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We study non-local correlations in a three-orbital Hubbard model defined on an extended one-
dimensional chain using determinant quantum Monte Carlo and density matrix renormalization
group methods. We focus on a parameter regime with robust Hund’s coupling, which produces
an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U , as well as an
orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital-
and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic
correlations in this parameter regime as a function of temperature. In the OSMP, we find that the
self-energy for the itinerant electrons is momentum dependent, indicating a degree of non-local
correlations while the localized electrons have largely momentum independent self-energies. These
non-local correlations also produce relative shifts of the hole-like and electron-like bands within
our model. The overall momentum dependence of these quantities is strongly suppressed in the
orbitally-ordered insulating phase.

PACS numbers: 71.30.+h, 71.10.Fd, 71.27.+a

I. INTRODUCTION

In recent years the scientific community renewed its
interest in understanding the properties of multi-orbital
Hubbard models, and this has been intensified by the
discovery of the iron-based superconductors.1–4 On a
theoretical front, this is a challenging problem due to
a lack of non-perturbative methods for treating multi-
orbital Hubbard models at intermediate or strong cou-
plings and on extended systems. Nevertheless, consid-
erable progress has been made using mean-field-based
approaches,4–16,24 resulting in new concepts such as that
of a Hund’s metal7,10,17,18 and the orbital-selective Mott
phase (OSMP).10,19 These concepts are central to our
understanding the paradoxical appearance of both local-
ized and itinerant characteristics in many multi-orbital
systems20,21 and bad metallic behavior in the presence of
sizable electronic correlations.21

The most widely used numerical approach in this con-
text is single-site multi-orbital dynamical mean-field the-
ory (DMFT).4,22,23 Generally speaking, DMFT maps the
full lattice problem onto an impurity problem embed-
ded in an effective medium, which approximates the
electron dynamics on a larger length scale as a local
renormalization.23 While this technique has had con-
siderable success in addressing many aspects of the
OSMP and other physics related to the multi-orbital
problem,8,9,12–14,24–28 it is unable to capture spatial fluc-
tuations and non-local correlations encoded in the k-
dependent self-energy Σ(k, ω). This is a potential short
coming as non-local correlations are known to have an im-
pact in the case of the single-band Hubbard model.29,30

It is therefore important to assess the importance of such

non-local effects on multi-orbital properties such as the
OSMP.

To date, most non-perturbative studies of non-local ef-
fects have used cluster DMFT or the dynamical cluster
approximation (DCA);16,31–35 however, these techniques
are typically limited to a handful of sites when multiple
orbitals are included in the basis. This is due to technical
issues related to each choice in impurity solver, such as
the Fermion sign problem in the case of quantum Monte
Carlo or the exponential growth of the Hilbert space in
the case of exact diagonalization. As a result, these
studies have only addressed short-range spatial fluctu-
ations. One study of the OSMP has been carried out
on a larger two-dimensional cluster using determinant
quantum Monte Carlo (DQMC). In that case, however,
the OSMP was imposed by the model by assuming that
electrons in a subset of orbitals were localized as Ising
spins.36 In light of these limitations it is desirable to find
situations where multi-orbital physics can be modeled on
extended clusters that support long-range spatial fluctu-
ations and where the properties under study emerge from
the underlying many-body physics of the model.

In this regard, one dimensional (1D) models are quite
promising. For example, two recent density matrix
renormalization group (DMRG) studies have been car-
ried out for an effective 1D three-orbital model repre-
sentative of the iron-based superconductors.37,38 More
recently, it was demonstrated that DQMC simulations
for a simplified version of the same model can also
be carried out to low temperatures due to a surpris-
ingly mild Fermion sign problem.39 These observations
open the doorway to non-perturbative studies of this
model on extended clusters, thus granting access to the
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momentum-resolved self-energies and non-local correla-
tions. 1D studies along these lines are also directly
relevant for the recently-discovered quasi-1D selenide
Ba1−xKxFe2Se3.40–45 In this context, it is important to
note that DMFT becomes more accurate in higher di-
mensions and therefore one expects its ability to describe
multi-orbital Mott physics in 1D to be diminished.

Motivated by these considerations, we examine the
properties of a three-orbital Hubbard Hamiltonian on an
extended 1D cluster using DQMC and DMRG, with a
particular focus on its k-resolved self-energies and spec-
tral properties. We thus gain explicit access to non-
local correlations occurring on longer length scales than
those addressed in previous non-perturbative studies. In
general, we find that the OSMP leads to a mixture
of localized and itinerant bands, where the former are
characterized by a localized (momentum-independent)
self-energy while the latter exhibits significant non-local
(momentum-dependent) correlations. This also leads to a
band-dependent relative shift of the underlying electron-
and hole-like bands. We also identify an insulating state
driven by orbital ordering in a region of parameter space
previously associated with an OSMP.37,38

Before proceeding, we clarify our definition for the
OSMP region and its critical temperature. This region
is defined here by the situation where the population of
a particular orbital (orbital three) converges to 〈n3〉 = 1
while a gap simultaneously opens in the density of states
for this orbital. While this is a sound operative defini-
tion of our purpose, there are subtleties that must be
addressed as a warning to the reader. In the context of
DMFT, investigations of multiorbital models24,29 in the
plane defined by temperature T and coupling strength
U/W (W is the bandwidth) show that there is an ana-
lytic connection between the Mott insulating side of a line
of first order transitions and the weak coupling metallic
side. The line of first-order transitions survives the intro-
duction of temperature, but it has an end point at a finite
T in analogy to the gas/liquid transition. For example,
in the analysis of the localized orbital reported in Ref.
24, the quasiparticle weight Z is claimed to be nonzero
at finite T on the insulating side (although it is extremely
small at low temperatures). We believe that Z being zero
or very small is similar to the condition that our localized
orbital’s population is equal to or very close to one. As
a consequence, what we have defined as a transition to-
wards an OSMP may in fact be a region where 〈n3〉 ≈ 1
but not exactly 1. If this is the case, then our critical
temperature is in reality a very sharp crossover towards
a region that only reaches true OSMP characteristics at
T = 0 (or at the much lower temperature where magnetic
block correlations develop). Note that DMFT is valid in
infinite dimension, while our problem is in the opposite
limit, so these arguments are all qualitative at best. In
spite of these subtleties, we will refer to the region below
our critical temperature defined by 〈n3〉 converging to 1
as an OSMP for simplicity, with the caveat that exact
OSMP characteristics may be reachable only at lower T .

II. METHODS

A. Model Hamiltonian

We study a simplified three-orbital model defined on a
1D chain as introduced in Ref. 37. This model displays
a rich variety of phases including block ferromagnetism,
antiferromagnetism, Mott insulting phases, metallic and
band insulating phases, and several distinct OSMPs.37–39

The Hamiltonian is H = H0 +Hint, where

H0 = −
∑
〈i,j〉
σ,γ,γ′

tγγ′c
†
i,γ,σcj,γ′,σ +

∑
i,σ,γ

(∆γ − µ)n̂i,γ,σ (1)

contains the non-interacting terms of H, and

Hint = U
∑
i,γ

n̂i,γ,↑n̂i,γ,↓ +

(
U ′ − J

2

) ∑
i,σ,σ′

γ<γ′

n̂i,γ,σn̂i,γ,σ′

+J
∑
i,γ<γ′

Sz
i,γS

z
i,γ′ (2)

contains the on-site Hubbard and Hund’s interaction
terms. Here, 〈. . . 〉 denotes a sum over nearest-neighbors,

c†i,γ,σ (ci,γ,σ) creates (annihilates) a spin σ electron in or-
bital γ = 1, 2, 3 on site i, ∆γ are the on-site energies for
each orbital, Sz

i,γ is the z-component of the spin opera-

tor Si,γ , and n̂i,γ,σ = c†i,γ,σci,γ,σ is the particle number
operator.

Note that in Eq. (2) we have neglected the pair-
hopping and spin-flip terms of the interaction. These
terms can have an important influence on the details
of the OSMP in higher dimensions. In the context of
the current model, however, a previous DMRG39 study
found that these terms only alter the location of the
phase boundaries and do not qualitatively change the na-
ture of the underlying phases. Since our focus here is on
the non-local correlations associated with these phases,
rather than subtle issues regarding their boundaries, we
neglect the spin-flip and pair hopping terms in order to
manage the Fermion sign problem in our DQMC calcu-
lations. These terms are also neglected in our DMRG
calculations to facilitate more meaningful comparisons
between the two techniques.

Following Ref. 37, we set t11 = t22 = −0.5, t33 =
−0.15, t13 = t23 = 0.1, t12 = 0, ∆1 = −0.1, ∆2 = 0, and
∆3 = 0.8 in units of eV while the chemical potential µ is
adjusted to obtain the desired filling. These parameters
produce a non-interacting band structure analogous to
the iron-based superconductors, with two hole-like bands
centered at k = 0 and an electron-like band centered
at k = π/a, where a is the lattice constant, as shown
in Fig. 1. Due to the weak inter-orbital hopping, each
of the bands is primarily derived from a single orbital,
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FIG. 1: (color online) A fat band plot of the non-interacting
band structure at a total filling of 〈n̂〉 = 4, where the thick-
ness of the lines indicates the majority orbital content of the
band. The top most band has the narrowest bandwidth and is
primarily of orbital 3 character. The lower two bands disperse
over a much larger energy range and are primarily composed
of orbitals 1 and 2, respectively.

as indicated by the line thickness and colors in Fig. 1.
One can therefore (loosely) regard the orbital character
as an indicator of the band in this model. For example,
the top most band is primarily composed of orbital γ =
3. The total bandwidth of the non-interacting model is
W = 4.9|t11| = 2.45 eV. This will serve as our unit of
energy. We further set a = 1 as our unit of length. The
interaction parameters are fixed to U ′ = U − 2J , J =
U/4, while U is varied. This parameter regime results in
a robust OSMP for intermediate values of U , 37–39 which
is our focus here.

B. DQMC and DMRG Calculations

The model is studied using non-perturbative DQMC
and DMRG methods. The details of these techniques
can be found in Refs. 46–48 (DQMC) and Refs. 49
and 50 (DMRG). These approaches are complementary
to one another; DMRG works in the canonical ensem-
ble and provides access to the ground state properties of
the system while DQMC works in the grand canonical
ensemble and provides access to finite temperatures and
fluctuations in particle number. Both methods are ca-
pable of treating large cluster sizes such that non-local
correlations can be captured without approximation for
the specified Hamiltonian.

The primary drawback to DQMC is the Fermion sign
problem,51,52 which typically limits the range of acces-
sible temperatures for many models. Indeed, when the
spin-flip and pair hopping terms of the Hund’s interac-

tion are included in the Hamiltonian, we find that the
model has a prohibitive sign problem. But when these
terms are neglected the corresponding sign problem be-
comes very mild,39 even in comparison to similar sim-
plified multi-orbital models in 2D.48,53 Given that these
terms do not qualitatively affect the phase diagram39 for
the current model, we have neglected them here. This
has allowed us to study clusters of up to L = 24 sites in
length (3L orbitals in total) down to temperatures as low
as β = 74/W .39 At this low of a temperature we begin to
see the onset of magnetic correlations in our cluster, how-
ever, as we will show, the OSMP forms at a much higher
temperature. Since the latter phase is our focus here, we
primarily show DQMC results for β ≤ 19.6/W through-
out. (Since our DQMC calculations find no indications of
magnetism at the elevated temperatures considered here,
we will not show results for the magnetic structure factor.
An interested reader is directed to Ref. 39 for an indi-
cation of the magnetic correlations found at much lower
temperatures.) In all cases shown here, the average value
of the Fermion sign is greater than 0.87 ± 0.01. Unless
otherwise stated, all of our DQMC results were obtained
on an L = 24 site cluster with periodic boundary con-
ditions and for an average filling of 〈n〉 = 4 electrons,
which corresponds to 2/3 filling.

DQMC provides direct access to various quantities de-
fined in the imaginary time τ or Matsubara frequency iωn
axes. In Sec. III D we will examine the spectral proper-
ties of our model, which requires an analytic continuation
to the real frequency axis. This was accomplished using
the method of Maximum Entropy,54 as implemented in
Ref. 55.

Our DMRG results were obtained on variable length
chains with open boundary conditions. The chemical po-
tential term in Eq. (1) is dropped for these calculations.
In all of the DMRG calculations the truncation tolerance
is between 10−5 – 10−7. We performed three to five full
sweeps of finite DMRG algorithm and used 300 states
for calculating both the ground state and the spectral
function. Once the ground state is obtained using the
standard DMRG algorithm, we computed the spectral
function using the correction vector targeting in Krylov
space56,57, with an broadening of η = 0.001 eV.

III. RESULTS

A. Self-energies in the OSMP

We begin by examining some of the standard metrics
for the formation of an OSMP, namely the average fill-
ing per orbital and the quasiparticle residue Zγ(k, iωn).
DQMC results for 〈n〉 = 4 and U/W = 0.8 are summa-
rized in Fig. 2. The temperature dependence of the in-
dividual orbital occupations 〈nγ〉, plotted in Fig. 2a, has
the standard indications of the formation of an OSMP:
At high temperature (small β) we see noninteger fillings
for all three orbitals. As the temperature is lowered
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(large β), however, orbitals one and two smoothly ap-
proach fillings of ∼ 1.53 and ∼ 1.47, respectively, while
orbital three locks into an integer value of exactly 1.
In many studies the “stiffness” of orbital three’s integer
occupation is taken as an indication of an OSMP,37,38

where this orbital has undergone a transition to a Mott
insulating state while remaining orbitals host itinerant
electrons. Indeed, for U/W = 0.8 and at low tempera-
ture, the integer filling observed in orbital three is robust
against changes in the chemical potential and interaction
strength U (see Refs. 37–39). This indicates that this
integer filling is indeed driven by the interaction and is
not a simple coincidence of the non-interacting band pa-
rameters. However, as we will show, this does not always
correspond to an OSMP. For U/W = 0.8 the two frac-
tionally filled orbitals are in fact itinerant, but for larger
values of U/W these same orbitals retain a fractional fill-
ing but are driven into an insulating state by the onset
of orbital ordering in these two orbitals.

The mixed itinerant/localized nature of the OSMP
at U/W = 0.8 is reflected in the momentum de-
pendence of quasi-particle residue Zγ(k, iπ/β) and the
orbitally resolved normalized self-energies R(k) =
ImΣγ(k, iπ/β)/ImΣγ(0, iπ/β), plotted in Figs. 2c and
2d, respectively, for ωn = π/β. The self-energy is ex-
tracted from the dressed Green’s function using Dyson’s
equation

Ĝ−1(k, iωn) = Ĝ−10 (k, iωn)− Σ̂(k, iωn), (3)

where the Ĝ notation denotes a matrix in orbital space,
Ĝ0(k, iωn) = [iωnÎ − Ĥ0(k)]−1 is the non-interacting

Green’s function, and Ĥ0(k) is the Fourier transform of
the non-interacting Hamiltonian defined in orbital space.
The quasi-particle residue is obtained from the diagonal
part of the self-energy using the identity

Ẑ(k, iπ/β) =

(
Î − ImΣ̂(k, iπ/β)

π/β

)−1
, (4)

where Î is a 3× 3 unit matrix.
As can be seen from Fig. 2c, the self-energies for each

orbital have a sizable k-dependence at this temperature.
(In this case we have normalized the self-energy by its
value at k = 0 in order to highlight the overall momentum
dependence. The magnitude of ImΣγ(0, iπ/β) is given in
the figure caption.) In the case of orbitals one and two,
the magnitude of the self-energy varies by nearly 50%
throughout the Brillouin zone. In contrast, the momen-
tum dependence of Σ3(k, iπ/β) for orbital three is much
weaker, varying by only 5-10% and reflecting the local-
ized nature of the carriers in these orbitals. Similarly, the
quasi-particle residue for the orbital three is essentially
momentum independent, while it increases for the two
itinerant orbitals as k tracks towards the zone boundary.
The k dependence at the remaining Matsubara frequen-
cies accessible to our simulations (not shown) exhibits a
similar trend, with orbitals one and two having a strong
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FIG. 2: (color online) Orbitally resolved electronic properties
for U/W = 0.8 (W = 2.45 eV) at different temperatures. (a)
The temperature dependence of orbital occupations. (b) The
orbital resolved quasiparticle residue Zγ(k, iπ/β) at an inverse
temperature β = 19.6/W . (c) The normalized electron self
energies ImΣγ(k, iπ/β) at ωn = π/β as a function of momen-
tum. Each curve is normalized by its k = 0 value to highlight
the overall momentum dependence. The scale is determined
by ImΣγ(0, iπ/β) = −0.53, −0.57, and −2.53 for γ = 1, 2, 3,
respectively, and in units of the bandwidth W . The blue, red,
and green dash lines in (b) and (c) correspond to the bare
Fermi momentum of the non-interacting bands. Panel (d)
shows orbitally resolved quasiparticle residues Zγ(k0F, iπ/β)
and self energies ImΣγ(k0F, iπ/β) at Fermi momentum as a
function of temperature. In each panel, error bars smaller
than the marker size have been suppressed for clarity.

k-dependence while orbital three is nearly momentum in-
dependent at each ωn.

The momentum dependence shown in Fig. 2 indicates
that the local self-energy approximation introduced by
DMFT may miss quantitative aspects of the electronic
correlations in the OSMP with mixed itinerant and lo-
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cal characteristics. It should be noted that our results
have been obtained in 1D, which is the worst case situ-
ation for DMFT.58 It is expected that the local approx-
imation will perform better in higher dimensions, since
DMFT becomes exact in the limit of infinite dimensions;
however, it is unclear how well the method will capture
similar non-local correlations in two dimensions relevant
for the Fe-based superconductors. A recent study16 has
argued that the local approximation is quite accurate for
parameters relevant to the iron-based superconductors,
however, it remains to be seen if this will remain true for
all parameter regimes or when longer range fluctuations
are included. Our results further highlight the need for
the continued development of numerical methods capable
of handling the strong Hubbard and Hund’s interactions
in intermediate dimensions and on extended clusters.

Figure 2d examines the temperature dependence of
Z(k0F,

iπ
β ) and ImΣ(k0F,

iπ
β ) at the Fermi momenta k0F of

the non-interacting system. (These are indicated by the
dashed lines in 2b and 2c.) Here, we find indications
of anomalous behavior for the itinerant electrons, where
the quasiparticle residues of all three orbitals decrease
with temperature. This is accompanied by an increase
in ImΣ(kF,

iπ
β ) as T is lowered. This is perhaps expected

for orbital three, as Z (ImΣ) for the localized orbitals
should decrease (increase) as this orbital becomes more
localized. For the itinerant orbitals, however, one would
naively expect the self-energy to decrease as tempera-
ture is lowered, which is opposite to what is observed.
We believe that this is due to the Hund’s interaction be-
tween the itinerant electrons and the localized spins on
orbital three. At this temperature we find no evidence
of a magnetic ordering in our model,39 despite the fact
that a local moment has clearly formed in the OSMP.
This means that the orientation of the local moment is
random and fluctuating at these temperatures. This pro-
duces a fluctuating potential acting on the itinerant elec-
trons via the Hund’s coupling, thus generating a residual
scattering mechanism at low temperatures that reduces
the quasiparticle residue and increases the self-energy.

B. Momentum and Temperature Dependence of
the Spectral Weight

Next, we turn to the momentum dependence of the
spectral weight for the three orbitals in the vicinity of
the Fermi level. This can be estimated directly from the
imaginary time Green’s function using the relationship59

βG(k, τ = β/2) =
β

2

∫
dω

A(k, ω)

cosh
(
βω
2

) ,
where A(k, ω) is the single-particle spectral function. At

low temperature, the function β
2 cosh−1

(
βω
2

)
is sharply

peaked around ω = EF = 0. The quantitiy βG(k, τ =
β/2) therefore provides a measure of the spectral weight

at momentum k, integrated within a window of a few
β−1 of the Fermi level. Using this relationship we do not
have to perform the extra step of analytically continuing
the data to the real frequency axis.

Figures 3a-3c summarize βG(k, β/2) for U/W = 0.1,
U/W = 0.8, and U/W = 2, respectively. The results
in the weak coupling limit (U/W = 0.1, Fig. 3a) are
consistent with that of a fully itinerant system: all three
orbitals have a maximal spectral weight at a momen-
tum point very close to the Fermi momenta of the non-
interacting system (indicated by the dashed lines). This
is exactly the behavior one expects for a well-defined
quasi-particle band dispersing through EF, where the
peak in the spectral weight occurs at kF. The proximity
of the peaks in βG(k, β/2) to the non-interacting val-
ues of kF indicates that the Fermi surface is only weakly
shifted for this value of the interaction parameters. How-
ever, as we will show in Sec. III C, these shifts are band
dependent.

In the intermediate coupling regime (U/W = 0.8, Fig.
3b), where the OSMP has formed, we again see both lo-
calized and itinerant characteristics. The spectral weight
of the localized orbital is small and independent of mo-
mentum, as expected for the formation of a localized
Mott state. Conversely, the spectral weight of the re-
maining orbitals still exhibits a momentum dependence
characteristic of dispersive bands. Despite this, the to-
tal spectral weight is decreased, indicating that spectral
weight has been transferred to higher binding energies
by the Hubbard and Hund’s interactions. This is also re-
flected in the position of the maximum spectral weight,
which has shifted to a slightly larger k value due to a
renormalization of the Fermi surface by the interactions.
We also observe that the spectral weight at the zone
boundary increases relative to the zone center, consis-
tent with a flattening of the bands and a broadening of
the spectral function with increasing U . (This will be
confirmed shortly when we examine the spectral func-
tions directly.) A similar transfer of spectral weight was
observed in a two-dimensional cluster DMFT study.35

The temperature evolution of spectral weight
βG(kF, β/2) at the Fermi momentum for the OSMP
(U/W = 0.8) is shown in Figure 3d. In a metallic
system one generally expects the spectral weight at the
Fermi level to increase as the temperature is decreased.
Initially, this is what is observed for all three orbitals,
however, the spectral weight for orbital three reaches a
maximum around β = 7.5/W before decreasing as the
temperature is lowered further and the OSMP gap forms
on this orbital. Conversely, the spectral weight of the
itinerant orbitals continues to rise until saturating at
β/W ≈ 15. This saturation is again due to the presence
of a residual scattering channel, which we associate with
the fluctuating localized spins present on the localized
orbital three.

The U/W = 0.8 results confirm the mixed itiner-
ant/local character of the model at intermediate cou-
pling. When the value of U is further increased, we find
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FIG. 3: (color online) The momentum dependence of Green
functions G(k, τ = β/2) for a) U/W = 0.1, b) 0.8, and c) 2.0.
The inverse temperature in all three cases is β = 19.6/W .
The blue, red, and green dash lines in each panel indicate
the Fermi momentum of the three non-interacting bands. (d)
G(kF, τ = β/2) as a function of inverse temperatures β for
the OSMP U/W = 0.8. Error bars smaller than the marker
size have been suppressed for clarity.

that all three bands become localized while maintaining
partial occupancies for each band. To demonstrate this,
Fig. 3c shows results for U/W = 2. In this case, the or-
bital occupations for the three orbitals are 〈n1〉 = 1.55,
〈n2〉 = 1.44, 〈n3〉 = 1, which are similar to those ob-
tained at U/W = 0.8. At face value one might therefore
conclude that the system is in an OSMP,37,39 however,
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dashed, �), U/W = 0.1 (blue solid, 4), U/W = 0.8 (red solid
◦), and U/W = 2 (green solid �) and at an inverse tempera-
ture of β = 19.6/W .

an examination of the spectral weight reveals that the
system is in fact insulating. As can be seen in Fig. 3c,
at U/W = 2 and β = 19.6/W , βG(k, β/2) is nearly mo-
mentum independent and the total spectral weight of all
three orbitals has significantly decreased (note the change
in scale of the y-axis). This behavior is indicative of the
formation of a charge gap throughout the Brillouin zone.
The ultimate origin of this insulating behavior is the for-
mation of a long-range orbital ordering, as we will show
in Sec. III D.

C. Band-dependent Fermi surface renormalization

It is now well known that ab initio band structure cal-
culations based on density functional theory (DFT) do
not describe the electronic structure of the iron based su-
perconductors as measured in ARPES experiments. (For
a recent review, see Ref. 4.) Generally speaking, the cal-
culated band structure usually needs to be rescaled by an
overall factor, which is attributed to reduction in band-
width driven by electronic correlations. In addition, the
size of the Fermi surfaces is often overestimated by DFT
in comparison to measurements. A prominent example
of this is LiFeAs,60 where the inner most hole pocket re-
alized in nature is substantially smaller than the one pre-
dicted by DFT61,62. In order to correct this, the electron-
and hole-bands need to be shifted apart,4 which requires
a momentum-dependent self-energy correction.

We examine this issue within our model in Fig.
4, which plots the expectation value of the orbitally-
resolved number operator in momentum space nγ(k) =
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1
2

∑
σ〈c
†
k,γ,σck,γ,σ〉 for various values of the interaction

strength. In the non-interacting limit, and in a single-
band case, this quantity is equal to the Fermi-Dirac dis-
tribution and the location of the leading edge corresponds
to kF. In a multi-band system the mixing of the orbital
character complicates this picture; however, in our model
the leading edge still corresponds to kF due to the weak
hybridization between orbitals. In the weak coupling case
(U/W = 0.1) we observe a small shift in the position of
the leading edge. Within error bars, the curve n1(k)
and n2(k) shift to slightly larger momenta while n3(k)
shifts towards smaller momenta. This indicates that the
size of the Fermi surfaces are increasing and the electron-
like and hole-like bands are shifted towards one another
by the interactions. This trend continues as U/W is in-
creased to 0.8; however, in this case the electron-like band
is significantly smeared out due to the formation of the
OSMP.

We note that the direction of the band shifts is reversed
from what is generally required for the two-dimensional
iron-based superconductors, where the calculated hole-
like Fermi surfaces generally need to be shrunk relative
to the electron-like Fermi surfaces. We attribute this
to differences in the underlying tight-binding model and
differences in dimensionality. In this light, it would be
interesting to compare the ARPES observed band struc-
tures in the quasi-one-dimensional pnictides against the
predictions of our model and DFT calculations.42 Nev-
ertheless, our results do show that non-local correlations
arising from a local interaction can produce relative shifts
of the electron-like and hole-like bands in a multi-orbital
system.

D. Spectral Properties

1. Intermediate Coupling U/W = 0.8

We now examine the spectral properties of the
model, beginning with the OSMP. Figure 5a shows
the temperature evolution of the total density of states
(DOS) at U/W = 0.8, which is obtained from the
trace of the orbital-resolved spectral function N(ω) =∑
k,γ −

1
π ImĜγγ(k, ω + iδ). In the non-interacting limit

(the long-dashed (blue) curve), the DOS has a dou-
ble peak structure, where the lower (upper) peak cor-
responds to the bands derived from orbitals one and
two (orbital three). The overall structure of the DOS
in the interacting case is similar at high temperatures,
but some spectral weight is transferred to a broad inco-
herent tail extending to lower energies. As the temper-
ature is decreased, the peak on the occupied side shifts
towards the Fermi level and sharpens. At the same time,
a small amount of spectral weight is transferred from
the vicinity of the Fermi level into this peak. The ap-
pearance of this apparent “pseudogap” is a direct conse-
quence of the OSMP forming on orbital three, which is
easily confirmed by examining the orbital-resolved DOS
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FIG. 5: (color online) (a) The density of states at different
temperatures. (b) The orbitally-resolved density of states for
each orbital at an inverse temperature β = 19.6/W . (c) The
density of states at the Fermi surface of the orbital 3 as a
function of inverse temperatures β. The Coulomb interaction
strength is U/W = 0.8 in all three graphs.

Nγ(ω) = − 1
π

∑
k ImĜγ,γ(k, ω) shown in Fig. 5b. As

can be clearly seen, orbitals one and two have a finite
DOS at ω = 0, while orbital three is fully gapped at
low-temperature.

We also begin to see the formation of an additional
peak near the Fermi level at the lowest temperature we
examined (β = 19.6/W ). This feature is more clearly
seen in the orbital-resolved DOS (Fig. 5b), where it is
found to originate from the itinerant orbitals. This peak
is due to a hybridization between the itinerant and local-
ized orbitals, which is observable in the k-resolved spec-
tral functions (see Fig. 6).

The relevant temperature scale for the formation of the
OSMP can be estimated by tracking N3(0) as a function
of temperature, as shown in Fig. 5c. Here, a continuous
suppression of N3(0) is observed, with the value reaching
zero at β ≈ 20/W . The rate at which N3(0) decreases
also undergoes a distinct change at β ≈ 7.5/W , which co-
incides with the temperature at which the spectral weight
for this orbital at kF is largest (see Fig. 3d). We interpret
this to mean that the Mott gap on orbital three begins
to form at βW ≈ 10 (on the L = 24 site lattice), growing
continuously from zero as the temperature is lowered. In
this case, the finite spectral weight between βW = 10 –
20 is due to thermal broadening across this gap. Since we
have observed similar behavior on smaller clusters with
DQMC and at zero temperature using DMRG, we be-
lieve that the transition to the OSMP will survive in the
thermodynamic limit, however, the gap magnitude has
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some finite size dependence.

The extended length of our 1D cluster grants us access
to the momentum dependence of the spectral function,
which is shown in Fig. 6. The top row of Fig. 6 shows the
results in the OSMP with U/W = 0.8 and β = 19.6/W ,
which is the same parameter set used in Fig. 5. The

total spectral function A(k, ω) = − 1
πTr

[
ImĜ(k, ω)

]
is

shown in Fig. 6a and the orbital-resolved components
Aγ(k, ω) = − 1

π ImĜγγ(k, ω) are shown in Figs. 6b-d, as
indicated. The lower row of Fig. 6 shows similar results
obtained for U/W = 2 and L = 8. (In this case a smaller
cluster is sufficient due to the non-dispersing nature of
the band dispersions.)

The results in the OSMP with U/W = 0.8 reveal local-
ized and itinerant characteristics that are consistent with
the spectral weight analysis presented earlier. The itiner-
ant orbitals primarily contribute to dispersing bands that
track through the EF (ω = 0), while orbital three has
split into two relatively dispersionless upper and lower
Hubbard bands above and below EF. At first glance,
these Hubbard bands appear to be sharper than the cor-
responding Hubbard bands in the single-band Hubbard
model; however, an examination of the DOS (Fig. 5b)
reveals that they are spread out over an energy interval
that is larger than the non-interacting bandwidth of the
top most band (W3 ∼ 0.3W ∼ 0.735 eV). In addition to
the formation of the Hubbard bands for orbital 3, we also
observe two additional effects. The first is an expected
narrowing of the bandwidth of the itinerant bands. For
this parameter set we obtain W1 ∼ 1.7 and W2 ∼ 1.65
eV for orbitals one and two, respectively, which should
be compared to the non-interacting values of 1.88 and
1.97 eV. The second is the aforementioned hybridization
and level repulsion between the itinerant and localized
orbitals. This is manifest in the spectral function as a
slight “buckling” of orbital three’s upper Hubbard band
near k = 0, and the tracking orbital one’s spectral weight
along EF near k = ±π/2a. It is this trailing intensity
that forms the peak observed in the DOS just above the
Fermi level at low temperatures.

2. Strong Coupling U/W = 2

The spectral properties of the model are very different
when the Hubbard interaction is increased to U/W = 2.
In this case, the total spectral function (Fig. 6e) and
its orbitally-resolved components (Fig. 6f-6h) all split
into relatively flat Hubbard-like bands above and below
EF. (In the case of orbital three, the lower band below
EF has been pushed outside of the energy range shown
in the figure.) For this value of the interaction strength
there is no spectral weight at the Fermi level, and the sys-
tem is insulating even though orbitals one and two have
on average 1.55 and 1.44 electrons/orbital, respectively.
(These values are obtained both from the measured equal
time orbital occupancies, and from integrating the total

spectral weight above and below EF.)

The imaginary axis spectral weight analysis (Fig. 3c)
and the spectral function analysis (Fig. 6) both indicate
that for U/W = 2 the model is an insulator. The ori-
gin of this behavior is the combined action of the Hund’s
coupling and the onset of an orbital ordering of the itin-
erant orbitals. All indications show that orbital three
has already undergone an orbital selective Mott phase
transition (OSMT) when U/W = 2. This has the ef-
fect of localizing one electron per site within this subset
of orbitals while leaving three additional electrons to be
distributed among the remaining two itinerant orbitals.
A sizable Hund’s coupling will decouple the individual
orbitals when the crystal field splittings are smaller than
the bandwidth of the material.21 This is precisely the sit-
uation at hand, and thus the remaining nominally itiner-
ant orbitals are decoupled from the localized orbital by
the large J = U/4. This results in an effective nearly-
degenerate two-band system with (nearly) three-quarters
filling. This is special case for the two-orbital Hubbard
model, which is prone to orbital ordering in one and two-
dimensions.28,63,64

The situation is sketched in Fig. 7. Assuming ferro-
magnetic nearest neighbor correlations for orbital three,
we have a low-energy ground state configuration as shown
in the left side of 7a. Here, orbitals one and two adopt al-
ternating double occupations in order to maximize their
delocalization energy through virtual hopping processes.
This results in near-neighbor orbital correlations. Sub-
sequent charge fluctuations such as the one shown in
the right side of the Fig. 7a cost a potential energy
PE ∼ U ′ − J = W/2. This is compensated for by a
kinetic energy gain KE ∼ 4t11 ∼ 4W/4.9. The ratio
between these competing energy scales is ∼ 5/8, suggest-
ing that charge fluctuations are strongly suppressed by
the strong electronic correlations in this subsystem. Note
that the situation is worse for antiferromagnetic nearest
neighbor correlations in orbital three. The energy cost in
this case increases to ∼ U ′, as shown in Fig. 7b. Thus
both ferro- and antiferromagnetic correlations in orbital
three will suppress charge fluctuations and promote or-
bital ordering. Since the type of magnetic correlations
does not matter, such orbital ordering tendencies can be
expected in the paramagnetic phases, provided the local-
ized moments have formed in orbital three. This picture
is then consistent with insulating behavior (and short-
range orbital ordering tendencies, see below) at high tem-
peratures, where no magnetic correlations are observed.

We verify this picture explicitly in Fig. 8, which plots
the equal-time orbital correlation function 〈τ̂i+dτ̂i〉, with
τ̂i = (n̂i,2 − n̂i,1). Here, results are shown for finite tem-
perature DQMC calculations (Fig. 8a) and zero temper-
ature DMRG calculations (Fig. 8b) and with U/W = 2
in both cases. The “long-range” (with respect to the
cluster size) anti-ferro-orbital correlation is clear in the
zero temperature results obtained on L = 8 and L = 16
chains. At finite temperatures (β = 19.6/W ) we find
that the orbital correlations are suppressed at long dis-
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FIG. 6: (color online) (a) The spectral function for U/W = 0.8. (b), (c), and (e) are the orbital 1, 2, and 3 parts of the
spectral function in (a), respectively. (e) The spectral function for U/W = 2. (f), (g), and (h) are the orbital 1, 2, and 3 parts
of the spectral function in (e), respectively. The dash white line labels the Fermi surface. The inverse temperature is set as
β = 19.6/W . Results where obtained with Maximum Entropy DQMC.
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11
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11

FIG. 7: A cartoon sketch of the relevant charge fluctuation
processes leading to the insulating state when U/W = 2 as-
suming (a) ferromagnetic and (b) antiferromagnetic nearest
neighbor correlations within the orbital that has undergone
the orbital selective Mott transition (orbital three).

tances, but local anti-ferro-orbital correlation remains on
shorter length scales. These combined results demon-
strate the presence of short-range orbital correlations at
higher temperatures, which grow in length as the temper-
ature is decreased. The corresponding orbitally resolved
DOS are plotted in Fig. 9 for both cases. Both meth-
ods predict that the system is insulating, with a charge
gap width on orbitals one and two of about 0.5 eV (esti-
mated from half the peak-to-peak distance in the DOS).
The presence of a gap at finite temperature also con-
firms that the short range orbital correlations are suf-
ficient to open a gap in the spectral function. Finally,
we stress these results will survive in the thermodynamic
limit L → ∞. This is confirmed in the inset in Fig.

9b, which plots the T = 0 gap ∆ as a function of chain
length L, as obtained from DMRG. In this case, comput-
ing the DOS for the longer chains is impractical. There-
fore, we defined an alternative measure of the gap as
∆ = E(N + 1) +E(N − 1)− 2E(N), where E(N) is the
ground state energy of the system with N = 4L elec-
trons. This definition agrees with the gap size obtained
directly from the DOS that was explicilty computed for
the shorter chains. Using this, we find that the DMRG
gap size ∆ decreases with increasing chain lengths, until
leveling off at a value of ∼ 0.2 eV in the L→∞ limit.

IV. DISCUSSION AND SUMMARY

We have performed a momentum-resolved study of a
multi-orbital model defined on extended 1D chains us-
ing non-perturbative DQMC and DMRG. This has al-
lowed us to compute the several properties of an OSMP
in a momentum resolved manner without resorting to
approximate methods. We find that several properties
do indeed exhibit significant momentum dependencies,
not be captured by local approximations introduced by
DMFT; however, the 1D case we have considered repre-
sents the worst case for DMFT. In that sense our results
complement existing DMFT efforts by providing analy-
sis in a region where the method is expected to perform
badly.

Our results establish the hierarchy of charge and mag-
netic orderings in this model. At low temperatures, our
DMRG calculations (as well as those in Ref. 37) demon-
strate that orbital three is ferromagnetically ordered at
T = 0. Contrary to this, our finite temperature DQMC
calculations find no indications of any magnetic order
for β < 19.6/W ; the magnetic structure factor S(q) is
completely featureless as a function of q at these tem-
peratures. Despite this, our finite T calculations find
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FIG. 8: Results for the orbital correlation function for the
system in the strong coupling case U/W = 2. Results are
obtained at (a) finite temperature using DQMC and (b) T =
0 (β = ∞) using DMRG. In both cases, results are shown
on L = 8 (red dots) and L = 16 (blue triangles) chains.
The DQMC results were obtained on a chain with periodic
boundary conditions. The DMRG results were obtained on a
chain with open boundary conditions.
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FIG. 9: Results for the orbitally-resolved density of states
for each orbital obtained for U/W = 2 and on L = 8 site
chains. Panel (a) shows DQMC results at β = 19.6/W and
the inset zooms in to energy around Fermi surface. Panel
(b) shows DMRG results for the same conditons but at zero
temperature (β = ∞). The inset plots a finite size scaling
analysis of the charge gap obtained within DMRG (see text).
The dash line in both panels indicates the Fermi energy.

an orbital-selective Mott phase, as well as a fully insu-
lating phase arising due to short-range orbital ordering,
depending on the strength of the Hubbard interaction U .
We therefore conclude that the charge ordering occurs
before any magnetic ordering in this model.

The results shown in Fig. 2d and 3d show that orbital
three in our model, which has the narrowest band width,
undergoes a transition to a Mott phase at βW ∼ 10−15.
This in combination with the lack of magnetic signal
means that OSMP in this parameter regime is a true
Mott phase as opposed to a Slater insulator where the
insulating behavior is driven by magnetism. Our re-
sults also demonstrate that it is insufficient to identify
an OSMP using the orbital occupations only in some in-
stances. One should be particularly careful in regions of
parameter space where the itinerant bands have average
occupations close to special cases known for one and two-
orbital Hubbard models. In our case, the average fillings
of the itinerant orbitals are 〈n1〉 ∼ 1.53 and 〈n2〉 ∼ 1.47,
values very close to the special case of 3/4 filling in a
degenerate two-band Hubbard model. At zero temper-
ature, our DMRG results obtain fillings of 1.5 for each
orbital.

The orbital correlations in Fig. 8 give some indica-
tion as to the extend of the cluster one might need to
capture these effects using embedded cluster techniques.
The β = 19.6/W results shown in Fig. 8a indicate that
the orbital correlations extend over (at least) three lattice
sites within the error bars of our data, while at T = 0 the
correlations (Fig. 8b) extend over the length of the clus-
ter. Thus, the low-temperature correlation length can be
quite long, even in 1D. Single-site mean-field approaches
cannot capture these correlations in either case. How-
ever, one might hope that DCA or cluster DMFT exten-
sions may be able to address the short range correlations
at elevated temperatures.

Finally, we discuss our results in the context of recent
experimental work. ARPES results for AFe2As2 have
found evidence that the OSMP in these materials disap-
pears as the temperature is lowered.65 This behavior was
explained using a slave-boson approach and attributed
to the reduced entropy in the metallic phase in compar-
ison to the OSMP. Our results do not show this behav-
ior, and the OSMP is found at low temperature. This
difference may be related to the differences in the dimen-
sionality (one vs. two) or number of orbitals (three vs.
five) between the models, or the differences between our
non-perturbative approach and other mean-field meth-
ods. This highlights the need for continued application
of non-perturbative methods to tractable multi-orbital
Hubbard models.
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