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We construct exactly solvable models for a wide class of symmetry enriched topological (SET)
phases. Our construction applies to 2D bosonic SET phases with finite unitary onsite symmetry
group G and we conjecture that our models realize every phase in this class that can be described by
a commuting projector Hamiltonian. Our models are designed so that they have a special property:
if we couple them to a dynamical lattice gauge field with gauge group G, the resulting gauge
theories are equivalent to string-net models. This property is what allows us to analyze our models
in generality. As an example, we present a model for a phase with the same anyon excitations as the
toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate
our construction with a number of additional examples.

I. INTRODUCTION

The interplay between symmetry and topology in
gapped quantum many body systems has been a subject
of intense investigation recently. Spurred by the theoret-
ical prediction and experimental discovery of topological
insulators,1,2 a large class of gapped quantum many body
systems in which symmetry and topology play a crucial
role have been predicted and classified. At the heart of
this classification is the concept of a gapped phase: two
gapped many body systems are said to belong to the
same phase if one can continuously interpolate between
their Hamiltonians while maintaining a finite energy gap
and preserving all physical symmetries.

A useful approach for studying gapped quantum
phases, especially those with interactions, is to construct
exactly solvable lattice models that realize them.3–8

Among other applications, such models have been used to
prove that certain phases exist and are anomaly free.6,9

In addition, exactly solvable models have revealed new
properties of previously known phases (see e.g. Refs. 10
and 11). In most cases, the solvability of these models
comes from the fact that their Hamiltonians can be writ-
ten as a sum of commuting projection operators Pi, i.e.
H = −∑i Pi. We will refer to Hamiltonians of this type
as ‘commuting projector’ models.

The solvable model approach has been developed pri-
marily in the context of two types of phases: (1) phases
that support anyon excitations but have no symmetries
and (2) phases that don’t support anyon excitations but
do have symmetries. The first type of phase is com-
monly called a ‘topological’ phase, while the second type
is known as a ‘symmetry-protected topological’ phase.
In the former case, the string-net models of Ref. 4 are
known to realize a large class of two dimensional topolog-
ical phases. Likewise, in the latter case, the cohomology
models of Ref. 8 can realize symmetry-protected topo-
logical (SPT) phases in arbitrary spatial dimension with
finite unitary onsite symmetry. These constructions are
especially appealing because they are conjectured to re-
alize all phases of type (1) and (2) that can be built from

commuting projector models.
In view of these successes, it is natural to try to build

solvable models for more general phases that have both
anyon excitations and symmetry. Such phases are known
as symmetry-enriched topological (SET) phases. Some
progress has been made in this direction and a num-
ber of solvable models for SET phases have been written
down.12–15 However, these constructions are not as gen-
eral as they could be since they do not include all phases
that can be realized with commuting projector models.

In this paper we construct exactly solvable models for
more general 2D SET phases, which we call ‘symmetry
enriched string-net’ models. Our construction applies to
the simplest class of 2D SET phases, namely those that
are built out of bosonic degrees of freedom and have a fi-
nite unitary onsite symmetry. We conjecture that, within
this class of SET phases, our models realize every phase
that can be described by a commuting projector Hamil-
tonian. (In fact, our conjecture is even stronger: we be-
lieve that our models realize every phase whose under-
lying topological order can be realized by a commuting
projector model.) As an example, we present an exactly
solvable model for an SET phase that has eluded previ-
ous constructions, namely a phase with the same anyon
excitations as the toric code3 and an onsite Z2 symme-
try which exchanges the e and m (i.e. Z2 charge and Z2

flux) anyon excitations.
To understand the basis of our conjecture, we need

to recall recent work on the classification of 2D SET
phases.16 According to this work, every SET phase with
anyon excitations A and finite unitary onsite symmetry
group G is associated with a mathematical object known
as a ‘braided G-crossed extension of A.14,16 Roughly
speaking, this object describes the collective fusion and
braiding data of the anyon excitations in A along with
extrinsic symmetry defects. It is known that if two mod-
els are described by distinct braided G-crossed exten-
sions then they belong to distinct SET phases. It has
also been conjectured that the converse is true.16 If this
is the case, then braided G-crossed extensions provide a
complete classification of 2D SET phases.17

Using this language, we can precisely characterize the
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generality of our models. Consider a topological phase
with anyon excitations A that is realizable with a string-
net model and has no symmetries. Then, with our con-
struction, we can build a symmetry enriched string-net
model realizing every braided G-crossed extension of A.
Our conjecture now follows immediately from this result
if we make two assumptions: (1) string-net models real-
ize every topological phase (without symmetry) that can
be realized by commuting projector models and (2) the
above classification is correct.

The general idea behind our construction is as follows.
Suppose we want to construct a model for a particular
SET phase with symmetry group G. We can build such
a model in two steps. The first step is to build a string-
net model that realizes the gauged SET phase — that is,
the phase obtained by gauging the global G-symmetry
of the SET phase of interest. In general, this step can
be challenging, but mathematical results guarantee that
such a string-net model exists. The second step is to
‘ungauge’ the resulting string-net model: that is, to con-
struct a model that has a symmetry group G, and with
the property that gauging this symmetry gives back the
string-net model (or at least something that belongs to
the same phase). Conveniently, this second step can be
accomplished rather easily by making small modifications
to the string-net Hilbert space and Hamiltonian. Once
we make these modifications, the resulting lattice model
realizes the SET phase of interest.

We now comment on the relationship between our re-
sults and previous work. Exactly solvable models real-
izing certain SET phases were written down in Ref. 13.
This construction was then extended in Ref. 15 to in-
clude certain anyon permuting symmetries, but not all.
The previous constructions of SET phases that are per-
haps most similar to ours are given in Refs. 12 and 18.
The models of Ref. 12 realize a subset of the SET phases
discussed in this paper, and in these cases their models
are essentially equivalent to ours. Meanwhile, the models
of Ref. 18 are similar to ours in that they realize SET
phases by extending the string-net construction. How-
ever, our construction has the advantage of providing a
more algorithmic way of building models and making the
symmetry manifest. It is also worth noting that the 2D
group cohomology SPT models8 and string-net models4

can be considered as special cases of our construction by
taking the limits A = 0 and G = 0 respectively.

This paper is organized as follows. To warm-up, we
present a simple example of our construction in section
II. This example is an exactly solvable model for a toric
code SET phase with a Z2 symmetry which exchanges the
e and m anyon excitations. In section III, we explain the
relationship between this toric code model and the string-
net model that it descends from, namely the doubled Ising
string-net model. After this warm-up, we outline the
general construction in section IV. We then illustrate the
general construction with additional examples in section
V. Technical arguments are given in the appendices.

II. TORIC CODE WITH e↔ m SYMMETRY

Before discussing the general construction, it is useful
to first see a concrete example. The example that we
present is an exactly solvable model that has the same
types of anyon excitations as the toric code3 and has a
global onsite Z2 symmetry which exchanges the ‘e’ and
‘m’ type anyons (also known as the Z2 charge and Z2

flux). We will refer to this example as the ‘symmetric
toric code’ model.

Like all of the symmetry enriched string-net models,
the symmetric toric code model is derived from a par-
ent string-net model — in this case, the doubled Ising
string-net model. That being said, in this section we will
make every effort to analyze the symmetric toric code
model from first principles, without referring to the dou-
bled Ising string-net model. We postpone the discussion
of the connection between the two models to section III.

We note here that there are actually two distinct toric
code SET phases with an e↔ m symmetry, which differ
in a very minor way.16 For simplicity, we focus on just
one of them in the main text, but we briefly discuss the
other in appendix C.

A. The model

The model is a spin system built out of two-state spins
that live on the plaquettes of the honeycomb lattice and
three-state spins that live on the links of the honeycomb
lattice. We will denote the basis states of the two-state
spins by |+〉 and |−〉, and the basis states of the three-
state spins by |1〉, |ψ〉, and |σ〉. In this notation, the basis
states for the full Hilbert space are labeled as |{τzp , µl}〉
where τzp = ± parameterizes the states of the plaquette
p and µl = 1, ψ, σ parameterizes the states of the link l
(Fig. 1).

We will sometimes find it convenient to describe the
link degrees of freedom using an alternative language in-
volving strings. In particular, if a link is in the state |ψ〉,
we will say that it is occupied by a ψ string, and likewise
if the link is in the state |σ〉, we will say it is occupied by
a σ string. If a link is in the state |1〉, we will say that
it is unoccupied. Using this language, every state of the
link spins µl corresponds to a configuration of ψ and σ
strings drawn on the honeycomb lattice.

The Hamiltonian of the model,

H = −
∑
l

Pl −
∑
v

Qv −
∑
p

Bp, (1)

is expressed as a sum over operators associated with the
links (l), vertices (v), and plaquettes (p) of the honey-
comb lattice. We now explain how each of these opera-
tors are defined.

The link operator Pl acts on three spins — namely the
ones living on the link l and the two adjacent plaquettes
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µl
τp

FIG. 1. (color online) The Hilbert space of the symmetric
toric code model is built out of two-state spins τp and three-
state spins µl living on the plaquettes p and links l of the
honeycomb lattice. The Hamiltonian is a sum of three terms,
Pl, Qv, Bp, which act on the green, blue, and red spins, re-
spectively.

p and q (green spins in Fig. 1). It is defined by

Pl =
1

2
(1 + (−1)Nlσ · τzp τzq ) (2)

Here τzp and τzq are the standard Pauli operators for the
plaquette spins p and q, and Nlσ is a link spin operator
defined by Nlσ|1〉 = Nlσ|ψ〉 = 0 and Nlσ|σ〉 = |σ〉.

If we examine the above definition we can see that Pl
has a simple interpretation: Pl projects onto states such
that either (1) τzp and τzq are anti-aligned and the link l is
in the state |σ〉 or (2) τzp and τzq are aligned, and the link
l is not in the state |σ〉. In other words, Pl projects onto
states in which the σ strings coincide with the domain
walls between the plaquette spins.

The vertex operator Qv acts on the three spins living
on the links adjacent to v (blue spins in Fig. 1). It is
defined by

Qv

∣∣∣ i
k

j 〉
= δijk

∣∣∣ i
k

j 〉
(3)

where δijk is a fully symmetric three-index tensor whose
only nonzero elements are

δ111 = δ1ψψ = δ1σσ = δψσσ = 1, (4)

together with cyclic permutations. In the string lan-
guage, we will refer to the states with δijk = 1 as obeying
the ‘fusion rules’, and those with δijk = 0 as violating
the fusion rules (see Fig. 2). Thus, Qv is a projection
operator that projects onto states that obey the fusion
rules at v.

The Bp operator acts on the plaquettes of the honey-
comb lattice (red spins in Fig. 1) and is a linear combi-
nation of three terms:

Bp = a1B
1
p + aψB

ψ
p + aσB

σ
p τ

x
p , (5)

where a1 = aψ = 1
4 and aσ =

√
2

4 . Each term, Bsp, takes
the form

Bsp = PpB̃spPp (6)

where

Pp =
∏
v∈p

Qv (7)

is a projection operator which projects onto states that
obey the fusion rules at the 6 vertices adjoining p. Before
giving formal definitions of these operators, it is worth
noting that the Bsp operators are identical to the Bsp oper-
ators in the doubled Ising string-net model, a connection
we will explore further in section III.

The first operator, B̃1
p , is the simplest:

B̃1
p = 1. (8)

The second operator, B̃ψp , is more complicated. This
operator acts on 12 link spins — 6 of which lie along
the boundary of the plaquette p and 6 of which lie on
the ‘external legs’ that adjoin p. Importantly, B̃ψp acts
differently on the boundary spins than it does on the
external leg spins: in particular, while B̃ψp changes the
state of the boundary spins, it does not affect the state
of the spins on the external legs. Thus, the nonvanishing
matrix elements of B̃ψp can be parameterized as〈

a

b c

ef

d
g’

h’

j’
k’

l’

i’

∣∣∣∣∣ B̃ψp
∣∣∣∣∣a

b c

ef

d

h

l

g i

k
j

〉
= Bψ,g

′h′i′j′k′l′

p,ghijkl (abcdef)

The explicit formula for these matrix elements is

Bψ,g
′h′i′j′k′l′

p,ghijkl (abcdef) = δψgg′δψhh′ · · · δψll′ · (−1)Np1

(9)

where Np1 denotes the number of vertices of p of the type

shown in Fig. 3a. The matrix elements for B̃σp have a
similar structure and are given by

Bσ,g
′h′i′j′k′l′

p,ghijkl (abcdef) = δσgg′ · · · δσll′ · 2−
Npσ

4 (−1)Np2

(10)

Here, Npσ denotes the number of external legs a, b, . . . , f
that are in the state |σ〉 while Np2 denotes the number
of vertices of p for which the initial state has a vertex of
the type shown on the left of Fig. 3b and a final state
vertex of the type shown on the right of Fig. 3b or vice
versa.

1

σ

1

ψ

1

1

1

ψ

σ

σσ

ψ

FIG. 2. The four types of vertices that obey the fusion rules.
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σ

σ

ψ

ψ

σ

σσ

σ

ψ

(a) (b)

FIG. 3. (a) The vertices counted by Np1. (b) The vertices
counted by Np2. For a vertex to be counted, its initial state
must match the picture on the left and final state match the
picture on the right or vice versa. External legs of p are shown
in bold.

B. Properties of the Hamiltonian

The Hamiltonian H (1) defined above has several in-
teresting properties. Among the most important of these
is that it possesses a global Z2 symmetry. This symmetry
is defined by

S =
∏
p

τxp , (11)

where τxp denotes the Pauli operator acting on the pla-
quette spin p. We can think of S as a conventional Ising
symmetry which flips all the plaquette spins: |+〉 ↔ |−〉.
To see that [S,H] = 0, note that every term in H either
(1) does not act on the plaquette spins at all (i.e., Qv,
B1
p , Bψp ), or (2) acts on the plaquette spins in a way that

is manifestly symmetric under S (i.e., Pl, B
σ
p τ

x
p ).

Another important property is that H is a sum of mu-
tually commuting operators. Indeed, from the expres-
sions for Pl and Qv given in Eq. 2 and 3 it is clear that

[Pl, Pl′ ] = [Qv, Qv′ ] = [Pl, Qv] = 0, (12)

since these operators are all diagonal in the |{τzp , µl}〉
basis. It is also easy to see that

[Bp, Qv] = [Bp, Pl] = 0. (13)

The first equality follows from the fact that the plaque-
tte operators include a factor of P on both sides. The
second equality requires a little more work, but can be
verified by separately considering each of the three terms
in the definition of Bp. In particular, one can see that B1

p

and Bψp both commute with Pl, since they commute with

(−1)Nlσ for every link l. Likewise, one can see that Bσp τ
x
p

commutes with Pl by noting that Bσp anti-commutes with

(−1)Nlσ if l is adjacent to p and commutes with (−1)Nlσ

otherwise. The only relation left to establish is

[Bp, Bp′ ] = 0 (14)

The easiest way to prove this relation is to use the fact
that the Bsp operators are identical to the string-net pla-
quette operators for the doubled Ising string-net model.

String-net plaquette operators are known to commute
with each other,4 so we know that [Bsp, B

s′
p′ ] = 0, imply-

ing the above identity.
A third property of H is that the operators Pl, Qv and

Bp are all projectors. Indeed, we’ve already pointed this
out for the case of Pl and Qv. As for Bp, the easiest way
to see that it is a projector is to again invoke the fact
that theBsp operators are identical to string-net plaquette
operators, which are known to obey the identity

BspB
s′
p =

∑
t=1,ψ,σ

δss′tB
t
p (15)

Using this identity, together with the fact that the coeffi-
cents as obey the relation

∑
ss′ δss′tasas′ = at, it is easy

to check that B2
p = Bp, i.e. Bp is a projector.

Given that H is a sum of commuting projectors, we
know that the lowest energy states are those that obey

Pl|Ψ〉 = Qv|Ψ〉 = Bp|Ψ〉 = |Ψ〉, (16)

for all links l, vertices v and plaquettes p. In addition,
we know that these states are separated from the excited
states by a gap of at least ∆ ≥ 1. Thus, the only property
of the low energy spectrum left to determine is the ground
state degeneracy of the model, i.e. the number of states
that obey (16). This degeneracy D can be conveniently
computed using the formula

D = Tr

(∏
l

Pl
∏
v

Qv
∏
p

Bp

)
(17)

We carry out this calculation in Appendix A, and we
find that the degeneracy depends on the global topology
in which the model is defined. For example, if the model
is defined in an infinite plane or spherical geometry, the
ground state degeneracy is D = 1. In contrast, if the
model is defined in a torus geometry, the ground state
degeneracy is D = 4. More generally, we find that the
ground state degeneracy on a surface of genus g is D =
4g.

We can draw two conclusions from this calculation.
First, we conclude that H does not break the symmetry S
spontaneously since the ground state is non-degenerate in
an infinite plane or sphere geometry. Second, we conclude
that H realizes a topological phase (i.e. supports anyon
excitations) since the ground state degeneracy is different
for different topologies.

C. Ground state wave function

Interestingly, we can write down an explicit formula
for the ground state wave function of the symmetric toric
code model in an infinite plane or spherical geometry. Let
|X〉 = |{τzp , µl}〉 be an arbitrary configuration of spins
τzp and strings µl. The amplitude for |X〉 in the ground
state vanishes unless X satisfies two conditions: (1) the
σ strings lie along the domain walls of the τzp spins, and
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a

a

b

bσ
ψ

abab
f(X) = −1Nσ(X) = 1

a

a

b

b

σ

ψ
σ

aabb
f(X) = +1Nσ(X) = 2

(a) (b)

ψ

ψ

FIG. 4. (color online) Two examples of the function f(X).
Here the string states are drawn in the continuum rather than
on the lattice.

(2) the 1, ψ, σ strings obey the fusion rules at each vertex
(Fig. 2). Note that condition (2) implies that σ strings
form closed loops and ψ strings either form closed loops
or else their ends lie on σ loops. If these conditions are
satisfied, then the amplitude for |X〉 is given by19

Ψ(X) ≡ 〈X|Ψ〉 =
√

2
Nσ(X)

f(X) (18)

where Nσ(X) is the number of σ loops contained in X
(Fig. 4) and f(X) takes the values 0 or ±1. More specifi-
cally, f(X) = 0 whenever there is at least one σ loop in X
which has an odd number of ψ strings ending on it, and
f(X) = ±1 otherwise. Determining whether f(X) = +1
or −1 is a little bit trickier. To determine this sign, we
compute a ±1 factor for each σ loop in X and then mul-
tiply them all together. The ± sign corresponding to
each σ loop can be calculated as follows. Suppose that
there are 2n vertices where the ψ strings end on the σ
loop. We can divide these vertices into two groups cor-
responding to the cases where the ψ strings are incident
from the outside of the loop or the inside of the loop. We
then label the vertices in one group by ‘a’, and the ver-
tices in the other group by ‘b’ (which one is which isn’t
important). We then go around the loop (in either di-
rection) starting at some arbitrary point, reading off the
sequence of a’s and b’s. We then count how many pair-
wise exchanges of a’s and b’s are necessary to rearrange
the sequence so that a’s and b’s are separated into two
blocks, i.e. aa · · · abb · · · b. The ± sign associated with
the loop is given by the parity of the number of these
exchanges (Fig. 4). We explain how to derive Eq. (18)
in appendix B.

D. Excitations and string operators

In this section, we show that the model supports four
topologically distinct types of anyon excitations. We la-
bel these excitations by {1, e, m, em}, where 1 denotes
the trivial excitation, and e,m, em denote the three non-
trivial excitations. We argue that this is a complete list
and that there are no other topologically distinct anyons.

We begin by describing the string operators that create
each of these anyon excitations (for a derivation of these

operators see appendix D). In general, these string op-
erators act nontrivially along an open path γ, and when
we apply them to the ground state, they create a pair of
anyon excitations, with one at each end of the path γ.3

The string operator that creates e-type anyons is defined
by

W γ
e = Pγ ·

∏
l∈γ

(fl)
1
4 (1+τzpl

)(1+τzql
)(−1)

∑6
i=1Nei · Pγ (19)

where γ is an (open) path on the honeycomb lattice and
Pγ denotes the projection operator

Pγ =
∏
v∈γ

Qv ·
∏
l∈γ

Pl (20)

Let us explain the notation in the formula for W γ
e : the

index l runs over links that are contained in γ, while pl
and ql denote the two plaquettes adjacent to link l. The
link spin operator fl is defined as

fl = |ψ〉〈1|+ |1〉〈ψ|+ |σ〉〈σ| (21)

while the operators Ne1, ..., Ne6 count the number of ver-
tices that belong to the path γ and that are of the
six types shown in Fig. 5. One subtlety is that the
Ne1, ..., Ne6 operators distinguish between vertices where
the external leg enters γ on the ‘left’ or on the ‘right’, so
to define these operators, we need to fix an orientation
on γ. However the choice of orientation is not important:
it is possible to show that changing the orientation of γ
only changes W γ

e by local operators acting near the ends
of γ.

Translating the formula for W γ
e into words, the action

of W γ
e on a basis state |{τzp , µl}〉 can be broken down

into several steps. First, the projector Pγ annihilates the
state unless (1) the strings obey the fusion rules for all
the vertices v in γ, and (2) the σ strings lie along the
domain walls of the τz spins, for all the links l in γ. The
next step is to multiply the state by a ± sign depending
on whether γ contains an even or odd number of vertices
of the type shown in Fig. 5. The final step is to change
the state of the link spins µl from |1〉 → |ψ〉 or |ψ〉 → |1〉
if the adjacent plaquette spins satisfy τzpl = τzql = +1.

The string operator for the m-type anyons takes a very
similar form:

W γ
m = Pγ ·

∏
l∈γ

(fl)
1
4 (1−τzpl )(1−τ

z
ql

)(−1)
∑6
i=1Nmi · Pγ (22)

This differs from the expression for W γ
e in two ways.

First, τzpl , τ
z
ql

are replaced by −τzpl ,−τzql , and second, the
Nei operators are replaced by Nmi. The Nmi operators
count the number of vertices that belong to γ that have
a particular type. These types are the same as those cor-
responding to Nei (Fig. 5), except with the plaquette
spins flipped: |+〉 ↔ |−〉.20

The only remaining string operator that we need to
discuss is the one corresponding to em. As the notation
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 e1, left e2, left

e6, left

σ

ψ

σ

σ

σ

ψ

ψ

σ

σ e4, left

ψ

 e5, left

ψ

ψ

ψ1

1

+
 e3, right

ψ

σ

σ

+
+

+

FIG. 5. The vertices counted by Ne1, ..., Ne6. Vertices marked
with ‘left’ are only counted if the external leg (shown in bold)
adjoins γ from the left, and similarly for those marked with
‘right.’ The vertices counted by Nm1, ..., Nm6 can be obtained
from the above set by flipping all the plaquette spins: |+〉 ↔
|−〉.

suggests, this string operator can be obtained by multi-
plying together We and Wm:

W γ
em = W γ

eW
γ
m (23)

To justify the above formulas, several points need to be
established. First, we need to show that the above string
operators only create excitations at their endpoints and
nowhere else. Second, we need to show that the anyon ex-
citations created by the string operators are topologically
distinct. Finally, we need to show that the string opera-
tors create all the topologically distinct excitations.

To establish the first point we note that the above
string operators have the property that they commute
with every term in the Hamiltonian except for the six Bp
terms that act on the plaquettes adjoining the endpoints
of γ. This property can be established either by straight-
forward (but tedious) algebra, or by using a graphical
representation of the string operators as in Ref. 4. As for
the second point, this follows from the braiding statistics
calculation presented in the next section: in particular,
our calculation shows that the e,m and em excitations all
have distinct braiding statistics and are therefore topo-
logically distinct. Finally, to establish the last point, we
recall that the ground state degeneracy of the model in a
torus geometry is 4. Typically, the ground state degen-
eracy on a torus is equal to the number of distinct anyon
types21 so we conclude that {1, e,m, em} is a complete
list of anyons.

A final remark: it is interesting to note that the above
string operators have especially simple behavior when
acting on states with no σ strings and with τzp = +1
everywhere. Indeed, if we denote these states by |+, µl〉,
we can see from Eq. (19), that the action ofW γ

e on |+, µl〉
is simply to flip the link spins from |1〉 ↔ |ψ〉 on all the
links along γ. Likewise, the action of W γ

m on |+, µl〉 is
to multiply the state by a factor of (−1)Nψ , where Nψ
counts the number of ψ strings adjoining γ on the left.

What is particularly interesting is that these formulas
precisely agree with the action of the We, Wm string
operators in the usual toric code string-net model built
from string types {1, ψ}. Furthermore, if we consider
symmetry reversed states, |−, µl〉, where τzp = −1 for all
p, this correspondence is reversed. That is, the action of
W γ
e on |−, µl〉 agrees with the action of Wm in the usual

toric code and vice versa. This connection between the
string operators in the symmetric toric code and usual
toric code is not a coincidence and holds more generally
for all the symmetry enriched models that we describe
below.

E. Symmetry action on anyons

With expressions for the e and m string operators in
hand, we can derive one of the most interesting features of
our model: the Z2 symmetry S exchanges e-type anyons
and m-type anyons. To see this, note that the string
operators W γ

e ,W
γ
m (19-22) are related to one another by

S−1W γ
e S = W γ

m , S−1W γ
mS = W γ

e (24)

We conclude that S exchanges e-type anyons and m-type
anyons. On the other hand, S−1W γ

emS = W γ
em, so the

symmetry leaves em-type particles unchanged.
We note that a toric code with a symmetry exchanging

e and m has been studied previously.14,22 However, in
that case, the symmetry was not an onsite Z2 symmetry,
but rather a spatial symmetry.

F. Braiding statistics

We now compute the braiding statistics data for the
{1, e,m, em} anyons, and we show that this data agrees
with that of the toric code model. We begin with the
mutual statistics of the anyons — that is, the statisti-
cal phase eiθa,b associated with braiding anyon a around
anyon b where a, b ∈ {1, e,m, em}. We compute this
statistical phase using a standard approach:3,4,23 we con-
struct the string operators associated with a and b, with
one acting on the path β and the other on the path γ
(Fig. 6), and then we derive the mutual statistics from
the string operator commutation algebra using the gen-
eral relation:

W β
aW

γ
b = eiθa,bW γ

b W
β
a (25)

We start with the mutual statistics of the e and m type
anyons. To find their statistics, we need to compare
W β
mW

γ
e with W γ

eW
β
m. To make a comparison, it is easiest

to consider the action of these operators on a particular
state, say |{τzp = +, µl = 1}〉. First we apply W γ

e . The
result is to flip the link spins from |1〉 to |ψ〉 along the
path γ:

W γ
e |{+, 1}〉 = |{τzp = +, µl∈γ = ψ, µl/∈γ = 1}〉
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β

γ

FIG. 6. An example of paths β, γ used to find the mutual
statistics of e and m. Applying the two string operators in
two different orders gives results that differ by the mutual
statistical phase eiθe,m .

Next we apply W β
m. This has no effect on the link spins

since W β
m only flips the link spins when τzp = −. On the

other hand, applyingW β
m has the effect of multiplying the

state by −1 since
∏
l∈β(−1)

∑
iNmi = −1 for the above

state. Thus, we have

W β
mW

γ
e |{+, 1}〉 = −|{τzp = +, µl∈γ = ψ, µl/∈γ = 1}〉

(26)
Now consider the opposite ordering. First, we apply W β

m

to |{+, 1}〉. In this case, the state is left unchanged:

W β
m|{+, 1}〉 = |{τzp = +, µl = 1}〉

Note that there is no factor of −1 here because∏
l∈β(−1)

∑
iNmi = +1 for the above state. If we now

apply W γ
e , we obtain

W γ
eW

β
m|{+, 1}〉 = |{τzp = +, µl∈γ = ψ, µl/∈γ = 1}〉 (27)

Again, there is no factor of −1 since
∏
l∈β(−1)

∑
iNei =

+1.
Comparing Eqs. 27 and 26, we can see that W γ

e and
W β
m anti-commute when acting on the state |{+, 1}〉.

In fact, this anti-commutation property is more general:
these operators anti-commute when acting on any state.
We have verified this by expressing the string operators
in matrix form and computing their anti-commutator nu-
merically. In view of Eq. (25), the implication of this
result is that the e and m type particles have a mutual
statistical phase of

eiθe,m = −1 (28)

Following a similar analysis, one can show that W γ
e and

W β
e commute with one another (as do W γ

m and W β
m) so

that the corresponding statistical phases are

eiθe,e = eiθm,m = +1 (29)

All of these phases agree with the toric code model.3 Fur-
thermore, the statistical phases involving the em particle
also agree since these are fully determined by the fact
that em = e×m together with the above data.

The only thing left to check is that the anyons in our
model have the same exchange statistics as those in the
toric code model. In particular, we need to check that the
e and m particles are bosons, while the em particle is a
fermion. Conveniently we can establish this fact without
doing any additional calculation. To see this, note that
e and m have to be either bosons or fermions, given the
mutual statistics found above. Furthermore symmetry
requires that e and m have the same exchange statistics.
Thus, the only alternative possibility is that e and m are
both fermions, in which case em is also a fermion — by
the composition rule for exchange statistics. But we can
rule out this three-fermion possibility by noting that if
e,m, em were all fermions, then the chiral central charge
c− of our model would have to be c− ≡ 4 (mod 8),24

yet we know that the chiral central charge of our model
must vanish since the Hamiltonian is a sum of commuting
projectors.

III. RELATIONSHIP TO DOUBLED ISING
STRING-NET MODEL

In this section we discuss the relationship between the
symmetric toric code and the doubled Ising string-net
model. We present two results. First, we show that if
we gauge the global Z2 symmetry of the symmetric toric
code model, the resulting gauge theory can be mapped
exactly onto a variant of the doubled Ising string-net
model. Second, we reverse the logic and we show that
the symmetric toric code model can be constructed from
the doubled Ising string-net model by applying an ‘un-
gauging’ procedure.

Why are these results important? As we explain be-
low, our first result provides an alternative proof that the
symmetric toric code model has the properties claimed
above, namely (1) it supports anyon excitations with the
same braiding statistics as in the conventional toric code,
and (2) the Z2 symmetry exchanges the e andm type par-
ticles. Likewise, our second result is significant because
it shows how the symmetric toric code model was con-
structed. Most important of all, both of these results gen-
eralize to arbitrary symmetry enriched string-net models
and they lie at the heart of our construction and analysis
of the more general models in section IV.

A. Review of doubled Ising string-net model

We begin with a brief review of the doubled Ising
string-net model. (See Ref. 4 for a general introduction
to the string-net formalism). The doubled Ising string-
net model is a spin system built out of spins that live on
the links of the honeycomb lattice. Each spin can be in
three states, which we denote by |1〉, |ψ〉, and |σ〉. The
states of the spins can be equivalently described in terms
of ‘strings’: if a spin is in the state |ψ〉 or |σ〉, we will
say that the corresponding link is occupied by a ψ or σ
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string, while if the spin is in the state |1〉, we will say
the corresponding link is unoccupied. The Hamiltonian
of the model is given by

Hdi = −
∑
v

Qv −
∑
p

Bdip (30)

The first term, Qv, acts on three links adjacent to a ver-
tex v, and is defined as in Eq. (3). This term energet-
ically favors vertices that satisfy the fusion rules shown
in Fig. 2. The second term, Bdip can be written as a sum

Bdip = a1B
1
p + aψB

ψ
p + aσB

σ
p (31)

where a1 = aψ = 1
4 and aσ =

√
2

4 . The operators

B1
p , B

ψ
p , B

σ
p each act on 12 links — 6 of which make up

the boundary of a plaquette p and another 6 that lie on
the external legs that adjoin p. These operators are de-
fined as in Eqs. (6-10). (For readers who are familiar
with string-net models, we should mention that the defi-
nitions of B1

p , B
ψ
p , B

σ
p given in Eqs. (6-10) are equivalent

to the standard definitions of Bsp in terms of F -symbols).

The ground state of the model, |Ψdi〉, is a linear su-
perposition of string configurations that obey the fusion
rules. The amplitude for each configuration can be com-
puted using the following ‘local rules’:

Ψdi

(
i

)
=Ψdi

(
i

)
(32)

Ψdi

(
i
)

=diΨ
di

( )
(33)

Ψdi

(
ji l

k
)

=δijΨ
di

(
i

l

k

i

)
(34)

Ψdi

(
i

j k

lm
)

=
∑
n

F ijmkln Ψdi

(
i
j k

l
n

)
(35)

Here di is the quantum dimension of the i’th edge label

d1 = dψ = 1, dσ =
√

2 (36)

while F ijmkln is the ‘F -symbol’ for the doubled Ising model,
with the following nonzero components:

F 211
211 = F 121

121 = −1, F 11j
11k =

(−1)
j·k
4√

2
, j, k = 0, 2

F 220
220 = F 220

111 = F 110
221 = F 121

210 = F 211
120 = F 121

101 = F 211
011 = 1

F 121
012 = F 211

102 = F 011
122 = F 101

212 = F 101
121 = F 011

211 = F 000
000 = 1

F i0ii0i = F 0ii
0ii = F 000

iii = F ii000i = F i0i0i0 = F 0ii
i00 = 1, i = 1, 2

(37)

where

0 = vacuum, 1 = σ, 2 = ψ (38)

Let us specialize to the case where the model is de-
fined in a sphere or infinite plane geometry. In this

τp

τq

τrνpq

νqr

νrp

FIG. 7. The gauge field degrees of freedom, νpq, live on the
links 〈pq〉 of the dual triangular lattice connecting neighboring
plaquette spins (we omit link spins for clarity).

case, the above local constraint equations uniquely de-
termine the ground state wave function Ψdi since they
allow us to relate the amplitude of any string configu-
ration to the amplitude of the vacuum (empty string)
configuration which is defined to be Ψdi(vacuum) = 1,
by convention. Using this approach, it is not hard
to show that the ground state amplitude is given by

Ψdi(X) =
√

2
Nσ(X)

f(X), in exact agreement with Eq.
(18). This agreement is not a coincidence: in fact, the
way we derive Eq. (18) is to first find the ground state
wave function of the doubled Ising string-net model and
then use the connection with the symmetric toric code
to obtain the ground state of the symmetric toric code
model. See appendix B for details.

Physically, the most important property of the doubled
Ising string-net model is that it supports 9 different types
of anyon excitations. These anyons can be labeled as:

{1, ψ, σ} × {1, ψ̄, σ̄} = {1, ψ, ψ̄, σ, σ̄, ψψ̄, σψ̄, ψσ̄, σσ̄}
The braiding statistics and fusion rules of these anyons
are described by the Ising× Ising topological phase. This
is why the model is called the ‘doubled Ising’ string-net
model.

B. The gauged toric code model

Setting aside the doubled Ising string-net model for
the moment, we now explain how to gauge the global Z2

symmetry of the symmetric toric code model. Following
the standard procedure,25 the first step is to add a gauge
field to the model. This gauge field should be placed
on links connecting neighboring lattice sites where the
symmetry acts. In our case, the symmetry S =

∏
p τ

x
p

only acts on the plaquette spins, so we put the gauge field
on the links 〈pq〉 of the triangular lattice connecting the
plaquette spins (Fig. 7). Since the gauge group is Z2,
the lattice gauge field is a two-state degree of freedom
νzpq = ±1.

The second step is to perform the minimal coupling
procedure, replacing τzp τ

z
q → τzp ν

z
pqτ

z
q , whenever there
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are terms in the Hamiltonian that couple neighboring
plaquette spins τzp , τ

z
q . The final step is to add to the

Hamiltonian the term −∑〈pqr〉 νzpqνzqrνzrp, which ensures

that the states with zero Z2 gauge flux have the lowest
energy. Applying these steps to the symmetric toric code
model gives the following gauged Hamiltonian:

Hgauged = −
∑
v

Qv−
∑
p

Bp−
∑
l

P gauged
l −

∑
〈pqr〉

νzpqν
z
qrν

z
rp

(39)
where

P gauged
l =

1

2
(1 + (−1)Nlσ · τzp νzpqτzq ) (40)

Notice that Qv and Bp are not affected by the min-
imal coupling procedure since they don’t contain any
terms like τzp τ

z
q . Like any gauge theory, the Hamilto-

nian Hgauged is defined on a Hilbert space consisting of
gauge invariant states, that is, states |ψ〉 obeying

τxp
∏
q

νxpq|ψ〉 = |ψ〉 (41)

for all p.
As an aside, we should mention that we skipped one

of the steps in the usual gauging procedure. This step
involves multiplying each term in the gauged Hamilto-
nian by an operator that projects onto states that have
vanishing Z2 gauge flux through all triangular plaque-
ttes contained in the region of support of the term in
question.26,27 While this step is important when gauging
a general spin model, it is not necessary when the Hamil-
tonian only includes nearest neighbor τzp τ

z
q couplings, as

is the case here.

C. Equivalence between gauged toric code and
doubled Ising string-net model

In this section, we establish an exact equivalence be-
tween the gauged toric code model and a modified ver-
sion of the doubled Ising string-net model. Using this
equivalence, we then present an alternative proof that
the symmetric toric code model has the topological and
symmetry properties claimed above.

To begin, we explain how the modified doubled Ising
string-net model is defined. The modified model dif-
fers from the standard Ising string-net model Hdi in two
ways. First, the Hilbert space is bigger: in addition to
the three-state spin µl = 1, ψ, σ, the model also has a
two-state spin ξzl = ± living on each link l of the honey-
comb lattice. Also, the Hamiltonian has two extra terms:

Hdi′ = Hdi −
∑
l

1

2
(1 + ξzl )−

∑
v

∏
l∈v

ξzl (−1)Nlσ (42)

Despite these differences, the ground states of the two
models, Ψdi′ , Ψdi, are almost the same:

|Ψdi′〉 = |Ψdi〉 ⊗ |{ξzl = +}〉 (43)

To see this, notice that |Ψdi〉 ⊗ |{ξz = +}〉 separately

minimizes the energy of every term in Hdi′ .
The fact that the two ground states |Ψdi′〉, |Ψdi〉 are

identical up to tensoring with a product state is very
important for us because it implies that the two models
have the same topological properties, i.e. the same anyon
excitations and the same braiding statistics. The two
models are thus interchangeable for our purposes.

We now show that the modified string-net model Hdi′

is exactly equivalent to the gauged toric code model.
To this end, we need to construct a unitary mapping
U between the Hilbert spaces of the two models that
transforms the Hamiltonian Hdi′ into the Hamiltonian
Hgauged. The easiest way to define the mapping U is
in terms of basis states. The Hilbert space of the mod-
ified string-net model is spanned by basis states of the
form |{ξzl , µl}〉 where ξzl = ± and µl = 1, ψ, σ. Likewise,
the Hilbert space of the gauged model is spanned by ba-
sis states |{τzp νzpqτzq , µl}〉 labeled by the gauge invariant
quantum numbers τzp ν

z
pqτ

z
q = ± and µl = 1, ψ, σ. With

this notation, the mapping U is defined by

U |{τzp νzpqτzq , µl}〉 = |{ξzl , µl}〉 (44)

where ξzl = (−1)Nlστzp ν
z
pqτ

z
q and l is the link separat-

ing the two plaquettes p, q (see Table I). To see that U

transforms Hdi′ into Hgauged, note that

U−1ξzl U = (−1)Nlστzp ν
z
pqτ

z
q , U−1QvU = Qv,

U−1NlσU = Nlσ, U−1B1
pU = B1

p ,

U−1Bψp U = Bψp , U−1BσpU = Bσp τ
x
p (45)

Substituting these formulas into (42) gives

U−1Hdi′U = Hgauged, (46)

as claimed.
The equivalence between the gauged toric code model

and the modified doubled Ising string-net model provides
another proof that the (ungauged) toric code model has
the properties claimed above, i.e. (1) it has the same
anyon and braiding statistics as the conventional toric
code, and (2) the Z2 symmetry exchanges the e and
m particles. The reason this is so is that the map-
ping between ungauged and gauged models is known to
be one-to-one in the sense that the braiding statistics
data for the excitations of the gauged model uniquely
determines the braiding statistics and symmetry data for
the ungauged model.16,28 In particular, if the excitations
of a gauged Z2 symmetric model are described by the
Ising × Ising topological phase, as is the case here, then
it is known that the ungauged model must obey proper-
ties (1) and (2).16,29

D. Ungauging the doubled Ising string-net model

In this section we show that the symmetric toric code
model can be obtained from the doubled Ising string-net



10

Gauged toric code Modified String-net

|τzp νzpqτzq = +1, µl = 1〉 |+, 1〉
|τzp νzpqτzq = +1, µl = ψ〉 |+, ψ〉
|τzp νzpqτzq = −1, µl = σ〉 |+, σ〉
|τzp νzpqτzq = −1, µl = 1〉 |−, 1〉
|τzp νzpqτzq = −1, µl = ψ〉 |−, ψ〉
|τzp νzpqτzq = +1, µl = σ〉 |−, σ〉

TABLE I. The mapping U (44) between the Hilbert space
of the gauged toric code model and the Hilbert space of the
modified string-net model.

model using a recipe which we will refer to as the ‘un-
gauging’ procedure. This ungauging procedure is how we
originally constructed the symmetric toric code model. It
is also central to our construction of more general symme-
try enriched string-net models, as we explain in section
IV.

The ungauging procedure involves modifying both the
Hilbert space and Hamiltonian of the doubled Ising
string-net model. The first step is to enlarge the Hilbert
space of the doubled Ising string-net model by adding a
two-state spin τp to every plaquette p of the honeycomb
lattice. (The reason that we use two-state spins is re-
lated to the fact that we are ungauging a Z2 symmetry.
For a general finite symmetry group G, we would add
|G|-state spins to each plaquette, as we will explain in
section IV B).

The next step is to modify the Hamiltonian of the
string-net model (Eq. 30) by adding the term −∑l Pl
where Pl is defined as in (2):

H → Hdi −
∑
l

Pl (47)

This term energetically favors states |{τzp , µl}〉 in which
the domain walls between the τzp plaquette spins coincide
with the links l for which µl = σ. The final step is to
replace the Bσp term in Hdi by

Bσp → Bσp τ
x
p (48)

This replacement is important because it ensures that
[Bσp , Pl] = 0. Combining all three steps, we can see that
the resulting Hamiltonian H is exactly the symmetric
toric code model (1).

As the name suggests, the ungauging procedure is de-
signed to produce a model that (1) is invariant under
a global Z2 symmetry, namely S =

∏
p τ

x
p , and (2) has

the property that if this Z2 symmetry is gauged, then
the resulting gauge theory supports the same types of
anyon excitations and braiding statistics as the model
we started with, i.e. the double Ising string-net model.
In this respect, the ungauging procedure works as adver-
tised since it produces the symmetric toric code which
we already know has properties (1) and (2).

At the same time, it is unsatisfying that the above un-
gauging procedure can only be applied to the doubled

Ising model; it would be more natural if we could ‘un-
gauge’ a large class of models in the same way that we
can ‘gauge’ a large class of models. In fact, the ungaug-
ing procedure is more general than it appears (though
not as general as gauging). For example, we can easily
extend the procedure to an arbitrary perturbed doubled
Ising Hamiltonian H̃di such that (a) H̃di is gapped, (b)

H̃di commutes with
∏
l∈v(−1)Nlσ for every vertex v, and

(c) the ground state of H̃di obeys
∏
l∈v(−1)Nlσ = 1. To

ungauge a Hamiltonian of this kind, we follow the same
steps as above except that (48) needs to be replaced with
a more general rule. The more general rule states that
any term in the Hamiltonian that flips the sign of (−1)Nlσ

along a closed loop γ should be multiplied by
∏
p∈γ τ

x
p ,

where the product runs over plaquettes contained within
the loop. One can easily check that this more general pro-
cedure produces a model that has properties (1) and (2)
above, using the same analysis as in section III B. (Of
course, another way that the ungauging procedure can
be generalized is to consider other symmetry groups and
string-net models. We discuss how this works in section
IV).

A few more comments about ungauging: first, we
would like to point out that while the ungauging pro-
cedure is inverse to gauging at the level of topological
properties, it is not the strict inverse at a microscopic
level. This is clear from the analysis in section III B
since gauging the symmetric toric code produces a model
which differs slightly from the doubled Ising string-net
model (but which nevertheless shares the same topologi-
cal properties).

Another important point is that the ungauging proce-
dure corresponds to a very simple operation on ground
state wave functions. Consider a sphere or infinite plane
geometry and let Ψdi({µl}) denote the ground state wave
function of the doubled Ising string-net model (the input
for the procedure) and Ψ({τzp , µl}) denote the ground
state wave function of the symmetric toric code model
(the output for the procedure). Then the two wave func-
tions are related by

Ψ({τzp , µl}) =

{
Ψdi({µl}) if σ’s match τzp domain walls

0 otherwise

(See appendix B for a derivation of this identity). On a
torus, the situation is more complicated. In this case the
doubled Ising string-net model has 9 degenerate ground
states, and some of these states have a nonzero amplitude
for an odd number of σ loops to wrap around at least one
of the non-contractible cycles of the torus. In the un-
gauged model, however, such a state would cost energy
since it is not compatible with a domain wall configura-
tion of plaquette spins. This suggests that on a torus the
ground state degeneracy, and therefore the topological
order, of the two theories is different. This is consistent
with the calculation of appendix A which shows that the
symmetric toric code has a ground state degeneracy of 4
on a torus.
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IV. GENERAL CONSTRUCTION

In this section we show that the symmetric toric code
can be generalized to a large class of exactly solvable
models for SET phases. These models are very power-
ful: they can realize every symmetry-enriched topological
phase whose underlying topological order can be realized
by the string-net construction.

Before we get into details, we need to describe the in-
put data that goes into our construction. Suppose we
want to build a model for an SET phase with anyon
excitations A. For our construction to work, the col-
lection of anyons A must be realizable by a string-net
model. Equivalently, in mathematical language, A must
be the ‘Drinfeld center’ of some ‘unitary fusion category’
C, which we denote by A = Z(C). In this language, the
input data for our construction is a mathematical object
called a ‘G-extension’ of C (we will define these terms
below).

To see why G-extensions are a sensible choice for input
data, it is important to recall a theorem of Ref. 28 which
states that there is a one-to-one correspondence between
G-extensions of C and braided G-crossed extensions of
Z(C).28 As we mentioned in the introduction, the latter
objects can be thought of as mathematical descriptions
of SET phases with symmetry group G and anyon exci-
tations A = Z(C), so this theorem implies that there is a
natural correspondence between G-extensions and SET
phases. Our construction provides a concrete realization
of this correspondence.

The general idea behind our construction is illustrated
in Fig. 8. Our construction takes as input a G-extension
D of some unitary fusion category C and it returns
as output an exactly solvable model realizing an SET
phase with symmetry group G and anyon excitations
A = Z(C). The construction itself proceeds in two steps.
The first step is to build the string-net model correspond-
ing to D. This string-net model realizes a topological
phase with anyon excitations given by Z(D). Crucially,
it was shown in Refs. 16 and 28 that this collection of
anyons is precisely what would be obtained if we gauged
the global symmetry of the SET phase of interest. In
other words, the string-net model realizes the gauged
SET phase. Hence, to obtain a model for the ungauged
SET phase, all we have to do is reverse the gauging pro-
cedure — that is, construct a model that ‘gauges’ into
the string-net model based on D. This is the second step
illustrated in Fig. 8 and it is accomplished by following
a simple recipe which we will describe below.

We now briefly review the definitions of the various
terms used above and fill in the details of the construc-
tion.

G-extension

SET Data Auxiliary Model Model for SET

build 
string-net

‘ungauge’    
G

String-net
with anyons

G symmetric 
model withD Z(C)Z(D) anyonsCof

FIG. 8. Building a symmetry enriched string-net model in-
volves two steps. First we construct the string-net model for
the G-extension D of C. Next we ‘ungauge’ the string-net
model to obtain a G-symmetric model with anyon excitations
given by Z(C).

A. Drinfeld center, string-net models, and
G-extensions

The Drinfeld center construction is a mathematical
procedure that takes as input a unitary fusion category
C, and produces, as output, an anyon theory A = Z(C).30

Here, a unitary fusion category C is a finite collection of
N simple objects i, j, k, . . ., that includes a trivial simple
object 1, together with fusion spaces V ijk and associativ-

ity relations encoded in unitary matrices F ijkl satisfying
certain coherence conditions. An anyon theory is also a
fusion category, but with the additional data associated
with non-degenerate braiding (of anyons).5 More physi-
cally, an anyon theory is the mathematical data used to
describe a topological phase without symmetry.

Some simple examples of the Drinfeld center construc-
tion are: (1) the toric code, which is the Drinfeld center
of C = Z2, (2) more generally, the irreducible represen-
tations of the quantum double of a finite group G, which
is the Drinfeld center of C = G and (3) any anyon the-
ory of the form T × T , which is the Drinfeld center of
T . The Drinfeld center is sometimes also referred to as
the ‘quantum double’ construction, though here we will
only use the term quantum double in the context of finite
groups, as in example (2) above.

String-net models are exactly solvable models that
provide a physical realization of the Drinfeld center
construction.4,31 The input necessary to build a string-
net model is a set of string types, fusion rules and F -
symbols, obeying certain consistency conditions (see e.g.
section III A). In mathematical language, this input data
is precisely a unitary fusion category C, with string types
corresponding to simple objects in C. Likewise, the out-
put of the string-net construction is a lattice spin model
that realizes precisely the anyon theory A = Z(C). This
model is built out of |C|-state spins living on the links of
the honeycomb lattice. The Hamiltonian takes the form

Hsnet = −
∑
v

Qv −
∑
p

Bsnet
p (49)

where the first term, Qv, is a projection operator that
projects onto states that obey the fusion rules of C at
vertex v, and the second term, Bsnet

p , is the string-net
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plaquette term:

Bsnet
p =

∑
s∈C

asB
s
p, as =

ds∑
i∈C d

2
i

(50)

Here ds denotes the quantum dimension of s and the
definition of Bsp is given in Ref. 4.

A G-extension of C is simply another fusion category
D with an additional property called a G-grading, which
is a decomposition of D,

D =
⊕
g∈G
Dg, (51)

satisfying Dg × Dh ⊂ Dgh and C = D1, where 1 is the
identity of G. We will always assume that the G-grading
is faithful, i.e. Dg is non-empty for all g ∈ G.

To get a better feeling for this definition we mention
a few examples and make a few comments:

(1) To begin, consider the case where C = Z2 = {1, ψ}
and G = Z2. In this case, the Ising fusion category D =
{1, ψ, σ} provides an example of a Z2 extension of C with
a Z2 grading given by D1 = {1, ψ} and D−1 = {σ} (Here,
the F symbols for D are given in Eq. [37]). In fact,
this is precisely the G-extension we used to construct the
symmetric toric code model of section II.

(2) Another class of G-extensions which may be more
familiar are ordinary group extensions. In this case the
category C and the extended category D are both groups,
and C is a normal subgroup of D such that the quotient
group D/C is isomorphic to G. The F -symbols can be
taken to be trivial, i.e. F ≡ 1, for both C and D. For
example, the dihedral group D = D2N is a Z2 extension
of C = ZN . The identity component D1 is the ZN sub-
group consisting of rotations while the other component
D−1 consists of elements that are the composition of a
rotation and a reflection.

(3) Note that G-extensions should not be confused
with braided G-crossed extensions. A G-extension is a
fusion category and thus only contains data related to
fusion; a braided G-crossed extension is a more compli-
cated structure that contains both fusion and braiding
data, and that can be thought of as a mathematical de-
scription of an SET phase.

(4) As we mentioned earlier, it is known that there is
a one-to-one correspondence between G-extensions of C
and braided G-crossed extensions of Z(C).28 This corre-
spondence plays a central role in our construction, so it
would be useful if we could turn it into an explicit algo-
rithm that produces a G-extension of C given a braided
G-crossed extension of Z(C). We do not know of such an
algorithm, but there are some partial results in this di-
rection that are worth mentioning. Specifically, one such
result is that if a braided G-crossed extension has the
property that the symmetry action ρ on the anyons is
trivial, then the corresponding G-extension D is always
made up of |G| copies of C, i.e. Dg = C for all g.28 This
also implies that if the G-extension D is not made of |G|
copies of C then the action of ρ is non-trivial.

For instance, in the example D = {1, ψ, σ} discussed
above, the two components of the G-extension are D1 =
{1, ψ} and D−1 = {σ}. The fact that these two compo-
nents have different size, and are therefore not isomor-
phic, immediately implies that in the corresponding SET
phase, the symmetry has a non-trivial Z2 action ρ on the
topological data characterizing the phase. In general,
such a non-trivial action means that either ρ permutes
the anyon types of the SET phase or ρ acts non-trivially
on the fusion spaces V ijk and leaves the anyons fixed. In
this example, we know that ρ permutes the anyon types
because the SET phase corresponding to this G-extension
is the symmetric toric code from section II.

B. Symmetry enriched string-net models

We are now ready to present the general symmetry
enriched string-net construction. The input data for our
construction is a G-extension D of a unitary fusion cat-
egory C. The output is a commuting projector model
for an SET phase with symmetry group G and anyon
excitations A = Z(C).

As mentioned earlier, our construction has two steps.
The first step is to build a string-net model with string
types corresponding to the simple objects in D. This
model is built out of |D|-state spins living on the links of
the honeycomb lattice with a Hamiltonian, Hsnet, given
by Eq. (49) but with C replaced by D. The second
step is to ‘ungauge’ this string-net model. We do this
by modifying both the string-net Hilbert space and the
string-net Hamiltonian. Starting with the Hilbert space,
the only modification is that we add |G|-state degrees of
freedom to the plaquettes of the honeycomb lattice. The
Hilbert space of our model now consists of two separate
tensor factors. One tensor factor is formed by the |G|-
dimensional Hilbert spaces living on the plaquettes p,
each with basis states |gp〉, gp ∈ G, which we refer to
as plaquette spins. The other tensor factor is the |D|-
dimensional string-net Hilbert space living on each link
l of the honeycomb lattice with basis states |sl〉, sl ∈ D.
In this notation, the basis states for the full Hilbert space
are labeled as |{gp, sl}〉.

As for the Hamiltonian, we make two modifications
to Hsnet (Eq. 49). First, we add a new term −∑l Pl.
Second, we modify the string-net plaquette term in a
particular manner: Bsnet

p → Bp. The end result takes
the form

H = −
∑
l

Pl −
∑
v

Qv −
∑
p

Bp (52)

where the sums run over the links (l), vertices (v), and
plaquettes (p) of the honeycomb lattice.

In order to explain the three terms listed above, we
need to introduce some notation. Our first piece of nota-
tion involves the G-grading of D: for each element s ∈ D,
we denote its corresponding group element g in G by gs.
By definition, s ∈ Dgs .
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gp

gp0

gp00

gl = gp0�1gp

FIG. 9. By rotating oriented links 90 degrees counterclock-
wise, an orientation on the original hexagonal lattice gives
an orientation on the dual triangular lattice. The latter al-
lows us to define link variables gl, given any configuration of
plaquette spins {gp} and any link l of the original hexagonal
lattice.

Another piece of notation has to do with domain walls
between plaquette spins. Given any G-spin configuration
{gp}, we define a G-valued link variable gl by:

gl = g−1
p′ gp (53)

where p and p′ are the two plaquettes that border link
l, oriented from p to p′ (Figure 9). We can think of gl
as defining a domain wall configuration. Note that in
order to make this definition unambiguous we need to
specify a convention for which plaquette corresponds to
p′ and which plaquette corresponds to p. To this end,
recall that the links in a string-net model always carry
an orientation, which we take to be fixed. By rotating
the oriented links 90 degrees counterclockwise, we also
obtain a fixed orientation of the dual triangular lattice.
This orientation allows us to fix a convention for Eq. (53),
as shown in Figure 9.

With this notation, we are now ready to define the
different terms in the Hamiltonian (52). The first term
Pl is defined by

Pl|X〉 =

{
|X〉 if gl = gsl
0 otherwise

(54)

where |X〉 is some basis state |X〉 = |{gp, sl}〉, gl is de-
fined as in Eq. (53) and sl is the D-label on link l. The
general interpretation of Pl is as follows: there are two
different ways to obtain a G-valued string-net configu-
ration on links. One comes from the domain walls of
the plaquette spins, and the other comes from examin-
ing the G-grading of the link variables in the D string-
net configuration. The term −∑l Pl energetically favors
configurations where these two agree. This is a direct
generalization of the operator −∑l Pl given in the toric
code example which favored states for which plaquette
spin domain walls coincided with σ strings.

The second term, Qv, is simply the usual string-net
vertex operator. On the other hand, the third term, Bp,
is a modified version of the usual string-net plaquette

operator Bsnet
p (Eq. 50). In particular,

Bp =
∑
s∈D

asB
s
pŨ

gs
p (55)

where Ũgp acts as right-multiplication by g

Ũgp : |gp〉 → |gpg〉 (56)

Note that the only difference between Bp and Bsnet
p is the

presence of the operator Ũgsp , which acts on the plaquette
spins.

We should mention that the above models only apply
to the case where the category D does not have any fusion
multiplicity (a category has fusion multiplicity if one of

the fusion spaces V ijk has dimension two or greater). If we
want to accommodate fusion multiplicity in D, we need
to modify the corresponding string-net model Hsnet by
including additional spins that live on the sites of the
honeycomb lattice.4,31,32 Likewise, these site spins also
need to be included in the symmetry-enriched string-net
model (52). This extension is straightfoward so we omit
the details; the main point is that our construction can
be applied to arbitrary fusion categories D as long as one
uses suitably generalized string-net models.31–33

C. Properties

The Hamiltonian H (52) defined above has a number
of interesting properties. For the most part, the proofs
of these properties are very similar to the ones given in
detail for the symmetric toric code so we do not repeat
the analysis here, but rather simply sketch the main idea.
(1) H has a global G symmetry, where the symmetry

action Ug is defined by left multiplication by g:

Ug =
⊗
p

Ugp (57)

Ugp : |gp〉 → |ggp〉 (58)

Note that Ug is the natural generalization of the Z2 sym-
metry S =

∏
p τ

x
p in the symmetric toric code model.

(2) All of the terms in H commute. The proof of
this statement is nearly identical to the one given for the
symmetric toric code in section II B.
(3) All of the terms in H are projectors. This is clearly

the case for Pl and Qv which were defined as projectors.
One can see Bp is a projector by using Eq. (15) and
following the same reasoning as in the symmetric toric
code case.
(4) In an infinite plane or sphere geometry, the op-

erators Pl, Qv, Bp have a unique simultaneous eigenstate
with eigenvalue 1. This state is the unique ground state
of H. The existence and uniqueness of this state can be
deduced from the existence and uniqueness of string-net
ground states in a sphere geometry, together with the
fact that gauging H gives a modified string-net model,
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as discussed in (6). (Note that this result implies that
H does not spontaneously break the symmetry, since it
has a unique ground state).

(5) In a sphere or infinite plane geometry, the ground
state amplitude of X = {gp, sl} is given by

Ψ({gp, sl}) =

{
Ψsnet({sl}) if gl = gsl
0 otherwise

where Ψsnet({sl}) is the ground state amplitude of {sl}
in the string-net model based on D.

(6) Gauging the global symmetry (57) of this model
results in a topological phase described by the anyon the-
ory Z(D). This can be seen by introducing G-valued
variables on the links of the dual triangular lattice and
performing a minimal coupling procedure as described
for the symmetric toric code in section III B. As in
that case, it is straightforward to see that the resulting
gauged model is unitarily equivalent to a modified string-
net model that realizes Z(D). This modified string-net
model contains a |G| dimensional spin, ξl, on the links in
addition to the usual D-state spin. While the modified
model looks different from the usual string-net model, it
belongs to the same phase since its ground state is simply
the usual string-net ground state tensored with a prod-
uct state where all of the auxiliary spins ξl are in the
|g = 1〉 state. See section III C for a precise definition of
this modified string-net model and the associated unitary
equivalence, in the case of the symmetric toric code.

(7) The Hamiltonian H realizes an SET phase with
symmetry group G and anyon excitations A = Z(C).
Furthermore, this SET phase is precisely the one associ-
ated with D under the correspondence discussed in sec-
tion IV A. This property follows from property (6) to-
gether with two mathematical results. The first result
is that the anyon theory Z(D) is exactly what would be
obtained by gauging the symmetry of the desired SET
phase. The second result is that the anyon theory cor-
responding to a gauged SET phase uniquely determines
the original SET phase.16,28

V. EXAMPLES

In this section we illustrate the general construction
with some additional examples. We start with two simple
examples: a bosonic SPT phase with a Z2 symmetry and
a toric code phase with a Z2 symmetry that does not per-
mute any anyons. We note that solvable models for both
of these phases have been written down previously.8,13,26

We then discuss two SET phases that have non-abelian
anyons and anyon-permuting symmetries — one with a
Z2 symmetry and one with a Z3 symmetry.

A. Bosonic Z2 SPT phase

We begin by constructing a model for a bosonic SPT
phase with Z2 symmetry. The first step of our construc-
tion is to find the fusion category C associated with this
phase. To this end we note that, like all SPT phases,
this phase supports only trivial anyons: A = {1}. Triv-
ial anyons can be realized by a trivial string-net model
with only one string type, so we conclude that C = {1}.

Having found C, the second step is to find the different
Z2-extensions D of C; each extension will give us a model
for a different Z2 SPT phase. Conveniently the Z2 exten-
sions of C = {1} are already known: there are two such
extensions, both of which are of the formD = Z2 = {1, a}
with

a× a = 1, a× 1 = a, 1× 1 = 1 (59)

and with the Z2 grading given by D = D1 ⊕ D−1 with
D1 = {1} and D−1 = {a}.34 The difference between the

two extensions comes from their F -symbols F ijkl . In one
extension, the F symbol is trivial: F ≡ 1. In the other
extension, F aaaa = −1, and F = 1 otherwise.

Let us focus on the second Z2 extension, since this is
the one that gives the non-trivial SPT phase. To build a
model for this phase, we first need to construct the string-
net model with string types given by D. This string-net
model is well-known and is called the ‘doubled semion’
model.4 We then need to ungauge the doubled semion
model. Following the general recipe, we add two-state
spins to the plaquettes of the honeycomb lattice, with
states labeled by τzp = ±. We then modify the Hamil-
tonian of the doubled semion model by adding the term
−∑l Pl with

Pl =
1

2
(1 + (−1)Nlτzp τ

z
q )

Here p, q denote the two plaquettes that adjoin l while the
Nl operator is defined by Nl = 1 if the link l is occupied
with a type a string and Nl = 0 otherwise. Finally, we
alter the plaquette operator

Bp →
1

2
(1 +Bapτ

x
p ) (60)

The result is a model for a non-trivial SPT phase with a
Z2 symmetry S =

∏
p τ

x
p .

The above model is closely related to the one written
down in Ref. 26 but the Hilbert space is slightly different:
in the above model there are two-state spins on both the
links and plaquettes of the honeycomb lattice, while the
model from Ref. 26 only has spins on the plaquettes. To
understand the relationship between the two models, it is
useful to think about their ground states. For the model
in Ref. 26, the ground state amplitude for a plaquette
spin configuration X is given by Ψ(X) = (−1)N(X) where
N is the number of domain wall loops in X. In compar-
ison, the ground state amplitude in the above model is
given by the same formula, but there is an additional
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constraint that the occupied links l must lie along the
domain walls of the plaquette spins; if this constraint is
not satisfied then the amplitude Ψ = 0. While the two
ground state wave functions are different, it is easy to
see that there exists a local unitary transformation that
transforms the ground state of the above model into the
ground state of the other model tensored with a product
state made up of the link spins. Given this connection,
we can conclude that the two models describe the same
phase.

B. Toric code with a non-permuting Z2 symmetry

In this section, we construct a model for a toric code
phase with a Z2 symmetry that does not permute the
anyons. The first step is to find the fusion category C
corresponding to the toric code. Since the toric code
phase can be realized by a string-net model with two
string types and Z2 fusion rules, we have C = Z2 = {1, a}.
As for the F symbol F ijkl , this is trivial for the toric code
model: F ≡ 1.

The second step is to find the Z2 extensions D of
C; each extension will give us a model for a different
SET phase. In addition to the two Z2-extensions with
e ↔ m symmetry discussed in section II and appendix
C, we expect four Z2-extensions with a non-permuting
Z2 symmetry.16,35 These four extensions can be found
by inspection: two are of the form D = Z2 × Z2, and
two are of the form D = Z4. Within each pair, the two
extensions are distinguished from one another by their

(extended) F -symbols, F ijkl , which we omit here for the
sake of brevity.

The first two Z2 extensions give models that describe
either the trivial toric code, or a trivial toric code stacked
on top of a Z2 SPT. The other two extensions give models
where either the e particle and the em particle carry a
half Z2-charge or the e particle and the m particle carry
a half Z2-charge (the phase where m and em carry a half
charge can be obtained by re-labeling, and does not con-
stitute a distinct SET). In all four cases, the Z2 symmetry
does not permute the anyons.

Let us focus on the Z2 extension corresponding to an
SET where the e and the em particles carry half a charge.
In this case, D = Z4 = {1, a, a2, a3} and the Z2 grading
is given by D = D1 ⊕D−1 with D1 = {1, a2} and D−1 =
{a, a3}. The F -symbol is trivial for this extension: F ≡
1. To build a model corresponding to this phase, we need
to construct the string-net model with string types given
by D. This model is exactly the Kitaev quantum double
model3 with G = Z4, defined on the honeycomb lattice.

After building this string-net model, we then need to
ungauge it. Following the same procedure as before, we
do this by attaching additional two-state spins to the
plaquettes, with states labeled by τzp = ±. Next, we add
the term −∑l Pl, with

Pl =
1

2
(1 + (−1)Nlτzp τ

z
q )

Anyon topological spin d Anyon topological spin d

a ≡ 1 0 1 e π 3

b 0 1 f 0 2

c 0 2 g 2π/3 2

d 0 3 h 4π/3 2

TABLE II. Anyon types and corresponding topological data
for the quantum double Z(S3).

Here p, q denote the two plaquettes that adjoin l while
Nl is defined by Nl = 1 if the link l is occupied by a or
a3 and Nl = 0 otherwise. The last step is to modify the
plaquette operators so that they commute with Pl:

Bp →
1

4
(B1

p +Bapτ
x
p +Ba

2

p +Ba
3

p τ
x
p )

The resulting model has a Z2 symmetry S =
∏
p τ

x
p and

describes a toric code phase in which the e and the em
particles carry a half Z2-charge.

C. Quantum double of S3

In this section, we consider an SET phase that has the
same anyon types as the quantum double of S3 (see Table
II), and has a Z2 symmetry that exchanges two of the
anyons (namely the c and f anyons). The possibility of
such an SET phase was discussed previously in Ref. 16;
here we construct an exactly solvable model that realizes
it.

As always, the first step in our construction is to find
the fusion category C associated with this topological
phase. To this end, we note that the quantum dou-
ble of S3 can be realized by a string-net model with
three different string types corresponding to the three
irreducible representations of S3.36 Labeling these repre-
sentations by 1, a1, a2 where 1 is the trivial representa-
tion, a1 is the two dimensional representation, and a2

is the one-dimensional representation, we deduce that
C = {1, a1, a2}. The fusion rules can be read off from
the representation theory of S3:

a2 × a2 = 1, a1 × a2 = a1, a1 × a1 = 1 + a1 + a2.

Likewise, the F -symbol is given by the 6j-symbol for S3.
The second step is to find the Z2 extensions D of C.

Each extension defines a model for a different SET phase,
so if we wanted to be systematic, we would find all such
extensions. Here we will be less ambitious and will simply
discuss one example: D = SU(2)4. This extension is
particularly interesting because, as we will argue below,
it corresponds to an SET phase where the Z2 symmetry
exchanges c and f .

Before proceeding further we need to explain our no-
tation: SU(2)4 denotes the fusion category associated
with non-Abelian Chern-Simons theory with gauge group
SU(2) at level 4. This fusion category has five simple ob-
jects, which can be labeled according to their ‘spin’ as:
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D = {1, a 1
2
, a1, a 3

2
, a2}. The fusion rules are given by Eq.

(63). The Z2 grading is given by D = D1 ⊕D−1 where

D1 = C = {1, a1, a2} , D−1 = {a 1
2
, a 3

2
}. (61)

The F -symbol is known but we will not reprint it here.37

To build a model for the corresponding SET phase, we
need to construct a string-net model with string types
given by the simple objects in D. We then need to un-
gauge this string-net model. Following the same recipe as
before, we do this by adding two-state spins to each pla-
quette, with states labeled by τzp = ±. Next we modify
the string-net Hamiltonian by adding the term −∑l Pl
with

Pl =
1

2
(1 + (−1)Nlτzp τ

z
q )

Here p, q denote the plaquettes that adjoin l while Nl is
defined by Nl = 1 if the edge is occupied by a 1

2
or a 3

2

and Nl = 0 otherwise. Finally we modify the plaquette
operator so that it commutes with Pl:

Bp →
1∑
i d

2
i

 ∑
s=0,1,2

dsB
s
p + τxp

∑
s= 1

2 ,
3
2

dsB
s
p

 (62)

The resulting model has a Z2 symmetry S =
∏
p τ

x
p and

supports the same types of anyons as the quantum double
of S3.

To determine how the symmetry acts on these anyons,
notice that the two components in Eq. (61) have different
sizes, so by the general result discussed in section IV A,
the Z2 action on the topological data must be nontrivial.
This means that the Z2 symmetry either (1) permutes
some of the anyons or (2) leaves the anyons fixed but has
a nontrivial action on the anyon fusion spaces. Assuming
the latter possibility doesn’t occur, we deduce that the
symmetry must exchange c and f since this is the only
anyon permutation that is consistent with the data in
Table II.

1. D =SU(2)k for k even

It is worth noting that the above example is part of
a larger family of SET phases, all of which have a Z2

anyon-permuting symmetry. These phases correspond to
Z2-extensions of the form D = SU(2)k where k is even
and where C is the subcategory of D consisting of objects
with integer ‘spin.’ Here, the objects in SU(2)k can be
labeled as {a0 ≡ 1, a1/2, . . . , ak/2}. The fusion rules are37

al × am =

min(l+m,k−l−m)∑
n=|l−m|

an (63)

and admit a natural Z2-grading:

D1 = C = {al|l ∈ Z} , D−1 = {al|l ∈ Z + 1/2} (64)

Anyon topological spin d Anyon topological spin d

1 0 1 c1 0 3

b 0 1 c2 0 3

b2 0 1 c3 π 3

a 0 3 c4 π 3

x1 0 4 y1 0 4

x2 2π/3 4 y2 2π/3 4

x3 4π/3 4 y3 4π/3 4

TABLE III. Anyon types and corresponding topological data
for the quantum double Z(A4).

Following the same reasoning as above, we know that
the Z2 symmetry permutes the anyons (or at least acts
nontrivially on the topological data) in these phases since
the two components of D have different sizes. Indeed,
D1 = {a0, a1, . . . , ak/2} contains k/2 + 1 elements, while
D−1 = {a1/2, a3/2, . . . , a(k−1)/2} contains only k/2 − 1
elements.

D. Quantum double of A4

We now consider an SET phase with the same anyon
types as the quantum double of A4 (see Table III) with a
Z3 symmetry that permutes three of the anyons ( namely
a, c1, c2).

The first step is to find the fusion category C asso-
ciated with this phase. To do this, we note that the
quantum double of A4 can be realized by a string-net
model with string types corresponding to the four irre-
ducible representations of A4. Labeling these representa-
tions by {1, b, b2, a} where 1 denotes the trivial represen-
tation, and b, b2 denote one dimensional representations,
and a denotes a three dimensional representation, we de-
duce that C = {1, b, b2, a}. The fusion rules can be read
off from the representation theory of A4,

b×b2 = 1, b×a = b2×a = a, a×a = 1+b+b2+2a, (65)

while the F -symbol is given by the 6j symbol for A4.

The next step is to find the Z3 extensions D
of C. Again, rather than finding all such exten-
sions, we will only discuss one example: D =
SU(3)3. This is a category with 10 simple objects:
{1, a, b, b2, d1, d2, d3, e1, e2, e3}. The Z3 grading is:

D1 = C = {1, a, b, b2} , Dω = {d1, d2, d3},
Dω2 = {e1, e2, e3} (66)

where we have labeled the elements of Z3 as 1, ω, ω2 with
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ω = e2πi/3. The fusion rules are:

di × a =

3∑
j=1

dj , ei × a =

3∑
j=1

ej , ei × b = e(i mod 3)+1

di × ej = a+ b(i−j)mod 3, di × b = d(i mod 3)+1

d1 × d2 = d3 × d3 = e2 + e3, d1 × d3 = d2 × d2 = e1 + e2

d2 × d3 = d1 × d1 = e1 + e3, e1 × e2 = e3 × e3 = d2 + d3

e1 × e3 = e2 × e2 = d1 + d2, e2 × e3 = e1 × e1 = d1 + d3

(67)

We omit the F symbol for brevity.
To build a model for the associated SET phase, we

need to construct the string-net model with string labels
in D and fusion rules given by Eq. (67). We then need
to ungauge this string-net model. Following the general
procedure, the first step is to add a three-state spin to
each plaquette. We denote the basis states for this spin
by |1〉, |ω〉, |ω2〉 where ω = e2πi/3. We also define two
generalized Pauli operators that act on these basis states:

Cp = |1〉〈1|+ ω |ω〉〈ω|+ ω2 |ω2〉〈ω2|
Sp = |ω〉〈1|+ |ω2〉〈ω|+ |1〉〈ω2| (68)

Next, we add the term −∑l Pl to the string-net Hamil-
tonian, where

Pl =
1

3

2∑
k=0

(
ω−NlC−1

p′ Cp

)k
(69)

Here p, p′ denote the two plaquettes that adjoin l, and
we assume the orientation convention shown in Fig. 9.
The operator Nl is defined by Nl = 0, 1, 2 depending on
whether link l is occupied by a string in D1,Dω,Dω2 re-
spectively. Notice that Pl projects onto states that satisfy
C−1
p′ Cp = ωNl — that is, states in which the Z3 domain

walls between the plaquette spins coincide with the Z3

grading of the string types on the links. The last step is
to modify the string-net plaquette term so that it com-
mutes with Pl:

Bp →
1∑
s d

2
s

 2∑
j=0

∑
s∈Dωj

dsS
j
pB

s
p

 (70)

Here s ranges over all labels in D and ds is the associated
quantum dimension.

The model obtained from this procedure has a Z3 sym-
metry S =

∏
p Sp and supports the same types of anyon

excitations as the quantum double of A4. Furthermore,
by the same reasoning as in the previous two examples,
we know that the Z3 symmetry acts non-trivially on the
topological data in this model. Presumably this means
that the symmetry permutes the anyons a, c1 and c2
since this is the only non-trivial permutation that is con-
sistent with Table III.

VI. CONCLUSION

In this paper we have constructed a large class of ex-
actly solvable models for 2D bosonic SET phases with
finite, unitary onsite symmetry group. These models are
very general and can realize every SET phase (or more
precisely, every braided G-crossed extension) in this class
whose underlying topological order can be realized by a
string-net model. As an example of our construction, we
have presented an exactly solvable model with the same
anyon excitations as the toric code model and a Z2 sym-
metry that permutes the anyons e and m.

An interesting corollary of our construction is that it
proves that all of the above SET phases are physically re-
alizable in 2D systems. This is significant because mere
algebraic consistency of the topological data does not
guarantee the existence of a physical realization: in prin-
ciple, there could be additional obstructions to realizing
an SET phase in a physical system that are not captured
by the known mathematical structure. Our construction
proves that no such obstructions exist, at least in the
above cases.

One shortcoming of our current construction is that if
one wants to construct a model for a specific SET phase,
one needs to know the corresponding G-extension ahead
of time. For example, in the case of the symmetric toric
code we had to know that the correct G-extension to real-
ize a phase with e↔ m symmetry was the Ising category
D = {1, ψ, σ}. In practice, however, one is more likely
to be faced with a situation where one is interested in an
SET phase with certain physical properties but one does
not have any a priori knowledge of the corresponding G-
extension. In this case, one would first need to translate
from the known physical properties to the corresponding
G-extension before applying our construction, and this is
not necessarily an easy task.

Given this issue it would be desirable to construct mod-
els starting from a more convenient set of input data.
For example, one might want to start from a particu-
lar symmetry action on a set of anyons (e.g. e ↔ m),
and construct all possible models that realize this action.
This is a challenging problem, but it may be possible
to make progress using previously known mathematical
results28 on the relationship between symmetry actions
and G-extensions.

Apart from this technical issue, perhaps the most in-
teresting direction for future work would be to generalize
our construction to a larger class of SET phases. For in-
stance, it would be desirable to generalize these models
to include continuous and/or anti-unitary symmetries —
especially since many physical symmetries of interest fall
into these classes. Another potentially interesting set of
generalizations would be to extend these models to higher
dimensional or fermionic systems.
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Appendix A: Ground state degeneracy

In this appendix we calculate the degeneracy of the
symmetric toric code on a sphere and torus and discuss
the generalization to higher genus surfaces.39 To begin,
recall that the ground state degeneracy can be expressed
using the following formula:

D = Tr

(∏
l

Pl
∏
v

Qv
∏
p

Bp

)
(A1)

Next, observe that the operator
∏
l Pl

∏
v Qv projects

onto the space of states that obey the fusion rules at
each vertex and whose plaquette spin domain walls coin-
cide with σ strings. Denoting this space of states by X ,
we can simplify the calculation by only tracing over this
space:

D = TrX

(∏
p

Bp

)
(A2)

Next, recall that Bp is a sum of three terms: Bp =
1
4 (1+Bψp +

√
2Bσp τ

x
p ). However, Bσp τ

x
p is clearly traceless

because it contains the operator τxp . We can therefore
ignore this term in the trace and Eq. (A2) simplifies
further to

D = TrX

(∏
p

1

4
(1 +Bψp )

)
(A3)

To calculate the trace, it is convenient to use the basis
states |{τzp , µl}〉. We first note that

〈tadpole|
∏
p

1

4
(1 +Bψp )|tadpole〉 = 0 (A4)

where |tadpole〉 is any basis state |{τzp , µl}〉 in X con-
taining a σ loop with an odd number of ψ strings ending
on it (these are states for which f(X) = 0 in Eq. (18).
We will not prove this result here, but it is easy to show
using expression (9) for Bψp .

From (A4) it follows that the only basis states in X
that contribute to the trace are the no-tadpole states,
i.e. states in which every σ loop has an even number of

ψ strings ending on it. Denoting this set of no-tadpole
states by Z, we derive

D =
∑
Z∈Z
〈Z|

∏
p

1

4
(1 +Bψp )|Z〉 (A5)

Expanding out the product, we obtain

D =
1

4N

∑
Z∈Z

∑
R

〈Z|
∏
p∈R

Bψp |Z〉 (A6)

where N is the number of plaquettes and the second sum
runs over subsets R of the set of plaquettes. To proceed
further, we note that

〈Z|
∏
p∈R

Bψp |Z〉 = 0 or 1 (A7)

for any no-tadpole state Z ∈ Z and any subset of plaque-
ttes R. Again, we will not prove this identity here, but
it can be derived using (9). Combining (A6) and (A7),
we can rewrite D as

D =
M

4N
(A8)

where M is the number of pairs (|Z〉, R) such that∏
p∈RB

ψ
p |Z〉 = |Z〉.

Our problem is now to compute M . Conveniently,
this counting problem can be reduced to a simple group
theory calculation. The key point is that we can think
of each operator

∏
p∈RB

ψ
p as an element of the group

G = (Z2)N since (Bψp )2 = 1, and since the Bψp operators
commute with one another. From this point of view, the
Bψp operators define an action of the group G = (Z2)N on
the subpace spanned by the no-tadpole states. In fact,
the Bψp operators also define a group action on the set Z
(as opposed to the subspace spanned by Z) since one can
easily see that when the operator Bψp acts on a no-tadpole
state, it always gives back another no-tadpole state (up
to a ± sign, which we will ignore).

With this identification, the problem of computing M
is equivalent to finding the number of fixed points of the
above group action for each group element g ∈ (Z2)N

and then summing over all g. Conveniently, the latter
quantity can be related to the number of orbits of the
group action via Burnside’s lemma:

M = |(Z2)N | · (number of orbits of group action) (A9)

All that remains is to find the number of orbits of the
above group action. To this end, we observe that the
Bψp operators do not affect the σ strings or the spins τzp ,
so there is at least one orbit for each configuration of σ
loops and τzp spins. In fact, in a spherical geometry, it is
not hard to see that there is exactly one orbit for each
configuration of σ loops and τzp spins. It follows that

the number of orbits is 2N since there are 2N−1 different
configurations of σ loops and there are 2 possibilities for
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the τz spins for each σ loop confiuration. Substituting
this into (A9) and (A8), we immediately derive

Dsphere =
2N · 2N

4N
= 1 (A10)

In contrast, on a torus the situation is different because
there are 4 orbits for each configuration of σ loops and τzp
spins. This additional factor of 4 comes from the fact that
the Bψp operators do not affect the parity of the number
of ψ strings wrapping around the two non-contractible
cycles of the torus; the 4 orbits correspond to the four
possibilities of even/odd parity for each of the two cycles.
We conclude that the number of orbits is 4 · 2N , which
gives a degeneracy of

Dtorus = 4 (A11)

More generally, on a surface of genus g, the number of
non-contractible cycles is 2g, so the number of orbits is
4g · 2N and the degeneracy is Dg = 4g.

Appendix B: Derivation of ground state wave
function

In this appendix we explain how to derive formula (18)
for the ground state wave function of the symmetric toric
code model. The first step is to solve the three eigenvalue
equations in (16), each of which tells us something about
the structure of the ground state |Ψ〉. The first equa-
tion, Pl|Ψ〉 = |Ψ〉, implies that the only configurations
|{τzp , µl}〉 that appear in |Ψ〉 are those with µl = σ along
the domain walls of the τzp spins. The second equation,
Qv|Ψ〉 = |Ψ〉, tells us that the only configurations that
appear in |Ψ〉 are those in which the µl states obey the
fusion rules at every vertex (Fig. 2). The last equa-
tion, Bp|Ψ〉 = |Ψ〉, is more subtle and tells us something
about the relative amplitudes of the configurations in the
ground state. In fact, this equation tells us that these
amplitudes are equal to the corresponding ground state
amplitudes of the doubled Ising string-net model:

Ψ({τzp , µl}) = Ψdi({µl}) (B1)

Here Ψdi denotes the ground state of the doubled Ising
string-net model and |{µl}〉 denotes a string-net basis
state with string occupations specified by µl.

To prove Eq. (B1), it suffices to show that the |Ψ〉 de-
fined in Eq. (B1) satisfies Bp|Ψ〉 = |Ψ〉. To this end, we
make three observations. The first observation is that the
|Ψ〉 defined in Eq. (B1) is symmetric under the Z2 sym-
metry S so it can be expanded as a linear combination
of symmetrized states, defined by:

|{µl}, sym〉 ≡ 1√
2

(|{τzp , µl}〉+ |{−τzp , µl}〉) (B2)

Furthermore, Eq. (B1) tells us that the expansion coef-
ficients in this linear combination are given by

〈{µl}, sym|Ψ〉 =
√

2〈{µl}|Ψdi〉 (B3)

The second observation is that the matrix elements of
Bp between symmetrized states are identical to the cor-
responding matrix elements of the plaquette operator Bdip
in the doubled Ising string-net model:

〈{µ′l}, sym|Bp|{µl}, sym〉 = 〈{µ′l}|Bdip |{µl}〉 (B4)

Indeed, this identity follows easily from the definition of
Bdip — namely Bdip ≡ a1B

1
p + aψB

ψ
p + aσB

σ
p . The third

and final observation is that the doubled Ising ground
state obeys Bdip |Ψdi〉 = |Ψdi〉. Putting these three obser-
vations together, the claim follows immediately.

With Eq. (B1) in hand, all we have to do to derive
formula (18) is to compute the ground state wave func-
tion of the doubled Ising string-net model and show that
it agrees with (18). This computation is discussed in
section III A.

Appendix C: The other toric code with e↔ m
symmetry

Previous work has shown that there are two distinct
toric code phases that have a Z2 symmetry that ex-
changes e and m.16 However, we have only discussed how
to realize one of these phases — namely the symmetric
toric code. In this appendix, we briefly explain how to
realize the other phase.

First we need to describe the Z2-extensions corre-
sponding to the two phases. The Z2 extension for the
symmetric toric code is D = {1, ψ, σ} with fusion rules
and F -symbols coming from the Ising fusion category.
In comparison, the Z2 extension for the other toric code
phase is also D = {1, ψ, σ} but with F -symbols com-
ing from the (Ising)3 fusion category.5 Note that the two
extensions are nearly identical to one another, with the
only difference being that they have slightly different F -
symbols.

Because the two extensions are so similar, the corre-
sponding lattice models are also closely related. Indeed,
using the general construction from section IV, we find
that the Hamiltonian for the other toric code phase is
identical to that of the symmetric toric code except that
the Bσp term given in Eq. (10) is replaced with

Bσ,g
′h′i′j′k′l′

p,ghijkl (abcdef) = δσgg′ · · · δσll′ · (−2)−
Npσ

4 (−1)Np2

(C1)

(Here, the only change is 2 → −2). This minor change
in the Hamiltonian also leads to a minor modification of
the ground state wave function. Instead of Eq. (18) we
have

Ψ(X) ≡ 〈X|Ψ〉 = (−
√

2)Nσ(X)f(X). (C2)

Everything else, including the form of the string opera-
tors, is identical to the symmetric toric code case.

To see that these two models belong to distinct SET
phases, consider their corresponding gauge theories. By



20

construction, gauging the symmetric toric code model
gives a system with Ising×Ising anyons, while gauging
the other model gives a system with (Ising)3 × (Ising)3

anyons. Since these two gauge theories have distinct
braiding statistics, it follows that the two ungauged mod-
els cannot be smoothly connected without closing the en-
ergy gap or breaking the symmetry.26

Appendix D: Derivation of string operators

In this appendix, we derive the We and Wm string
operators (19), (22). We do this in two steps: first we
construct string operators for the doubled Ising string-net
model, and then we translate these over to the symmetric
toric code using the connection between the two models.

To begin, we need to understand the relationship be-
tween the anyon excitations in the two systems. Given
that the doubled Ising string-net model is equivalent to
the gauged toric code model, we know that one of the
anyon excitations of the former system can be identified
with the Z2 gauge charge in the latter system. The obvi-
ous candidate is ψψ̄ since this is the only abelian excita-
tion with bosonic statistics. With this identification, we
immediately deduce that the anyons {σ, σ̄, σψ̄, σ̄ψ} corre-
spond to Z2 gauge fluxes since they have mutual statis-
tics of π with respect to ψψ̄. Likewise, the remaining
anyons, {1, ψ, ψ̄, ψψ̄, σσ̄}, correspond to zero-flux excita-
tions since they have mutual statistics of 0 with respect
to ψψ̄.

Consider the latter set of anyons {1, ψ, ψ̄, ψψ̄, σσ̄} and
the string operators {W1,Wψ,Wψ̄,Wψψ̄,Wσσ̄} that cre-
ate them. Because these anyons do not involve any gauge
flux, it follows that they can be ‘ungauged’ and mapped
onto excitations of the symmetric toric code model. In
terms of string operators, this means we can ungauge
{W1,Wψ,Wψ̄,Wψψ̄,Wσσ̄} so as to construct string op-
erators in the symmetric toric code model. In fact, by
following the ungauging procedure described in section
III D, one can show that this ungauging step is completely
trivial in this case: to ungauge one of the above string op-
erators, we simply embed them, without any changes, in
the symmetric toric code Hilbert space. We will therefore
abuse notation and use the same symbol Wa to denote a
string operator and its ungauged counterpart.

After this ungauging step, {W1,Wψ,Wψ̄,Wψψ̄,Wσσ̄}
define string operators in the symmetric toric code
model, which means they can be expanded as linear
combinations of the four elementary string operators
{W1,We,Wm,Wem}. Conveniently, the coefficients in
these linear combinations are fixed by general consider-
ations (up to local operators acting at the ends of the
strings):

Wψ ∼Wem, Wψ̄ ∼Wem, Wψψ̄ ∼W1

Wσσ̄ ∼We +Wm (D1)

Here, the first two relations follow from the fact that Wψ

and Wψ̄ create fermions and therefore must map onto

σσ̄

ψψ̄

τz
p

τz
q

FIG. 10. The ‘T -junction’ operator Wσσ̄⊥ψψ̄ is made up of
two string operators Wσσ̄, Wψψ̄ which meet at a point p.

Wem, while the third relation follows from the fact that
ψψ̄ is a Z2 gauge charge, which is trivial in the ungauged
theory. As for the last relation, this follows from two ob-
servations: (1) σσ̄ has mutual statistics π with respect
to ψ, and (2) Wσσ̄ is even under the Z2 symmetry (as
is every gauge invariant operator). The first observation
implies that Wσσ̄ must be a linear combination of We and
Wm (since these are the only anyons with mutual statis-
tics π with respect to em), while the second observation
implies that the coefficents of We,Wm are equal.

The last equation (D1) is especially useful since it pro-
vides a route to constructing We + Wm. This is nice
because if we can also find the difference We−Wm, then
we can obtain We and Wm individually. The problem
is that We − Wm is odd under the Z2 symmetry, so it
has no counterpart in the doubled Ising string-net model
(i.e., it cannot be gauged). To get around this obstacle,
we consider the related operator (We−Wm)τzq . This op-
erator is even under the symmetry so it can be gauged
and hence translated into the doubled Ising string-net
model. A natural guess is that its gauged counterpart
is the ‘T -junction’ operator Wσσ̄⊥ψψ̄ consisting of a ψψ̄
string ending on a σσ̄ string (Fig. 10). Thus we have

Wσσ̄⊥ψψ̄ ∼ (We −Wm)τzq (D2)

Eqs. (D1) and (D2) form the backbone of our deriva-
tion. The rest is straightforward: we will simply con-
struct the two operators Wσσ̄, and Wσσ̄⊥ψψ̄ using the

general string-net formalism4 and then plug them into
(D1) and (D2) and solve for We and Wm.

We begin with Wσσ̄. This operator is easiest to de-
scribe using the graphical representation discussed in Ref.
4. Let |X〉 be some Ising string-net state on the honey-
comb lattice and let γ be a path drawn on the links of
this lattice. To compute W γ

σσ̄|X〉, the first step is to shift
the path γ slightly so that it no longer lies exactly on the
honeycomb lattice. The precise way in which γ is shifted
is not important, but we will use a convention where γ
is shifted to the ‘left’, where ‘left’ is defined with respect
to some arbitrary orientation of γ. The second step is to
insert a ‘σσ̄’ string along the path γ and to resolve all
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the resulting crossings using the local rules∣∣∣∣ σσ̄
〉

=

∣∣∣∣ 1
〉

+

∣∣∣∣ ψ
〉

(D3)∣∣∣∣ σσ̄

i

〉
=
∑
jst

Ωjsti

∣∣∣∣ i

t i

sj
〉

(D4)∣∣∣∣ σσ̄ i
〉

=
∑
jst

Ω̄jsti

∣∣∣∣ t

i s

ij
〉

(D5)

Here Ωjsti = Ω̄jsti is a four index tensor characterizing the
string operator whose only nonzero values are

Ω0
000 = Ω2

220 = Ω0
222 = Ω1

021 = Ω1
201 = 1, Ω2

002 = −1

where 0 = vacuum, 1 = σ and 2 = ψ.
After resolving the crossings using the above rules, the

result is a linear combination of doubled Ising string-
net states, each of which is slightly displaced from the
honeycomb lattice. The last step is to ‘fuse’ these strings
onto the links of the honeycomb lattice using the rules
(32-35). Denoting the resulting linear combination of
states by

∑
j cj |Yj〉, the action of Wσσ̄ is then defined by

Wσσ̄|X〉 =
∑
j cj |Yj〉.

By examining the above local rules, we can read off the
basic structure of the Wσσ̄ string operator. For example,
Eq. (D3) implies that whenever we resolve the σσ̄ string,
it is always in either the 1 or ψ channel. Meanwhile, the
fact that Ω1

st1 = 0 unless s = 0 and t = 2 (or vice versa)
tells us that σσ̄ alternates between the 1 channel and
the ψ channel every time it crosses a σ string. Putting
these two observations together, it follows that Wσσ̄ can
be written as a sum of two pieces

Wσσ̄ = W1 +W2 (D6)

where W1 inserts an alternating 1− ψ − 1− ψ · · · string
and W2 inserts an alternating ψ−1−ψ−1 · · · string (with
alternations occurring every time the path γ crosses a σ
string).

Now imagine we ungauge the operator Wσσ̄. As
we mentioned earlier, this ungauging process simply
amounts to embedding Wσσ̄ within the larger Hilbert
space of the symmetric toric code. Although the operator
is unchanged, this new context allows us to rewrite Wσσ̄

in a slightly different form. To see this, recall that W1

and W2 alternate between 1 and ψ each time they cross
a σ string. At the same time, we know that the σ strings
coincide with plaquette spin domain walls (at least for
low energy states, which is all that we care about) so
crossing a σ string means moving from a domain where
τz = +(−) to one where τz = −(+). We can therefore
choose a convention in which one component, say W1, is
in the ψ channel in the τz = + domain and W2 is in the
ψ channel in the τz = − domain. Labeling these two
components by Wψ+ and Wψ− respectively, we can write

Wσσ̄ = Wψ+ +Wψ− (D7)

We now repeat this analysis for the second operator,
Wσσ̄⊥ψψ̄. However, before we can do that, we need to
discuss Wψψ̄. This operator can be described using the
same graphical representation as Wσσ̄. The only differ-
ence is that in this case, the first rule is replaced by∣∣∣∣ ψψ̄

〉
=

∣∣∣∣ 1
〉

(D8)

and the Ω, Ω̄ tensors are different. In particular, the only
nonzero values of Ωjsti = Ω̄jsti are

Ω0
000 = Ω2

002 = 1, Ω1
001 = −1 (D9)

in this case. Translating this graphical definition into
algebra, one can see that the action ofWψψ̄ is very simple:

Wψψ̄ = (−1)Nσ× (D10)

where Nσ× is an operator that is diagonal in the string-
net basis and that counts the total number of σ strings
that cross γ.

With this preparation, we are now ready to discuss
the operator Wσσ̄⊥ψψ̄. In the graphical representation,

this operator inserts a T -junction made up of σσ̄ and ψψ̄
strings. Crossings are then resolved using the σσ̄ and ψψ̄
rules listed above. Translating this graphical definition
into the notation of (D6) and (D10), one finds:

Wσσ̄⊥ψψ̄ = (W1 −W2)(−1)Nσ×ηp (D11)

where ηp = ±1 depending on whether W1 is in the ψ
channel or 1 channel at the point p where ψψ̄ attaches
to σσ̄ (Fig. 10).

Now consider ungauging Wσσ̄⊥ψψ̄ — that is, embed-
ding this operator in the Hilbert space of the symmetric
toric code. In this new context, we can rewrite (−1)Nσ×

as

(−1)Nσ× = τzp τ
z
q (D12)

since the σ strings coincide with the plaquette spin do-
main walls at low energies (Fig. 10). We can also rewrite
(W1 −W2)ηp as:

(W1 −W2)ηp = (Wψ+ −Wψ−)τzp (D13)

Multiplying (D12) and (D13) together and using (D11),
we derive

Wσσ̄⊥ψψ̄ = (Wψ+ −Wψ−)τzq (D14)

We now have everything we need to compute We and
Wm. Combining equations (D1, D2, D7, D14) we derive:

We ∼Wψ+, Wm ∼Wψ− (D15)

As a final step, we multiply the string operators by the
projector Pγ from (20) which projects onto low energy
states where σ strings are bound to domain walls and
fusion rules are obeyed. While this step is not strictly
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necessary, it ensures that the string operators are espe-
cially well-behaved. After this step, we have:

W γ
e = PγWψ+Pγ

W γ
m = PγWψ−Pγ (D16)

To go from the above expressions (D16) to the formulas

(19) and (22) in the main text is simply a matter of con-
version from the graphical representation to an algebraic
representation. In particular the (−1) factors associated
with the first 3 vertices in Fig. 5 (e1, e2 and e3) arise
from fusing the strings created by Wψ+ onto the hon-
eycomb lattice. Likewise, the (−1) factors from the last
three vertices (e4, e5 and e6) come from the fact that
Ω2

002 = −1 for the σσ̄ string.

1 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

2 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

3 A. Y. Kitaev, Annals of Physics 303, 2 (2003).
4 M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110

(2005).
5 A. Kitaev, Annals of Physics 321, 2 (2006).
6 J. Haah, Phys. Rev. A 83, 042330 (2011).
7 K. Walker and Z. Wang, Front. Phys. 7, 1050 (2012).
8 X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Physical

Review B 87, 155114 (2013).
9 F. J. Burnell, X. Chen, L. Fidkowski, and A. Vishwanath,

Phys. Rev. B 90, 245122 (2014).
10 S. B. Bravyi and A. Y. Kitaev, quant-ph/9811052 (1998).
11 M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006).
12 A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013).
13 M. Hermele, Phys. Rev. B 90, 184418 (2014).
14 J. C. Y. Teo, T. L. Hughes, and E. Fradkin, ArXiv e-prints

(2015), arXiv:1503.06812.
15 N. Tarantino, N. H. Lindner, and L. Fidkowski, New Jour-

nal of Physics 18, 035006 (2016).
16 M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,

arXiv preprint arXiv:1410.4540 (2014).
17 See Ref. 40 for a different approach to classification.
18 L. Chang, M. Cheng, S. X. Cui, Y. Hu, W. Jin, R. Movas-

sagh, P. Naaijkens, Z. Wang, and A. Young, Journal
of Physics A: Mathematical and Theoretical 48, 12FT01
(2015).

19 For simplicity, we do not bother to normalize the wave
function.

20 Similar string operators were described by Ref. 41, in the
context of a phase with Z2 topological order and transla-
tion symmetry broken by densely packed σ loops.

21 This relation can break down for some systems with non-
Abelian anyons, or systems where translational symmetry
permutes anyon excitations. We assume that our model
does not fall into one of these categories.

22 X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).
23 M. Levin and X.-G. Wen, Phys. Rev. B 67, 245316 (2003).

24 This follows from a general relation that holds for any
topological phase, namely e2πic−/8 = 1

D

∑
s d

2
sθs where

D =
√∑

s d
2
s. Here the sum runs over all anyons s. and

θs, ds denote the topological spin and quantum dimension
of s. See e.g. Ref. 5 and references therein.

25 J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
26 M. Levin and Z.-C. Gu, Physical Review B 86, 115109

(2012).
27 C. Wang and M. Levin, Phys. Rev. B 91, 165119 (2015).
28 P. Etingof, D. Nikshych, V. Ostrik, et al., arXiv preprint

arXiv:0909.3140 (2009).
29 Y. Gu, L.-Y. Hung, and Y. Wan, Physical Review B 90,

245125 (2014).
30 V. G. Drinfeld, Proceedings of the International Congress

of Mathematicians, Berkeley , 798 (1987).
31 A. Kitaev and L. Kong, Communications in Mathematical

Physics 313, 351 (2012).
32 T. Lan and X.-G. Wen, Physical Review B 90, 115119

(2014).
33 C.-H. Lin and M. Levin, Phys. Rev. B 89, 195130 (2014).
34 More generally, for any finite group G, the number of G-

extensions of {1} is given by H3(G,U(1)) and all the ex-
tensions have fusion rules that are isomorphic to G.

35 Y.-M. Lu and A. Vishwanath, Phys. Rev. B 93, 155121
(2016).

36 Actually, the quantum double of S3 can also be realized
by a string-net model with string types corresponding to
group elements g ∈ S3. Hence, we could equally well take
C = S3.

37 P. Bonderson, PhD thesis, Caltech (2007).
38 S. Jiang, M. Cheng, Z. Gu, and Y. Qi, arXiv preprint

arXiv:1606.08482 (2016).
39 To define the symmetric toric code on a sphere or on other

surfaces, we generalize the model from the honeycomb lat-
tice to an arbitrary trivalent lattice in the obvious way.

40 T. Lan, L. Kong, and X.-G. Wen, arXiv preprint
arXiv:1602.05946 (2016).

41 M. D. Schulz and F. J. Burnell, arXiv preprint
arXiv:1510.08104 (2015).

http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://arxiv.org/abs/1503.06812
http://dx.doi.org/10.1103/PhysRevB.67.245316

	Symmetry enriched string-nets: Exactly solvable models for SET phases

