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Motivated by experimental realizations of integer quantized charge pumping in one-dimensional
superlattices [Nat. Phys. 12, 350 (2016); Nat. Phys. 12, 296 (2016)], we generalize and propose
the adiabatic pumping of a fractionalized charge in interacting bosonic systems. This is achieved by
dynamically sweeping the modulated potential in a class of one-dimensional interacting systems. As
concrete examples, we show the charge pumping of interacting bosons at certain fractionally occupied
fillings. We find that, for a given ground state, the charge pumping in a complete potential cycle is
quantized to the fractional value related to the corresponding Chern number, characterized by the
motion of the charge polarization per site. Moreover, the difference between charge polarizations of
two ground states is quantized to an intrinsic constant revealing the fractional elementary charge of
quasiparticle.

I. INTRODUCTION

Quantized charge pumping via an adiabatically peri-
odic perturbation is a hallmark of the two-dimensional
quantum Hall effect1, which is connected to the Hall con-
ductance by Laughlin’s gedanken experiment2,3. Inter-
estingly, it has been proven that the quantization of par-
ticle transport4 is equivalent to the change of charge po-
larization5–10. This intriguing relation stimulates recent
progresses in cold atomic systems in one dimension, as
exemplified by experimental realization of the quantized
charge pumping in both bosonic and fermionic atomic
gases11,12 following the theoretical proposal of quantized
charge pumping in the superlattice13–15 and the shaken
bichromatic optical lattice16.

While most of previous studies were focused on the
integer quantized charge pumpings in one-dimensional
cold-atom systems11,12, it is interesting to ask that, is
it possible to realize the fractional charge pumping in
one-dimensional interacting system? In two dimensions,
fractional charge pumping usually occurs in the strongly-
correlated systems with topological orders, such as frac-
tional quantum Hall (FQH) effects, where the quasipar-
ticle excitations obey fractional anyonic statistics17–19.
Compared with the intense studies of topological orders
in two dimensions, to our best knowledge, the investi-
gation of fractional charge pumping in one-dimensional
interacting systems is still lacking and desired.

As is well-known, topological ordered phases in two
dimensions host topological degenerate ground states in
the bulk, which are indistinguishable by any local or-
der parameter20. Topological degeneracy also implies the
deconfined fractionalized quasiparticles emerging in the
system. Nevertheless, directly extending the definition of
“topological order” from two dimensions to one dimen-
sion seems problematic, since in one dimension interac-
tions usually favor the translational symmetry breaking
mechanism and generate crystalline orders. However, as
we will show below, there is no any obstacle to get one-
dimensional phases with “topological” features similar
to the two-dimensional topological ordered phases. Pre-

cisely, we will show the fractionalized charge pumping
in these one-dimensional interacting systems, although
the obtained new groundstates are locally distinguish-
able, which are not topological ordered phases21. Inter-
esting examples of phases with topological features in one
dimension include FQH states in thin-torus limit, which
can be smoothly connected to the intrinsic topological
ordered phases in two dimensions22,23.

In the following discussion, we refer the one-
dimensional phases as phases with topological features
if the ground state carries non-trivial Berry phase and
realizes quantized charge pumping related to Chern num-
ber, despite the nearly degenerate ground states can
be distinguishable by local density patterns, as these
one-dimensional phases are descendant states of two-
dimensional topological ordered phases. Very recently,
the possibility of such phases in one dimension has been
studied in superlattices with periodically modulated po-
tential24–28. In such quasiperiodic lattices, the topologi-
cal property of the system can be understood in terms of
a nonzero integer Chern number which is robust even un-
der the inclusion of disorders24,25, with the appearance
of edge states equivalent to the edge states of a two-
dimensional integer quantum Hall system. In the pres-
ence of interactions (c.f. the dipolar interaction), it was
noticed that there exists m-fold quasi-degenerate ground
states with nontrivial quantized Chern number and com-
mensurate crystalline orders at fractional filling factors
ν = 1/m in these quasiperiodic lattices29–34, which is due
to one-dimensional crystalline nature of two-dimensional
Abelian FQH states in thin torus limit. The topolog-
ical properties of these states are characterized by (i)
fractionally quantized Chern invariants, (ii) degenerate
ground state manifolds under the adiabatic insertion of
flux quanta, and (iii) the quasihole exclusion statistics.

In this work, we study the fractional charge pump-
ing of interacting bosons in a fractionally occupied
one-dimensional superlattice through exact diagonaliza-
tion (ED) and density-matrix renormalization group
(DMRG) methods. We show that one dimensional quasi-
degenerate ground states with a nontrivial manybody
Chern number and fractionally charged quasihole exci-
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tations, emerge at given fillings ν = k/2 of topological
band with (k + 1)-body interactions, which are counter-
parts to two-dimensional non-Abelian FQH states in thin
torus limit, but trivially distinguishable by local density
patterns. Their nontrivial quantized features, with cer-
tain interesting features similar to the Hall conductance
of two-dimensional counterparts, can be revealed by frac-
tional quantization of charge pumping, which is related
to the motion of charge polarization.

II. THE MODEL HAMILTONIAN

In cold atomic systems, one-dimensional superlattice
is formed by superimposing two lattices with different
wavelengths11,35, whose tight binding Hamiltonian can
be written as

H0 =
∑
〈ij〉

−t(b†i bj + h.c.) +
∑
j

µ cos(2πφj + θ)nj . (1)

Here, nj = b†jbj , µ = −2t is the onsite potential modula-

tion amplitude, and φ = 1/q, q = 3 is the commensurate
periodic factor. The hopping t can be tunable through
laser-assisted tunnelling36,37. The energy spectrum of
H0 with varying θ ∈ [0, 2π] is identical to that of a two-
dimensional Hofstadter model24,25, and hosts nontrivial
topological invariant |C| = 1 in the lowest Hofstadter
subband38. With bosonic polar molecules 87Rb133Cs39

and 23Na87Rb40 loaded into this setup, the effective in-
teraction potential between site i and site j in a circularly
polarized microwave field, reduces to the form including
two-body interactions D(i − j)ninj , three-body interac-
tions V (i − j)n2inj and higher-order four-body interac-
tions W (i− j)(n2in2j + n3inj) in the perturbation expan-

sion of dipolar interaction, as suggested in Ref.41. With
the onsite contact interactions42, these bosons experi-
ence the extended n-body (n ≤ 4) Hubbard interactions∑
j,n Un

∏n−1
k=0(nj − k) +

∑
i 6=j D(i − j)ninj + H3 + H4,

with three-body terms

H3 =
∑
i6=j

V (i− j)
[
nj(nj − 1)ni + i↔ j

]
, (2)

and four-body terms

H4 =
∑
i6=j

W (i− j)
[ 2∏
k=0

(nj − k)ni + i↔ j

+ ni(ni − 1)nj(nj − 1)
]
. (3)

While the two-body parts D(i− j) can be tuned down to
a small value by manipulating microwave fields41,43, we
focus our interest on the n-body (n ≥ 3) long range inter-
actions. Due to the rapidly decaying of dipolar potential,
we truncate the interaction terms by cutting off the tails
|i − j| > 3. Thus, at fixed filling ν = N × q/L of the

lowest Hofstadter subband, where N is the particle num-
ber and L the chain length, as the detailed parameters
Vi,Wi are rather complicated (see also Appendix D), we
choose typical interaction parameters U3 =∞, V (i) = Vi
and U4 = 0,W (i) = 0 at ν = 1 and U4 =∞,W (i) = Wi

and U3 = V (i) = 0 at ν = 3/2 to simplify the calcula-
tion, and also to claim the physical importance of long
range interaction Vi,Wi for the existence of non-trivial
ground states we consider here. In ED calculations, the
largest accessible cluster is 12 particles and the dimension
of Hilbert space is of the order of 108. With the trans-
lational symmetry, the energy states are labeled by the
total momentum (K, θ) in the magnetic Brillouin zone.
For DMRG, we keep the number of states more than 800,
and the truncation error is less than 10−8 to ensure ac-
curate results.

III. GROUND STATES

In two dimensions, interacting bosons are predicted
to form incompressible liquids at filling factor ν = k/2
(k ∈ Z+) with (k + 1)-body interactions18,44. Most
notable examples include Moore-Read (MR) states at
ν = 1 (k = 2) and Read-Rezayi (RR) states at ν = 3/2
(k = 3)45,46. Remarkably, the corresponding topological
nature is captured by the analysis of “root configuration”
or generalized Pauli principle in “thin-torus limit”: No
more than k bosons in two consecutive orbitals47–49. By
squeezing the geometry into the thin-torus limit, these
quantum Hall states are adiabatically connected to a
charge density wave characterized by the root configu-
ration22,23,50.

For one-dimensional systems we studied, we demon-
strate their ground states are quasi-degenerate charge
density wave and host nontrivial Berry phase, which is
the counterpart of non-Abelian FQH states in thin torus
limit. We first obtain the low-energy spectrum of the
H0 + H3 and H0 + H4 at filling numbers ν = 1 and
ν = 3/2, respectively. As shown in Figs. 1(a-b), we find
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FIG. 1. (Color online) Low energy spectrum for (a) three-
body hard-core bosons H0 + H3 at N = 8, L = 24, U3 =
∞, V1 = V2 = V3 = 10t; (b) four-body hard-core bosons
H0 +H4 at N = 9, L = 18, U4 =∞,W1 = W2 = W3 = 10t. ∆
marks the energy gap between quasi-degenerate ground state
manifolds and excited levels. Here θ = 0.
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FIG. 2. (Color online) Contour plot of energy gap ∆ versus in-
teraction at θ = 0 for (a) three-body hard-core bosonsH0+H3

at ν = 1, N = 8, L = 24, U3 = ∞; (b) four-body hard-core
bosons H0 +H4 at ν = 3/2, N = 9, L = 18, U4 =∞. Diffrac-
tion pattern P (k) of the lowest ground state for (c) three-body
hardcore bosons at ν = 1 and (d) four-body hardcore bosons
at ν = 3/2.

strong numerical evidence of threefold quasi-degenerate
ground states (two lie in K = 0 sector while the other
in K = π sector) for even particle numbers at ν = 1, in
the condition of strong three-body interactions Vi � t.
Similarly, fourfold quasi-degenerate ground states (two
lie in K = 0 sector while the other two in K = π sector)
is found at filling ν = 3/2 in the interaction dominate
regime.

Moreover, by calculating the Berry curvatures using
mesh points m × m with m ≥ 9, it is found that the
sum of the many-body Chern number Cα of three (four)
gapped ground states is equal to a constant number
C =

∑
α Cα = 3 (C = 6) at ν = 1 (ν = 3/2). Based

on the above results, we interpret these one-dimensional
ground states as MR-like states at ν = 1 (RR-like states
at ν = 3/2) throughout our discussions here, since obvi-
ously all topological features in such an one-dimension
system are inherited from two-dimensional topological
ordered ν = 1 MR (ν = 3/2 RR) states (see also the Ap-
pendix A for quasihole excitations). In addition, these
ground states also display commensurate Bragg peaks
in the density structure factor, which agree with their
corresponding root configurations. As we will show be-
low, despite these ground states can be distinguishable
by local density patterns, the non-trivial Chern number
promises the quantized charge pumping effect.

To explore the stability of these phases, we define the
the energy gap ∆ as the difference between the highest
energy of the quasi-degenerate ground states and the first
excited energy. As shown in Figs. 2(a-b), the energy gap
opens for strong interactions V3 � t (W3 � t), while
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FIG. 3. (Color online) Energy spectra vs the variation of θ
under open boundary conditions for (a) three-body hard-core
bosons H0 + H3 at N = 8, L = 24, U3 = ∞, V1 = V2 = V3 =
10t; (b) four-body hard-core bosons H0 + H4 at N = 9, L =
18, U4 = ∞,W1 = W2 = W3 = 10t. The topological sectors
of the low energy states at θ = 0, identified by the density
pattern (root configuration), are labeled in the parentheses.
We only show ten lowest energy levels at each θ. (c-d) The
density distributions for the boundary states at θ = 0 and
θ = 4π/3, respectively.

it closes for very weak interactions V3 � t (W3 � t),
which is possibly a metallic phase. To verify it, we com-

pute the off-diagonal long range order ρij = 〈b†i bj〉51 of
the lowest ground state. By diagonalizing the L × L-
matrix ρij , we obtain reduced single particle eigenstates
ρ|φα〉 = ρα|φα〉 where |φα〉 (α = 1, . . . , L) are the effec-
tive orbitals as eigenvectors for ρ and ρα (ρ1 ≥ . . . ≥ ρL)
are interpreted as occupations. We find that: (i) the oc-
cupations ρα ' N for α = 1, while ρα � 1 for α > 1 in
the weakly interacting regime; (ii) ρα ' ν for α ≤ N/ν,
while ρα � 1 for α > N/ν in the strongly interacting
regime, demonstrating the development of strong corre-
lation. Figs. 2(c-d) show the diffraction pattern

P (k) =
1

NL

∑
j,j′

ρjj′e
ik·(j′−j), (4)

whose peak position signaling the condensation momen-
tum. For V3 � t (W3 � t), P (k) has a sharp peak at
momenta k = 0, indicating a Bose-Einstein condensate
(BEC), while P (k = 0) for V3 � t (W3 � t) tends to
diminish by increasing the system sizes.

IV. CHARGE PUMPING

The nontrivial topological properties in the bulk are
closely related to the edge physics. For MR-like and RR-
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FIG. 4. (Color online) Density distributions 〈ψα(θ)|nj |ψα(θ)〉
of a specific ground state along the evolution path θ for (a)
two-body hard-core bosons H0 +

∑
i,j D(i − j)ninj at ν =

1/2, N = 25, L = 150, U2 = ∞, D(1) = D(2) = D(3) = 2t;
(b) three-body hard-core bosons H0 + H3 at ν = 1, N =
24, L = 72, U3 = ∞, V1 = V2 = V3 = 10t; (c) four-body
hard-core bosons H0 + H4 at ν = 3/2, N = 36, L = 72, U4 =
∞,W1 = W2 = W3 = 10t. The cloud shifts globally, and the
center-of-mass position is quantized (see Fig. 5).

like states, in Figs. 3(a-b), we plot the low energy spec-
trum under open boundary by dropping off the boundary

hopping term −t(b†Lb1 + h.c.). In contrast to the case of
periodic boundary condition, the degenerate manifold of
the ground states is lifted, and there are low energy states
filling in the gap. In one-dimensional limit, according to
the analysis of Refs.22,23,50, the root pattern coincides
with the charge-density-wave (CDW) pattern. Thus we
can distinguish the different sectors of these ground states
by measuring their density patterns. For example, in
Figs. 3(a-b), the ground states are labeled by [20], [02]
and [11] for ν = 1, and [30], [03], [21] and [12] for ν = 3/2.
These states which reside within the gap, are adiabati-
cally connected to the excited levels as θ is tuned. They
have edge excitations localized either on the left or on the
right boundary of the chain, as indicated in Figs. 3(c-d).
Moreover, different from Abelian FQH states with only
one chiral edge branch (the chirality is defined by the
sign of current J = ∇θE(θ)), we observe that there are
more than one edge branches for these nontrivial states,
as those of two-dimensional counterpart states52.

In order to visualize the topological nature of these
ground states, we ramp linearly θ from 0 to 2π and in-
spect the dynamical charge pumping process, which can
be obtained by a recently developed adiabatic DMRG
technique53,54. At typical θ, we show the evolution of
the density distributions vs θ of one selected ground
state at different fillings, as illustrated in Figs. 4(a-c).
We see that, despite the CDW pattern persists from
θ = 0 to θ = 2π, the density configuration shifts glob-
ally. When the phase θ equals to the integer multiples of
2π/q, namely θ = 2πp/q, the ground state recovers the
configuration at θ = 0, with the density configuration
shifting p lattice sites towards the j = 1 end, which can
be attributed to the 2π/q-periodic Berry curvature55.

To quantify topological charge pumping and simulate
the potential measurements in cold atom experiments,
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FIG. 5. (Color online) Evolution of charge polarization in a
pump cycle (θ = 0 → 2π ) for (a) two-body hardcore bosons
H0 +

∑
i,j D(i − j)ninj at ν = 1/2, N = 25, L = 150, U2 =

∞, D(1) = D(2) = D(3) = 2t; (b) three-body hard-core
bosons H0 +H3 at ν = 1, N = 24, L = 72, U3 =∞, V1 = V2 =
V3 = 10t; (c) four-body hard-core bosons H0 + H4 at ν =
3/2, N = 36, L = 72, U4 = ∞,W1 = W2 = W3 = 10t. The
expected quantized charge pump −∆Q2π

α = Xα(2π)−Xα(0)
is also shown.

we introduce the charge polarization per site Xα:

Xα(θ) = 〈ψα(θ)| 1
L

L∑
j=1

(
j − L+ 1

2

)
nj |ψα(θ)〉, (5)

where |ψα〉 is the ground state of the root configura-
tion sector α. In Figs. 5(a-c), we plot the evolutions
of the charge polarization per site Xα(θ) at different fill-
ings. Remarkably, we find the following quantized re-
lationships governing by gauge invariance. First of all,
it is found that the drift of charge polarization Xα(θ)
in a complete pump cycle, is always equal to the charge
pumping by

Xα(2π)−Xα(0) = −∆Q2π
α , (6)

where ∆Q2π
α is the charge transfer in one flux quanta.

According to the bulk-edge correspondence3,15: σαH =
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Cα
e2

h = ∆Q2π
α

e2

h (e2/h is the conductance unit), we ob-

tain the quantization of ∆Q2π
α is protected by the topo-

logical Chern number Cα of ground state. Secondly, at
a given θ, the difference of Xα(θ) between two ground
states are quantized to

Xα(θ)−Xα′(θ) = Pα − Pα′ , (7)

where Pα is defined as the intrinsic charge polarization of
the topological sector α (see the Appendix C for details),
and Pα−Pα′ an intrinsic constant revealing the fractional
charge of elementary excitations50. Thirdly, Xα(θ) hosts
additional hyperfine quantization structure as a function
of θ. That is, when θ equals to θ = 2πp/q (p ∈ Z), the
drift of charge polarization Xα(θ) of the ground state is
quantized to

Xα(
2πp

q
)−Xα(0) = −p

q
∆Q2π

α =
p

q
(Xα(2π)−Xα(0)).

(8)

This relationship is due to the underlying 2π/q-periodic
Berry curvature55, which is an intrinsic symmetry of the
Hamiltonain (Eq. 1) under the operation (j, θ+ 2π/q)→
(j+ 1, θ) and robust even in the presence of strong inter-
actions. In the absence of this symmetry, this symmetry-
protected hyperfine fractional charge pumping would be
broken. For comparison, we calculate the charge pump-
ing in the BEC regime, and the evolution of charge pump-
ing in each pump cycle is nonquantized, as expected56.
The above relationships Eqs. (6-8) hold for all ground
states at ν = k/2 including k = 1, 2, 3, as illustrated in
Fig. 5.

In relation to the quantized behavior of the charge po-
larization, we investigate the quantization of the pumped
charge from the entanglement spectrum (ES). ES is de-
fined as the eigenvalues of reduced density matrix, which
is obtained by partitioning the system into two halves
at the chain center and tracing out the right part. The
adiabatic flux insertion shifts the low levels of the ES
in different charge sectors Q̂. The charge transfer of
the total charge from the right side to the left side is

encoded by Qθα = tr[ρ̂L(θ)Q̂] (ρ̂L the reduced density
matrix of the left part)54,57. In DMRG, we numeri-
cally find that for ground states at ν = 1/2, by thread-
ing one flux, the ES of ψ[01] (ψ[10]) evolves into that
of ψ[10] (ψ[01]). The total charge transferred equals to∑
αQ

2π
α −Q0

α = 1 =
∑
α Cα. For ground states at ν = 1,

the ES of ψ[02] (ψ[20]) evolves into that of ψ[20] (ψ[02])
while the ES of ψ[11] recovers itself after one flux quanta
is threaded. We obtain the topological pumped charge
∆Q2π

[11] = Q2π
[11] −Q

0
[11] = 1 = C[11], and it just equals to

the change of charge polarization X[11](2π)−X[11](0) in
the main text. And the total pumped charge equals to∑
αQ

2π
α −Q0

α = 3 =
∑
α Cα.

V. SUMMARY AND DISCUSSION

In summary, we have shown that the charge pumping
in a fractionally occupied one-dimensional lattice, driven
by adiabatically changing the periodically modulated on-
site potential, is quantized to be a fractional value relat-
ing to the Chern number of the ground state. The frac-
tional quantization of charge pumping can be observed
from a quantization of the charge polarization per site,
which can be experimentally detected using an in situ
image of the center-of-mass of the gas cloud. In current
experiments with bosonic polar molecules, the dipolar in-
teraction strength ∼ 1k hHz when trapped in a 532nm-
lattice11, and the hopping amplitude t can be controlled
by Rabi frequency36. Thus the dominant three-body in-
teractions can be of the same energy scale as t, providing
promising candidates for realizing those one-dimensional
phases with nontrivial pumping.

ACKNOWLEDGMENTS

W.Z. thanks F. D. M. Haldane for elucidating the
calculations based on Jack polynomials, and Z. Liu, J.
Wang for fruitful discussion. This work is supported
by the National Science Foundation (NSF) through the
grant DMR-1408560 (W.Z., D.N.S, T.S.Z.). We also ac-
knowledge NSF grant DMR-1532249 for computational
resource.
Note added.—Recently, we became aware of a similar

work, Ref.58, implementing the integer quantized charge
pumping of photons with attractive interactions in one-
dimensional superlattice.

Appendix A: Quasihole Statistics

In this section we describe the quasihole statistics
of one dimensional systems carrying fractional charge,
whose level counting also gives a close relation to its
counterparts in two dimensions. With twisted bound-
ary condition |ψ(x + L)〉 = eiθx |ψ(x)〉, the Chern num-
ber can be defined in the parameter plane (θx, θ) by

C = 1
2π

∫ 2π

0
dθx

∫ 2π

0
dθF (θx, θ), where the Berry curva-

ture F (θx, θ) = Im(〈∂θxψ|∂θψ〉 − 〈∂θψ∂θxψ〉). For ν = 1
MR-like states, the low energy spectra flux vs θx is plot-
ted in Fig. 6(a). The energy of this system recover itself
after one flux quanta is inserted, and the three ground
states do not either mix with higher energy levels or
evolve into each other. For ν = 3/2 RR-like states their
low energy spectra flux vs θx is plotted in Fig. 6(b). The
energy of this system recover itself only after two flux
quanta are inserted, and the four ground states do not
either mix with higher energy levels.

For two-dimensional MR states, the (2, 2)-admissible
rules claim that no more than one particle is allowed to
occupy within any 2 consecutive orbits. Thus, by re-
moving one particle, the number of quasihole states of
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FIG. 6. (Color online) Low energy spectra flux for : (a) three-
body hardcore bosons H0 +H3 at ν = 1, N = 8, L = 24, V1 =
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spectrum for : (c) three-body hardcore bosons by removing
one particle at V1 = V2 = V3 = 10t. The number of states
below the red dashed line is Ns/2 per momentum sector; (d)
four-body hardcore bosons by removing one particle at W1 =
W2 = W3 = 10t. The total number of states below the red
dashed line is 27. The parameter θ = 0.

N = Ns − 1 particles in Ns orbitals reads as N2
s /2,

namelyNs/2 per momentum sector for ν = 1 bosonic MR
Pfaffian state59. In one-dimensional systems, As shown
in Fig. 6(c), we compute the spectrum of low-energy
two-quasihole state which lies in a low-energy mani-
fold (quasihole states) separated by a gap from higher
states, and find their number matches theoretical analy-
sis. Physically, when projected into the lowest subband,
the projected interaction Hamiltonian contains the two

types of terms U3(β†k)3β3
k + V3β

†
k+1(β†k)2β2

kβk+1 + h.c.,
where βk is the particle number operator of single par-
ticle Bloch state in the lowest subband. They prevent
the occupancy patterns · · · 3 · · · , · · · 21 · · · , therefore the
admissible patterns are just the three-fold root patterns
of MR-like states49.

For two-dimensional RR states, the (2, 3)-admissible
rules claim that no more than three particles is al-
lowed to occupy within any 2 consecutive orbits.
Thus, by removing one particle, a simple analysis
of the quasihole configuration of N = 8 particles
in Ns = 6 orbitals gives 5 types of configurations
203030, 202121, 112112, 203021, 211121. Due to transla-
tional symmetry, we finally obtain 5 states for even K
sector, and 4 for odd K sector. In one-dimensional
systems, as shown in Figs. 6(d), we compute the spec-
trum of low-energy quasihole state which lies in a low-
energy manifold separated by a gap from higher states,
and find that their number exactly matches theoretical

0 0.5 1
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2

3

 q/2π

 S
(q

)
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E

1
,ν=1,K=0

E
2
,ν=1,K=π

E
3
,ν=1,K=0

0 0.5 1
0

2

4

6

 q/2π

 S
(q

)

 

 (b)
E

1
,ν=3/2,K=0

E
2
,ν=3/2,K=0

E
3
,ν=3/2,K=π

E
4
,ν=3/2,K=π

FIG. 7. (Color online) Numerical results for static density
structure factors at θx = θ = 0: (a) S(q) of three gapped
MR-like ground states of three-body hardcore bosons H0+H3

at ν = 1, N = 8, L = 24, V1 = V2 = V3 = 10t; (b) S(q) of four
gapped RR-like ground states of four-body hardcore bosons
H0 +H3 at ν = 3/2, N = 9, L = 18,W1 = W2 = W3 = 10t.

analysis. By adding one flux quanta, we get similar re-
sults. Physically, when projected into the lowest sub-
band, the projected interaction Hamiltonian contains the

three types of terms U4(β†k)4β4
k +W3β

†
k+1(β†k)3β3

kβk+1 +

W3(β†k+1)2(β†k)2β2
kβ

2
k+1 + h.c.. They prevent the oc-

cupancy patterns · · · 4 · · · , · · · 31 · · · , · · · 22 · · · , therefore
the admissible patterns are just the four-fold root pat-
terns of RR-like states49.

Appendix B: Crystalline Order

In this section we discuss the one dimensional
crystalline nature of those many-body ground
states in the main text. For ν = 1 MR-like
states, however the density structure factors
S(q) = 1

L

∑
j,j′ e

iq·(j−j′) (〈njnj′〉 − 〈nj〉〈nj′〉δq,0) of
three ground states do not exhibit the same Bragg
peaks. Instead, as shown in Figs. 7(a), the structure fac-
tor of the lowest ground state only hosts q = 2π/3, 4π/3
peaks, while the other two host integer multiple times
q = 2π/6 vector, due to onsite double pairing occupancy.
The pairing nature could be obtained from double

occupancy 〈n2j 〉 and pair correlations 〈b†i b
†
i bjbj〉.

Similarly, for ν = 3/2 RR-like states, as shown in
Figs. 7(b), the structure factors of four ground states
do not exhibit the same Bragg peaks. Two of them
(one in (0) sector while the other in (π) sector) host
q = 2π/3, 4π/3 peaks, while the other two host integer
multiple times q = 2π/6 vector, due to onsite triple pair-
ing occupancy which can be measured from triple occu-
pancy 〈n3j 〉. One distinction from Moore-Read like states
is that due to inequivalent 2121 · · · occupancy, there also
exist small bumps at q = 2π/6, q = π, q = 10π/6 in the
structure factors of the former two.
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TABLE I. The partition at ν = 1 with N particles

λ − 2N−1
2
− 2N−3

2
· · · − 7

2
− 5

2
− 3

2
− 1

2

n[20](λ) 2 0 · · · 2 0 2 0
n[02](λ) 0 2 · · · 0 2 0 2
n[11](λ) 1 1 · · · 1 1 1 1

TABLE II. Expected Chern number Cα and charge polariza-
tion Pα of each ground state and charge transfer ∆Q2π

α in a
complete pump cycle θ = 0→ 2π.

ν [α] Cα ∆Q2π
α Pα

ν = 1/2 [01] 1/2 1/2 1/4
[10] 1/2 1/2 −1/4

ν = 1 [02] 1 1 1/2
[20] 1 1 −1/2
[11] 1 1 0

ν = 3/2 [03] 3/2 3/2 3/4
[30] 3/2 3/2 −3/4
[12] 3/2 3/2 1/4
[21] 3/2 3/2 −1/4

Appendix C: Intrinsic Charge Polarization

We introduce here a specific quantity characterizing a
given topological root configuration. For each root con-
figuration at ν = 1, the partition from Jack polynomials
is given by Table. I. For general fillings ν = k/2, the
intrinsic charge polarization of the root configuration is
defined as

Pα =
ν

N

−N/ν+1/2∑
λ=−1/2

[nα(λ)− ν]× λ. (C1)

where nα(λ) is the occupation factor of the root sector α
at position λ. In Table. II, we give the typical values Pα
from Eq. C1. Note that Pα is indeed a conserved invari-
ant for any root configuration satisfying the “sqeezing”
rule λ1 + λ2 = λ′1 + λ′2

47. Using exact diagonalization,
at θ = 0 we verify that Xα(0) − Xα′(0) = Pα − Pα′

hold for the three ground states of ν = 1 MR-like states;
Similarly, for ν = 3/2 RR-like states, Xα(0) −Xα′(0) =
Pα − Pα′ hold for the four ground states; we also obtain
Xα(0) − Xα′(0) = Pα − Pα′ for the two ground states

at ν = 1/2 for two-body hardcore bosons. Here, the
minimal difference of the charge polarization among the
ground states is just the elementary excitations’s charge
unit e? = e/(kM + 2) at fillings ν = k/(kM + 2) with
(k + 1)-body interactions (Here, we take M = 0 for
bosons)50.

Appendix D: Effective Interaction Potential

In this section, we consider the reduced effective inter-
action potentials of polar molecules in a microwave field.
The internal structure of polar molecules with a closed
shell electronic structure 1Σ is given by the rotational
degree of freedom |J,M〉. The interaction between the
polar molecules at sites ri and rj is determined by the
dipole-dipole interaction

Vdd(ri − rj) =
didj

|ri − rj |3
− 3di · (ri − rj)dj · (ri − rj)

|ri − rj |5
.

Applying a circular polarized microwave field along z-
axis would couple the ground state |0, 0〉 with the first
excited rotational level |1, 1〉 by forming a dark state
|+〉 = α|0, 0〉 + β|1, 1〉. In the new representation, the
effective interaction becomes

V effdd =
J⊥

|ri − rj |3
[1
2
S+
i S
−
j + h.c.

+ (ηgPi + ηeQi)(ηgPj + ηeQj)
]

where J⊥ is the dipole coupling, Pi = 1/2 + Szi and
Qi = 1/2 − Szi are the projectors on the ground |0, 0〉
and excited |1, 1〉 states, ηg, ηe induced dipole coupling
coefficients. Here, we focus our interests on the lowest
single-particle energy level |+〉, with on-site double occu-
pancies and on-site Hubbard interactions taken into ac-
count. In the perturbation expansion of dipole coupling,
we only keep the two-site terms (omitting three-site terms
ninjnk)

Vint(ri − rj) = (λ1
J⊥

|ri − rj |3
+ λ2

J⊥
|ri − rj |6

)ni+n
j
+

+ γ1
J⊥

|ri − rj |6
ni+n

i
+n

j
+ + γ2

J⊥
|ri − rj |9

ni+n
i
+n

j
+n

j
+.
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