = 1/2, energy ε = 1.35 ~v/r∗, with r∗ defined in Eq.(11),
B/Bc = 0.8 for (a) and B/Bc = 1.6 for (b).
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An external magnetic field has a profound effect on
the Berry phase of the orbits, allowing them to switch
between the ϕB = 0 and ±π types. As illustrated in
Fig.1, switching can take place even in a weak magnetic
field. In particular, for B = 0 we find ϕB(ε,±m) = 0,
whereas for weak nonzero fields we find ϕB(ε,m) = π
and ϕB(ε,−m) = 0. As a result of the π difference in the
WKB condition in Eq.(2) for the ±m states, the m > 0
and m < 0 families of resonances are shifted by half a
period, giving rise to a large resonance splitting (Fig.3):

εn,m − εn,−m ≈ ∆ε/2, (gapless) (5)

where ∆ε ∼ 10−50meV is the spacing of resonances in
each family. Equation (5) describes gapless Dirac band-
structures, a generalization for gapped systems is dis-
cussed below.
To illustrate how B controls the Berry phase, we con-

sider a massless particle confined in a radial electrostatic
potential U(r). This corresponds to h = v(qx, qy, 0) and
h0 = U(r) in Eq.(4). In the presence of a uniform mag-
netic field B, the kinetic momentum q = p− eA is given
by

qr = pr = ±
√

[ε− U(r)]2 /v2 − (m~/r − eBr/ 2)2,

qθ = pθ − eAθ = m~/r − eBr/2.
(6)

Here v is the electron velocity, and we used the axial
gauge Ax = −By/2, Ay = Bx/2 to preserve rotational
symmetry. Because the system is integrable, with con-
stants of motion ε and m, we can map q to the surface
of a torus. Figure 2 shows such mapping, with q plotted
along two curves: Cθ in the toroidal direction and Cr in
the poloidal direction. At a critical B = Bc we find that
the winding number of q along Cr jumps from 0 to 1,
thus resulting in a π-jump of ϕB.
The semiclassical quantization of quantum dot reso-

nances can now be obtained from Eq.(2) using q in Eq.(6)
evaluated on both C = Cθ and C = Cr [22]. This yields
two quantization conditions for m and ε. For C = Cθ,
Eq.(2) yields m = nθ + γθ − ϕB/2π, where ϕB = π inde-
pendently of B [see blue curves in panels (b) and (c) of
Fig.2]. Using γθ = 0, we find the anticipated quantiza-
tion of angular momentum m=half–integer. For C = Cr,
instead, we find 1

~

∫ r2
r1

dr pr = 2π(nr + γr) − ϕB, where
r1 and r2 are the classical return points. The half period
shift in the radial quantization condition results from the
π-jump in ϕB at B = Bc.
While the same semiclassical picture applies to gapped

Dirac systems (hz 6= 0), there are important differences
with respect to the gapless case. In particular, the solid
angle subtended by the vector h, which now points to-
wards the upper hemisphere, is strictly smaller than 2π;
non-reciprocity induced by Berry phase is quenched at
increasing bandgaps, as will be shown with a more de-
tailed quantum model in Fig.4. In the limit |hz| ≫ |hx,y|,
orbital splitting dominates.

FIG. 2. Topologically distinct mappings of q [Eq.(6)] to the
surface of a torus (a), plotted for (b) B < Bc and (c) B >
Bc. Indicated with blue(red) arrows is q along the curves
Cθ(Cr) shown in panel (a), where dotted lines/arrows indicate
a curve/vector in the bottom surface of the torus. At B = Bc,
there is a transition between trivial and non-trivial winding
of q along Cr. This results in B-induced phase jumps of the
Berry phase. Here we define q∗ = ε∗/v and use the same
parameter values as in Fig.1.

The jump in Berry phase corresponds to a transition
from convex orbits to skipping orbits (Fig.1). This obser-
vation allows to define the critical field Bc that induces
giant non-reciprocity, i.e. the field necessary to reverse
the electron velocity at the outer classical return point.
From Eq.(6) we find qθ = m~/r2(ε) − eBcr2(ε)/2 = 0,
with r2(ε) the outer return point [i.e. qr(r2) = 0]. For
a quadratic potential model U(r) = κr2, this condition
yields

Bc[T] =
2~mκ

eε
= 1.3

mκ[eV/µm2]

ε[meV]
. (7)

Using typical values obtained in recent experiments[1],
κ ≈ 4 eV/µm2, ε ≈ 10meV and m = 1/2, we find Bc on
the order of 0.3T.
Besides the splitting arising at B = Bc, another

key fingerprint of the non-reciprocal effect is the m-
dependence of Bc exhibited in Eq.(7). This feature can
be understood by noticing that, for larger m, a larger B
is necessary to induce skipping orbits. As we will see,
the m dependence of Bc gives rise to a peculiar branch-
ing pattern of the quantum dot resonances which can be
probed in spectral measurements away from the quantum
dot center (see Sec.III).
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FIG. 3. Magnetic response of quantum dot resonances in a
gapless Dirac system. (a) The quantum dot is defined by the
circular pn ring (dashed lines) induced by a radial electrostatic
potential U(r). (b) The magnetic response is dominated by
the Berry-phase splitting ∆εB, which is approximately half
the resonance period ∆ε. Also indicated in the figure is the or-
bital splitting ∆εorb. Peak splitting is calculated from Eq.(2)
for n = 0, 1, 2, m = ±1/2, and γ = 0.6; Bc is calculated from
Eq.(7); ε∗ and B∗ are defined in Eq.(11).

Importantly, the giant non-reciprocal effect relies on
the splitting due to Berry phase being dominant over or-
bital and Zeeman splittings. This is the case, in particu-
lar, for the value Bc ∼ 0.3T found in Eq.(7). Indeed, Bc

is significantly lower than the value BLL = (∆ε)2/e~v2F ∼
1T which is necessary for the first Landau level to be
larger than the resonance period ∆ε ≈ 25meV. The
strength of the non-reciprocal effect is illustrated in Fig.3
which shows the semiclassical spectrum obtained from
Eq.(2) for n = 0 and m = ±1/2 including both orbital
and Berry phase splitting. For typical model parameters,
the splitting ∆εB ∼ ∆ε/2 induced by the Berry phase
jump dominates over the conventional orbital splitting
∆εorb. The effect becomes more dramatic at larger n and
smaller m. Furthermore, the energy εZ for the electron
Zeeman splitting, εZ = µBBc ∼ 10−2meV, is negligible
compared to the characteristic energy of quantum dots
(here µB ≈ 5.8 · 10−5 eV/T is the Bohr magneton).

III. MICROSCOPIC MODEL

To contrast the simple semiclassical picture above with
a more refined quantum model, we consider the Dirac
equation describing confined electrons under the influ-
ence of a uniform magnetic field:

[vσ · q + (∆/2)σz + U(r)] Ψ(r) = εΨ(r). (8)

Here ∆ is the bandgap and q is the kinematic momen-
tum with components qx,y = −i~∂x,y−eAx,y and qz = 0.
This corresponds to h = v(qx, qy,∆/2v) and h0 = U(r)
in Eq.(4). Because we are interested in eigenstates con-
fined inside the pn ring, with radius smaller than the

characteristic length of the electrostatic potential, it is le-
gitimate to use a parabolic potential model U(r) ≈ κr2.
By using the axial gauge Ax = −By/2, Ay = Bx/2 to
preserve rotational symmetry, the eigenstates of Eq.(8)
can be expressed using the polar decomposition ansatz,

Ψm(r, θ) =
eimθ

√
r

(

u1(r)e
−iθ/2

iu2(r)e
iθ/2

)

, (9)

with m a half-integer number. This decomposition allows
to rewrite Eq.(8) as

(

r2 − ε+∆/2 ∂r +m/r −Br/2
−∂r +m/r −Br/2 r2 − ε−∆/2

)(

u1

u2

)

= 0.

(10)
Here r and B are in units of r∗ and B∗, respectively,
whereas ε and ∆ are in units of ε∗, with

r∗ = 3

√

~v/κ ∼ 60 nm, ε∗ = 3

√

(~v)2κ ∼ 10meV,

B∗ = (~/e) · 3

√

(κ/~v)2 ∼ 0.2T.
(11)

In these estimates, we considered (gapped) graphene v ≈
106m/s as model system and used a typical value of κ =
4 eV/µm2, see estimates below.
A suitable diagnostics of non-reciprocity, allowing di-

rect access to the quantum dot resonances, is the local
density of statesD(ε) inside the quantum dot. Naturally,
D(ε) can be obtained experimentally via the dI/dV in
STS measurements as in Ref.[1]. The quantity D(ε) at
r = r0 can be conveniently written as the sum of m-state
contributions D(ε) =

∑

m Dm(ε), with

Dm(ε) =
∑

α

〈|uα(r = r0)|2〉λd
δ(ε− εα). (12)

Here α labels the radial eigenstates of Eq.(10) for fixed

m, and 〈|uα(r = r0)|2〉λd
=

∫∞

0 dr′|uα(r
′)|2e−(r′−r0)

2/2λ2

d

represents a spatial average of the wavefunction centered
at r = r0. A gaussian weight is included in the density
of states to account for the finite size of the tunneling
region in real STS measurements[1].

Splitting of quantum dot resonances

Figure 4(a) shows the resulting quantum dot spectrum
as a function of B for gapless Dirac systems, exhibiting
the B-induced splitting of quantum dot resonances. In
our calculations, we used r0 = 0, λd/r∗ = 0.1, and plot-
ted ∂D/∂ε in Eq.(12) in order to enhance spectral fea-
tures (see Appendix A for details). In agreement with our
semiclassical interpretation, a half-period splitting is ob-
served in the gapless spectral maps in Fig.4(a). Because
in Fig.4(a) the wavefunction is probed at the center of
the quantum dot, only small m states (m = ±1/2) con-
tribute to the spectral maps. It is important to stress
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FIG. 4. Maps of the local density of states as a function of po-
sition r0 for a gapless Dirac quantum dot displaying splitting
of resonances in weak magnetic fields: (a) r0 = 0, (b) r0 = r∗,
and (c) r0 = 2r∗. Indicated with dotted lines is Eq.(7) for
half-integer m. The off-centered spectral maps (b)-(c) are
qualitatively different from the centered case (a) which is sen-
sitive primarily to m = ±1/2 states. Characteristic units for
magnetic field, B∗, is defined in Eq.(11). Plotted with dot-
ted lines is Eq.(7) for half-integer m. To enhance spectral
features, we plot in both panels the derivative of the local
Density of States in Eq.(12).

that large m states, which can be probed in off-centered
STS measurement, are equally susceptible to the Berry
phase splitting. Figure 4(b) and (c) show such spec-
tral maps, in which the wavefunctions are probed at (b)
r0 = r∗ and (c) r0 = 2r∗. In these cases, there is an over-
lap of peak splitting at different values of B, highlighted
with fans of Bc in Eq.(7) for varying m (dotted lines).
At a larger value of r0, states with larger m and ε can
be probed. This is indicated by a larger contrast in the
local density of states induced by such states in Fig.4(b)
and (c).

As shown in Fig.5, the splitting of the resonances for

FIG. 5. Partial-m contribution to the on-center density of
states for quantum dots in a) gapless and b) gapped Dirac
systems. The strong non-reciprocal effect induced by Berry
phase disappears when a large gap ∆ is opened. As a result,
resonance splitting is dominated by (a) the Berry phase jump
in gapless systems, and (b) orbital effects in gapped systems.
The distinct behavior between (a) and (b) is shown in the
partial m = 1/2 maps of the density of states [indicated with
a dotted line is Eq.(7) with m = 1/2; ∆/ε∗ = 5 was used in
(b)].

gapped systems is less prominent; in particular, splitting
is dominated by the orbital contribution. Indeed, the
peak splitting for the low-energy resonances in gapped
Dirac systems (ε >∼ ∆) can be quantified using a simple
non-relativistic model that is valid in the limit ∆ ≫ ε∗.
In this case, expansion of the Dirac Equation in powers
of ∆ results in a massive Schrödinger Equation for the
first spinor component Ψ1(r):

[

q2/2∆+ U(r) + ∆− eB/2∆
]

Ψ1 = εn,mΨ1,

εn,m = ~ω (2n+ |m−|+ 1)− µ∆m+B.
(13)

Here εn,m are the quantized eigenvalues, ω =
√

2κ/∆+ e2B2/4∆2, and m± = m ± 1/2. Importantly,
the orbital magnetic moment µ∆ = e~v2/2∆, which is
3/2 times larger that the orbital magnetic moment of a
free, massive Dirac particle at the Dirac point, induces
the peak splitting observed in Fig.5(b).

Self-consistent calculation of the potential profile

Estimates for κ used in Eq.(8) of the main text can
be obtained from a simple electrostatic model describing
a biased metallic sphere proximal to the graphene plane
[Fig.6(a)]. This portrays quite accurately a metallic STM
tip on top of graphene, as shown in Ref.[1]. We denote
R the metallic sphere radius, and d the sphere-graphene
distance. A potential bias differential δVb between the
sphere and graphene [see Fig.6(b)–(c)] results in a spa-
tially varying image charge density profile given by

δn(r) ≈ − eδVb + µ(r)

4πe2(d+ r2/2R)
. (14)
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FIG. 6. (a) Schematics of the electrostatic model, showing a
metallic sphere of radius R separated a distance d from the
graphene plane. A potential bias Vb applied on the sphere in-
duces a local variation of the carrier density, different from
the carrier concentration density n∞ far from the sphere.
(b,c) Band structure schematics showing band alignment be-
tween the metallic sphere and graphene for (b) large sepa-
ration and (c) close proximity. Here Vcpd is the contact po-
tential difference between graphene and the metallic sphere,
δVb = Vb−Vcpd, and µ0 is the Fermi energy under the sphere.

Here δn(r) = sgn[µ(r)]µ(r)2/π(~v)2 − n∞ is the sphere-
induced charge density variation on graphene, with µ(r)
the Fermi energy and n∞ the gate-induced carrier den-
sity far from the center. Equation (14) is obtained
from a parallel-plate capacitor model with slowly vary-
ing interplate-distance dc(r) ≈ d + r2/2R. Higher order
terms arising due to the curvature of the electric field
lines are neglected.
A straight-forward calculation yields a value of κ =

−µ′′(0)/2 given by

κ = − eδVb + µ0

2Rd
√

1 + |β|
. (15)

The variable µ0 is the Fermi level under the sphere, and
β is a dimensionless number:

µ0 =
(~v)2

8e2d

1−
√

1 + |β|
sgn(β)

,

β =
16e2d

(~v)2
[

eδVb − 4πe2dn∞

]

.

(16)

Considering typical values of R ∼ 1µm, d ∼ 5 nm, δVb ∼
0.1V and n∞ ∼ 1011 cm−2, we obtain the value of κ ∼
4 · 10−6 eV/nm2 used in the main text.

IV. DISCUSSION

Compared to previous mechansims for non-reciprocity
in electronic systems, which are highly sought for in pho-
tonics and plasmonics, our realization is perhaps the first
one which is inherent to Dirac materials. Indeed, Fara-
day and Kerr rotation, two notable examples of non-
reciprocity which can be sizable in two dimensional ma-
terials such as graphene[23, 24], are also present in gen-

eral semiconductor materials. The same applies to mag-
netoplasmonic effects, e.g. unidirectional low frequency
edge modes[25–29], which are also present in generic two-
dimensional structures[25].

Interestingly, the anomalous strength of the non-
reciprocal effect allows to envision a new class of opti-
cal devices, such as nanoscale isolators and circulators,
which are driven by Berry phase. In particular, we expect
photonic effects in Dirac quantum dots to be dramatic.
Indeed, electrostatic doping can, via the Pauli blocking
mechanism, induce a strong and tunable electron-photon
coupling. This, combined with the in situ tunability
of the resonance dispersion[1], can make Dirac quantum
dots critical components for miniaturizing nanophotonic
systems.

We also note that our non-reciprocal effect resonates
with other exotic manifestations of Berry phase predicted
to occur in Dirac systems, such as Berry phase modifica-
tion to exciton spectra [30, 31], optical gyrotropy induced
by Berry’s phase [32] and chiral plasmon in gapped Dirac
systems [33, 34]. In realistic electronic systems, however,
electron decoherence usually hinders observation of such
subtle effects. As a result, we anticipate that readily
available quantum dots states in Dirac materials enable
a new and optimal setting for locally probing Berry phase
physics.

Given that our predictions only rely on the Dirac na-
ture of charge carriers, they can be tested in a wide
range of materials and metamaterials. In particular, the
strong dependence of resonance splitting on ∆ can be
explored using various systems: graphene is the proto-
typical material to explore the case ∆ = 0; graphene on
top of closely-aligned hBN substrate allows to explore
the case ∆ ∼ 50meV [35, 36]; monolayers of transition
metal dichalcogenides such as MoS2 allows to explore ∆
on the eV ballpark[37–39]. Furthermore, the value of ε∗
can also be tuned with electrostatic potential shape, as
demonstrated in Ref.[1].

SUMMARY

To summarize, quantum dots embedded in Dirac ma-
terials grant access to a new non-reciprocity mechanism
originating from the Berry phase. This mechanism,
which is unique to Dirac materials, leads to stronger non-
reciprocity than other known mechanisms. The anoma-
lous strength of the effect and its in situ tunability
makes Dirac quantum dots an appealing platform for
non-reciprocal nanophotonics. The recent introduction
of Dirac quantum dots in graphene makes our predic-
tions easily testable in on-going experiments.
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Appendix A: Computational details

To solve Eq.(10) of the main text, we use the finite dif-
ference method in the interval 0 < r < L. The azimuthal
quantum numbers are chosen in a finite range, −M ≤
m ≤ M , with M large enough to represent accurately the
states in the energy range of interest. In our calculations,
we used a system of size L/r∗ = 10 discretized inN = 600
lattice sites, with maximum azimuthal quantum number
M = 31/2. To calculate the density of states, Eq.(12) of
the main text, we approximate the delta-function δ(ε) by
a Lorentzian δ(ε) ≈ Γ/π(ε2+Γ2). Here we used a broad-
ening Γ/ε∗ = 0.25, and set a Gaussian weight λd/r∗ = 0.1
in the spatial average 〈. . .〉λd

of the wavefunctions.

[1] Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-
Nieva, C. Lewandowski, K. Watanabe, T. Taniguchi, L.
S. Levitov, N. B. Zhitenev, and J. A. Stroscio, Science
348, 672 (2015).

[2] H.-Y. Chen, V. Apalkov, and T. Chakraborty, Phys. Rev.
Lett. 98, 186803 (2007).
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