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We apply a new method “force enhanced atomic refinement” (FEAR) to create a computer model
of amorphous silicon (a-Si), based upon the highly precise X-ray diffraction experiments of Laaziri
et al.14. The logic underlying our calculation is to estimate the structure of a real sample a-Si using
experimental data and chemical information included in a non-biased way, starting from random
coordinates. The model is in close agreement with experiment and also sits at a suitable energy
minimum according to density functional calculations. In agreement with experiments, we find a
small concentration of coordination defects that we discuss, including their electronic consequences.
The gap states in the FEAR model are delocalized compared to a continuous random network
model. The method is more efficient and accurate, in the sense of fitting the diffraction data than
conventional melt-quench methods. We compute the vibrational density of states and the specific
heat, and find that both compare favorably to experiments.

I. INTRODUCTION

It has long been realized that the inversion of diffrac-
tion data – extracting a structural model based upon the
data at hand – is a difficult problem of materials theory.
It is worth noting that the success of inverting diffrac-
tion data for crystals has been one of the profound suc-
cess stories of science, even revealing the structure of the
Ribosome.1 The situation is different for non-crystalline
materials. Evidence from Reverse Monte Carlo (RMC)
studies2–5 show that the information inherent to pair-
correlations alone is not adequate to produce a model
with chemically realistic coordination and ordering. This
is not really surprising, as the structure factor S(Q) or
pair-correlation function g(r) (PCF) is a smooth one-
dimensional function, and its information entropy6 is
vastly higher (and information commensurately lower)
than for a crystal, the latter PCF being a sequence of
sharply localized functions. It seems clear that includ-
ing chemical information, in an unbiased mode, should
aid the structure determination substantially. Others
have clearly described this challenge as the “nanostruc-
ture problem”7, and noted the appeal of including an
interatomic potential. We show here that such an ap-
proach is successful, by uniting the RMC code “RMCPro-
file” and including chemistry in a self-consistent manner
using density functional theory, but not by invoking ad

hoc constraints. We have named this method “Force En-
hanced Atomic Refinement” (FEAR). In this paper, we
focus on the classic and persistently vexing problem of
amorphous silicon. The details of the methods can be
found elsewhere.8,9 The method is fast enough to make
it easy to implement with ab initio interactions (SIESTA
here) and plane-wave DFT (VASP) as we used in ternary
chalcogenide materials in Ref. 9
The technological importance of a-Si in microelectron-

ics, thin-film transistors and photo-voltaic (PV) applica-
tions10 has led to many studies in recent decades.11–16 In
addition, the over-constrained network makes the struc-
ture of a-Si difficult to model.17,19 The only method
that produces really satisfactory models for a-Si is the
Wooten-Weaire-Winer (WWW)19 scheme, which is lim-
ited by unrealistic interactions and is also not a general
technique.

From a practical modeling perspective, the utiliza-
tion of a priori information by constraining chemical
order and preferred coordination has improved some of
the most serious limitations of RMC.2,20 Cliffe and co-
workers imposed ‘uniformity’ as a constraint in a refine-
ment of atomistic-scale structures in their INVariant En-
vironment Refinement Technique (INVERT)21, and con-
siderably extended their analysis by invoking ‘structural
simplicity’ as a guiding principle in modeling a-Si.22 Re-
cently another angle has been tried: including electronic
a priori information in the form of an imposed band
gap.23,24 These constraints are externally imposed and
sensible though they might be, they introduce the inves-
tigators bias in the modeling. In other applications, more
along the lines of “Materials by Design” the point is in-
deed to impose conditions that the model must obey –
and see if a physical realization of the desired properties
may be realized. This is beyond the scope of the present
paper which is focused on trying to best understand well
explored specific samples of a-Si.

More in the spirit of our work, a hybrid reverse Monte
Carlo (HRMC) incorporating experimental data and a
penalty function scheme was introduced to find mod-
els of amorphous carbon in agreement with diffraction
data also near a minimum of an empirical potential.25

Gereben and Pusztai employed a similar approach of hy-
brid RMC with bonded and non-bonded forces to study
liquid dimethyl trisulfide26. A method known as empiri-



2

cal potential structure refinement (EPSR) has been suc-
cessful in modeling amorphous and liquid structures by
refining the initial interatomic empirical potential energy
function while fitting the structure factor data27. The
first attempt to incorporate experimental information in
a first-principle approach was experimentally constrained
molecular relaxation (ECMR).28,29 ECMR merely al-
ternated full relaxations of fitting pair-correlations (via
RMC) and energy minimization. When this process con-
verged (as it did for the case of glassy GeSe2), an excel-
lent model resulted.28 The problem was that this scheme
often failed to converge. We therefore amended Ecmr

and introduced ab initio force-enhanced atomic refine-
ment (ab initio FEAR).9 In effect we alternate between
partially fitting the RDF (or structure factor) using RMC
and carrying out partial relaxations using ab initio inter-
actions, as we explain in detail in References 8 and 9.
By carrying out the iteration in “bite-sized” bits rather
than iterated full relaxations as in the original Ecmr, we
find that the method is robust, working for silver-doped
chalcogenides with plane-wave DFT and for WWW a-Si
with Siesta and also for forms of amorphous carbon.30

We should clarify that in our previous work on a-Si.9

we used the WWW pair-correlation data as input “exper-
imental data”, whereas in this work we have used high en-
ergy X-ray diffraction data from Laaziri et al. 14. WWW
models are a fixture of the modeling community (a con-
tinuous random network of ideal four-fold coordination
and involving up to 100,000 atoms13,31, and represent an
important benchmark that a new method must handle.
It is reasonably interpreted as “ideal” a-Si, with mini-
mum strain. While the pair-correlation data of WWW
and Lazirri14 are indeed fairly similar, there are key dif-
ferences as noted by Roorda and coworkers16. Given the
high quality and precision of the experiments, we have
undertaken a FEAR inversion of their data in this paper.

One key assumption that we forthrightly emphasize is
that the dataset of Laaziri and coworkers may be rep-
resented by a small supercell model of silicon. This is
obviously an approximation, as the material must surely
include some voids and damaged regions from the ion
bombardment procedure from which the material was
made, and of course the X-ray diffraction includes these.
While we think this is a reasonable approximation, it is
clear that a very large scale simulation with thousands
of atoms allowing for internal surfaces and other inho-
mogeneities would be desirable, possibly opening up the
possibility of paracrystallites32 and other longer length
scale irregularities. While it is not obvious whether
the RDF by itself would provide information enough
to open up voids, recent studies on hydrogenated a-Si
have demonstrated that inversion of experimental nu-
clear magnetic resonance (NMR)33,34 and infrared (IR)
data35,36 can produce, in association with ab initio in-
teractions, nanoscale inhomogeneities, such as voids and
extended defect structures in a-Si:H. Further progress in
this direction might be undertaken with transferable po-
tentials devised from “machine learning” algorithms.37
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FIG. 1. The evolution of four-fold Si atoms during FEAR
simulation for three different combinations of the number of
accepted moves (M ) and number of CG steps (N ). (black)
M=1000 and N=5, (red) M=1000 and N=20 and (green)
M=6000 and N=5.
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FIG. 2. (Color online) Comparison of the simulated X-ray
static structure factor from FEAR (black), CG-only (blue)
and the experimental diffraction data (red circle) from Ref. 14.
A 216-atom model is used to compute the simulated structure
factor.

In our applications of FEAR, we have always started
with a random model, and even for a complex ternary9

the method converges with satisfactory and chemically
sensible results. In effect, chemical information is pro-
vided through the partial CG relaxations, and the
method explores the configuration space rather well,
thanks to the excellent RMCProfile code38.

The rest of this paper is organized as follows. In Sec-
tion II, we summarize FEAR and describe the methodol-
ogy for the current work. In Section III, we present the
results for a 216-atom a-Si FEAR model. The conclu-
sions are given in Section IV.
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FIG. 3. (Color online) The reduced pair-correlation function
of a-Si obtained from a 216-atom model using FEAR (black)
and WWW (blue) methods. The experimental data (red)
shown above are the Fourier transform of the high-energy X-
ray diffraction data from Ref. 14.
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FIG. 4. (Color online) The number of n-fold ring per atom
(RC) for the FEAR model (blue) compared to the WWW
model of same size.

II. METHODOLOGY

A detailed description of the FEAR method can be
found elsewhere.8,9 To summarize, in FEAR, a random

starting configuration is subjected to partial RMC re-
finement followed by partial conjugate-gradient (CG) re-
laxations using a chemically realistic total-energy func-
tional, e.g. ab initio interactions from density functional
theory. The two steps are repeated one after another un-
til both the structure and energy converge to a prescribed
accuracy.8,9 A single FEAR step comprises M accepted
RMC moves followed by N CG steps, and we denote the
entire process by (M,N). In this work, we have car-
ried out a (500,5) process. Other combinations, such as
(M,N)=(1000,5)/(1000, 20)/(6000, 5), are also explored,
which, more or less, produce similar results but exhibit
different convergence behavior. An (M,N) process is
then repeated until convergence (namely finding a config-

uration that matches diffraction data and simultaneously
being at a minimum of a DFT total-energy functional)
is achieved. The RMC algorithm (in our case RMCPro-
file38) is used to invert the experimental data. We have
so far only used diffraction data, but other experimental
data, such as those from EXAFS and NMR experiments,
can also be used profitably as natural datasets. For com-
plex materials, the use of multiple experimental datasets
might be particularly beneficial to limit the number of
unphysical configurations, while the CG relaxations en-
force the local chemistry in the material. We employ a
local-orbital basis DFT code (Siesta)39 using the local
density approximation (LDA). The cubic simulation cell
(with 216 Si atoms) has a length of 16.28 Å, which corre-
sponds to the experimental density of 2.33 gm.cm−3 for
a-Si. In the spirit of full reporting, this should be un-
derstood to be another assumption, which can be easily
rectified by conducting a variable-cell CG optimization.
To illustrate the choice of the number of accepted RMC

moves (M ) and the number of CG steps (N ) on the con-
vergence of the structure, we have explored various com-
binations of (M,N). While a small value of N (CG steps)
is highly desirable from the viewpoint of computational
cost, a very small N and large M (RMC steps) may not
be able to steer the system to the correct solution space.
Likewise, a very small value ofM might not be enough to
navigate the system out from a poor local minimum on
the energy surface. To address this, we have studied the
evolution of the number of four-fold coordinated Si atoms
in FEAR with a few combination of M and N . A real-
istic model of a-Si must contain a higher percentage of
four-fold silicon with fewer defects. The convergence for
three different (M,N) processes are shown in Fig.1. The
structure is abruptly trapped into a local minimum for
a higher value of CG steps (N=20). The higher number
of accepted RMC moves (M=6000) generates a structure
with a large density of coordination defects, which take
considerable number of FEAR steps to eliminate. For
the efficient use of algorithm, we suggest an optimum
value for M as anything between 100 and 2000 and for
N any value between 3 to 20. Lower values of M and
N make the method less expensive. Although, there is
no significant change in the structure by a choice within
this range, a short quick run with the extreme values is
helpful to determine an appropriate value of M and N
for new systems.

III. RESULTS AND DISCUSSION

In this section, we present results for a-Si obtained
from FEAR. Since the method essentially consists of in-
corporating the pair-correlation data via reverse monte
carlo simulations (RMC), followed by ab initio total-
energy relaxations using the conjugate-gradient (CG)
method, we also include the results from a CG-only
model (obtained from the initial random state) to evalu-
ate the performance of the FEAR method in relation to
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FIG. 5. (Color online) Total energy per atom and χ2 versus
FEAR steps for a 216-atom a-Si model. The green and black
broken lines represent the energy per atom for the CG-only
and WWW model, respectively.

the CG-only relaxation as a function of simulation “time”
or steps. In particular, we address the structure factor
S(Q), bond-angle distribution P (θ), electronic density
of states (EDOS), vibrational density of states (VDOS)
and the vibrational specific heat from the FEAR model
of a-Si. To examine the convergence of the method with
respect to the total energy and the evolution of struc-
ture, we take a close look at the variation of the average
coordination number and electronic gap as a function of
FEAR steps.

Figure 2 shows the static structure factor of a-Si for
the model configurations obtained from the FEAR along
with the structure-factor data of a-Si (annealed sample)
reported by Lazirri et al.14 The results from the CG-only
model are also included in Fig. 2 for comparison. Data
fitting was carried out in Q space. We can see that the
structure factor from the FEAR model compares very
well with the experimental data. The only exceptions
are a minor deviation of S(Q) near Q=2.5 Å and 7 Å. A
comparison of the S(Q) data from the FEAR and CG-
only models suggests that the former is superior to the
latter as far as the two-body correlations between atoms
are concerned even though both the systems have been
treated with identical ab initio DFT interactions. This
observation is also reflected on Fig. 3, where the reduced
radial distribution function, G(r) = 4πrn0(g(r)− 1), ob-
tained from FEAR, WWW and X-ray diffraction exper-
iments are plotted.

Since the pair-correlation function or structure factor
of a model cannot determine a three-dimensional amor-
phous structure uniquely, it is necessary to examine the
models further by going beyond two-body correlation
functions. To this end, we have calculated the bond-angle
distribution P (θ), and compared it with the results ob-
tained from the WWW and CG-only models. Further,
following Beeman et al. ,17 we may assume that the half-
width at half-maximum (HWHM) of the Raman TO peak

of a-Si is related to the average width of the bond-angle
distribution. Since a typical value of the full width of
the Raman TO peak in a-Si ranges from 30 to 45 cm−1,
this approximately translates into a range of 12-17◦ for
the RMS bond-angle deviation.18 The value of the RMS
bond-angle deviation (15.6◦) obtained from the FEAR
model is well within the range of 12-17◦. It is noteworthy
that the FEAR model is statistically free of very small
(≤ 60◦) or large (≥ 160◦) angles, and that the bond-
angle distribution closely matches with the same from
the WWW model. In contrast, a considerable number
of small and large angles, below 60◦ and above 160◦, re-
spectively, have appeared in the bond-angle distribution
of the CG-only and RMC-only models.9 Thus, the FEAR
method not only produces correct two-body correlations
between atoms, but also a better reduced three-body cor-
relations by judicious use of the input experimental data
and the local chemical information of a-Si provided by
the ab initio total-energy functional from Siesta within
the CG loop of the refinement process.

While structural information beyond three-body corre-
lations proves to be highly nontrivial to obtain and ana-
lyze, it is possible to gather some information by looking
at the dihedral-angle distribution involving four neigh-
boring atoms and the ring statistics reflecting the topo-
logical connectivity of an amorphous network. Figure 6
presents the dihedral-angle distributions for a 216-atom
FEAR model and a WWW model. Both the distribu-
tions exhibit a maximum value near the dihedral angle
of 60◦ and a minimum value in the vicinity of 120◦. A mi-
nor deviation of the minimum in the FEAR model near
120◦ is probably indicative of slightly different dihedral
correlations involving a chain of four neighboring atoms
in WWW and FEAR models. We will see that such a
deviation also affects the number of four-member rings
in the FEAR models. The ring statistics for the FEAR
and WWW models are presented in Fig. 4. It is remark-
able that the three-member rings are not present at all in
the FEAR model, which is consistent with the absence of
unphysical Si triangles in good quality a-Si models. The
only notable difference between the WWW and FEAR
model is the existence of fewer six-member and more
four-member rings in the latter model. In Table I, we
have listed the characteristic structural properties of the
models along with the total energy per atom obtained
from the density-functional code Siesta. The FEAR
model has 96% four-fold coordinated atoms with the
remaining 4% being equally distributed between three-
fold and five-fold coordinated atoms. These values are
equal to those obtained from the melt-quench model us-
ing environment-dependent interaction potential (96%)40

and better than those obtained from other models in the
literature.2,21,41 The average coordination number of the
FEAR model is found to be 4, which deviates from that
of the experimental annealed sample (3.88) by Laaziri et
al. 14 For comparison, we have presented average coor-
dination for various models in Table I using a nearest-
neighbor distance of 2.75 Å. It appears that the models
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FIG. 6. (Color online) Dihedral-angle distributions for two
models of a-Si obtained from WWW and FEAR simulations
as indicated. For visual clarity, we have plotted a running-
average of the raw data, which slightly affects the distribu-
tions of very small and large angles.

having fewer coordination defects have higher average co-
ordination then the experimentally reported value.

The variation of the total energy (E) and χ2 with the
number of FEAR step are plotted in Fig.5. The results
suggest that the initial structure formation takes place
very rapidly in the first few hundred steps with a si-
multaneous decrease of E and χ2. We then reach a pe-
riod of “saturation” in which there are tiny fluctuations
in the energy and χ2. This indicates that the system
has reached to a region of the energy landscape of a-Si,
which is characterized by configurations having more or
less same average energy with some disordered fluctua-
tions. We have reported a particular “snapshot” of a
conformation, and discuss it above. However, many con-
formations in the saturated part of the plot are equally
meaningful. Fortunately they do not fluctuate much, re-
flecting the fact that the combination of experimental
data and chemistry converge to a well-defined collection
of configurations. We track the fluctuations of the aver-
age coordination number in Fig. 7, excised from the last
500 steps of FEAR. For convenience, we also show the
results for a simulation using the pair-correlation data
from a WWW model as reported in Ref. 9. The use of
WWW pair-correlation, as input “experimental” data,
forces the network to have fewer defects compared to the
real experimental data. This has been reflected in the av-
erage coordination number of the FEAR models obtained
by using experimental pair-correlation and WWW pair-
correlation data. The former produces a FEAR model
with an average coordination of 3.96, whereas the latter
leads to an average value of 3.99.

TABLE I. Total energy and key structural properties of a-Si
models. The energy per atom is expressed with reference to
the energy of the WWW model.

RMC CG FEAR WWW
4-fold Si (%) 27 75 96 100
3-fold Si (%) 15 21 2 0
5-fold Si (%) 25 3 2 0
Energy
(eV/atom)

3.84 0.09 0.06 0.00

Average
bond an-
gle (RMS
deviation)

101.57◦

(31.12◦)
107.31◦

(20.42◦)
108.52◦

(15.59◦)
108.97◦

(11.93◦)

Average
coordination
number

4.27 3.83 4.00 4.00

In Fig. 8, we also track the fluctuations in the elec-
tronic gap for the last 500 steps of FEAR, as crudely es-
timated as the energy splitting between the LUMO and
HOMO levels. It is of considerable interest that, for the
last 500 FEAR steps, there is a substantial variation in
the electronic density of states near the Fermi level even
though the FEAR process had already reached a “steady
state” value for χ2 and total energy (cf. Fig. 5). Ob-
serve too that, while the HOMO level is fairly station-
ary, the LUMO meanders with relative impunity as it
does not contribute to the total energy, being above the
Fermi level/citesst. Thus, we see that FEAR effectively
generates an ensemble of candidate structural models for
a-Si, which are essentially indistinguishable according to
χ2 and energy. Nevertheless, this affords another op-
portunity to use a priori information—we should select
one of these models with the gap most like the exper-
imental sample. To our knowledge, the electronic den-
sity of states is not well characterized for the sample,
but if it was it would be natural to use it as an addi-
tional criterion to select the most experimentally realistic
FEAR model. In effect if we had electronic information,
it would break the “structural degeneracy” emphasizing
the information-based nature of our approach.
It is evident from Fig. 5 that the FEAR model has

a lower energy than its CG-only counterpart. Table I
lists the total-energy per atom with respect to the en-
ergy of the WWW model, which is set at 0.0 eV for con-
venience. The energy for the FEAR model is found to be
0.06 eV/atom, which is approximately 33% lower than
the CG-only model with a total energy of 0.09 eV/atom.
This is a reasonable number compared with other pub-
lished work44.
The electronic density of states (EDOS) of a-Si ob-

tained from the FEAR, CG-only and RMC models are
shown in Fig.9. For the 216-atom FEAR model, the qual-
ity of EDOS is significantly improved compared with that
of CG-relaxed model and the RMC model. The latter
is completely featureless, and does provide any useful
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FIG. 7. (Color online) Variation of the average coordination
number for the final 500 steps of FEAR using two different
input RDF data. The upper panel is for high-energy X-ray
diffraction data from Laaziri et al.14 and the lower panel is
for the WWW radial distribution function (RDF) as an input
data9. The broken horizontal line, in the upper panel, rep-
resents the average coordination number, 3.88, reported by
Laaziri et. al.14
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electronic information. A significant number of defects
states clutters the gap in the FEAR model, which is
a prediction in this case, since the EDOS has not, to
our knowledge, been measured for the annealed sample
whose pair-correlation data we have employing in our
work. Electronic localization is studied using the inverse
participation ratio (IPR)46, which is shown in Fig.10.
IPR measures the localization of electronic states. For a
completely localized state, the IPR value is unity reflect-
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FIG. 9. (Color online) Electronic density of states (EDOS)
of a-Si obtained from FEAR (red), CG-only (green) and pure
RMC (blue) models. The Fermi levels are located at 0 eV.
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FIG. 10. (Color online) Inverse participation ratio (IPR) of
216-atom a-Si model for FEAR (black) and RMC (red) mod-
els near the gap. Fermi levels are shown by arrows of respec-
tive colors.

ing that the state is localized around a single atomic site.
A completely delocalized or extended state, on the other
hand, is distributed over N atoms or sites producing the
value of 1/N . In the FEAR model, the electronic gap
is filled by several extended defect states, whereas the
WWW model has a clean electronic gap with localized
tail states in the vicinity of the band edges. In the case of
the FEAR model, banding or coupling among the states
in the gap leads to an expected delocalization45 and is
reflected in the corresponding IPR values.

The vibrational density of states (VDOS) is com-
puted by estimating the force-constant matrix, from
finite-difference calculations resulting from perturbing
the atoms of a well-relaxed 216-atom FEAR model by
0.02 Å in six directions (± x, ± y and ± z axes), and cal-
culating the forces on all the remaining atoms for each
perturbed configurations. The eigenvalues and eigenvec-
tors are obtained by diagonalizing the dynamical matrix,
the details of which can be found in a recent work of
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a-Si FEAR model (black) compared to the experiment.53 The
inset shows the classical “Dulong-Petit” limit at higher tem-
perature.

Bhattarai and Drabold.47 The VDOS for the 216-atom
model FEAR model is shown in Fig. 11. The computed
VDOS is in rather good agreement with the experimental
VDOS obtained from inelastic neutron scattering exper-
iments.50 The exception, probably a shortcoming of our
Hamiltonian is a shift in the high-frequency optical tail
by ∼35 cm−1. Similar observation applies for the VDOS
from WWW model (cf. Fig.11). This is consistent with
the results obtained from other empirical and ab initio

molecular-dynamics simulations.48,49 We also note that
wavelengths larger than our supercell size L are not in-
cluded in the computed VDOS, which is reflected in the
VDOS by the presence of size artifacts below k ∼ 2π

L .
The specific heat in the harmonic approximation can

be readily obtained from the vibrational density of states
g(ω). We compute the specific heat Cv(T ) using the re-
lation,51,52

Cv(T ) = 3R

∫ Emax

0

(

E

kBT

)2

eE/kBT

(

eE/kBT − 1
)2

g(E) dE,

(1)
where g(E) is normalized to unity.

Figure 12 shows the dependence of the specific heat
on temperature by plotting Cv

T vs. T at low temper-
ature from 5 K to 300 K for the FEAR model. The
inset in Fig. 12 indicates the classical limit, Cv ≈ 3R, at
high temperature. The results show that CV (T ) for the
FEAR model are in good agreement with the experimen-
tal data from Ref. 53 for T > 40 K. This is an additional
indication that the FEAR model is correctly reproducing
features of a-Si beside those “built in” (from the exper-
imental pair-correlation data), and is also an indication
of consistency between the very different physical observ-
ables.

IV. CONCLUSIONS

In this paper, we have studied a-Si using a new ap-
proach FEAR. For the first time the experimental struc-
ture factor of a-Si14 has been employed in FEAR along
with ab initio interactions to generate a homogeneous
model consistent with the data and at a plausible energy
minimum according to reliable interatomic interactions.
FEAR retains the simplicity and logic of RMC and suc-
cessfully augments it with total-energy functional and
forces to generate structures that are energetically sta-
ble, even exhibiting a satisfactory VDOS. The method
can also be viewed as a new way to undertake first princi-
ples modeling of materials, when structural experiments
are available.
By using an entirely information-based approach, ed-

ucated by chemistry through the CG sub loops, we find
highly plausible models derived from experimental data
with interesting similarities and differences with contin-
uous random network models. Following this logic, the
best that we can hope to achieve is a structural model
jointly agreeing with all experiments, but critically, aug-
mented with chemical information in an unbiased mode
as we offer here.
To conclude, this paper offers a new method that is

genuinely effective for the best known difficult structural
inversion problem in the physics of amorphous materi-
als (the structure of a-Si). A method that works well
here is likely to have broad applicability (and indeed,
we are building up the proof of that statement in ongo-
ing research as we publish this, beside the work reported
in Ref. 8 and 9. We observe that the method is im-
mediately applicable to glasses and amorphous materials
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of any kind, including (perhaps) systems like amorphous
pharmaceuticals. Already the approach has been applied
successfully with plane-wave density functional theory to
amorphous GeSeAg systems, and amorphous phases of
silica and silicon. While no method is ever perfect, this
paper demonstrates the need to explore this line of in-
quiry for the general structural inversion problem.
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