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Recent photoemission experiments1 reveal that the excitations along the nodal region in the
strange metal phase of the cuprates, rather than corresponding to poles in the single-particle Green
function, exhibit power-law scaling as a function of frequency and temperature. Because such
power-law scaling is indicative of a scale-invariant sector, as a first step, we perturbatively evaluate
the electron self-energy due to interactions with scale-invariant unparticles. We focus on a G0W
type diagram with an interaction W mediated by a bosonic scalar unparticle. We find that, in
the high-temperature limit, the imaginary part of the self-energy ImΣ is linear in temperature. In
the low-temperature limit, ImΣ exhibits the same power law in both temperature and frequency,
with an exponent that depends on the scaling dimension of an unparticle operator. Such behavior
is qualitatively consistent with the experimental observations. We then expand the unparticle
propagator into coherent and incoherent contributions, and study how the incoherent part violates
the density of states (DOS) and density-density correlation function sum rules (f-sum rule). Such
violations can, in principle, be observed experimentally. Our work indicates that the physical
mechanism for the origin of the power-law scaling is the incoherent background, which is generated
from the Mott-scale physics.

I. INTRODUCTION

Scale invariance is the cornerstone of any infrared the-
ory or physical system in which the physics is controlled
by a critical fixed point. It is surprising then that re-
cent photoemission experiments1 on the strange metal
phase of the cuprates indicate that scale invariance is
applicable not just at a single (quantum critical) point,
but over an entire phase. The experiments reveal that
the excitations along the nodal direction are not at all
quasiparticle-like, but rather exhibit a power-law scaling
in which frequency and temperature are interchangeable.
Specifically, they show1 that the scattering rates inferred
from the momentum distribution curves (MDCs) along
the nodal direction exhibit a power-law scaling of the
form

Σ′′PLL(ω) = Γ0 + λ
((~ω)2 + (γkBT )2)a

(~ωN )2a−1
, (1)

where ωN is a normalization energy scale, and γ and λ are
constants. This scaling form of the self-energy is found
to hold over a wide range of dopings — from underdoped
where a < 1/2, to optimal doping where a = 1/2, and to
overdoped with a > 1/2. While scaling has been observed
previously, it was typically associated with just a single
doping level, namely at the optimal concentration2–4. It
is the modeling and possible origin of such power-law
scaling over an entire phase that we address here.

Theoretically, mechanisms yielding similar non-Fermi
liquid scalings have been extensively studied5–14. In
a marginal Fermi liquid5, a polarizability proportional
to ω/T leads to T -linear resistivity, while a d-wave
Pomeranchuk instability in two dimensions6 yields self-
energies with ω2/3 and T 2/3 dependence. In addi-
tion, similar behaviors can also be obtained by coupling
quasiparticles with gauge bosons7, Goldstone bosons8,
and critical bosons9 near a quantum critical point10.

Furthermore, strong coupling theories using AdS/CFT
correspondence11, and Gutzwiller projection in hidden
Fermi liquid theory12 also exhibit T -linear resistivity. In
particular, the spectral functions calculated within the
AdS/CFT formalism can also exhibit a range of power
law scaling when the scaling dimension of the boundary
fermionic operator is tuned continuously13,14.

Here, we consider an alternative approach. Power-law
scaling of a physical property, such as the imaginary part
of the self energy, indicates criticality. Hence, it is reason-
able to posit that a scale-invariant object is involved in
the generation of the power law. In this work, we model
such an object using the idea of unparticles. First pro-
posed by Georgi15 as a low-energy scale-invariant sector
in the standard model, unparticles can be thought of as
a scale-invariant sector that emerges in the infrared (IR)
regime of an effective field theory. In other words, unpar-
ticles arise from integrating out the high energy degrees
of freedom of a generic field theory. In the context of the
cuprates, one of us16 has proposed that unparticle stuff
can describe the pseudogap phase, in which the excita-
tions are not adiabatically connected to Fermi liquids.
Furthermore, the infrared properties of these excitations
must be controlled by a strong coupling critical fixed
point. Hence, an underlying propagator of these excita-
tions can be constructed based on scale invariance, and
the resulting propagator is the unparticle propagator15.

The unparticle propagators can be modeled within the
continuous mass formalism. If φ(p,m2) is a scalar prop-
agator with four momentum p and mass squared m2, the
propagator for the unparticle (Gu(p)) can be obtained
as17,18 Gu(p) =

∫∞
0
dm2φ(p,m2)f2(m2) with φ(p,m2) =

1
p2−m2+iη . The function f(m2) is a weighing function

such that the number of fields between m2 and m2 +dm2

is f(m2)dm2. If we choose f(m2) = (m2)(du− d+1
2 )/2

where d + 1 is the spacetime dimension and du is the
scaling dimension of the unparticle operator, we obtain



2

the unparticle propagator

Gu(p) ∼ 1

(−p2 − iη)
d+1

2 −du
. (2)

Alternatively, to construct unparticles, one can start
from the action of a massive scalar field16 and inte-
grate over the mass m2 (again assuming a mass distri-
bution) by treating it as an additional coordinate so that
scale invariance is restored. The new action can then
be rewritten into a theory in the anti-de Sitter space-
time (AdS). The resulting two point function obtained
from the AdS/CFT correspondence can be identified as
the unparticle propagator. It is clear from the form of
the unparticle propagator that the exponent d+1

2 −du is,
in general, not an integer. This yields branch points at
±k2 (instead of poles), indicating that unparticles rep-
resent incoherent electronic states of matter that lack a
“particle-like” character, and are associated with mea-
surable quantities that encompass the physics from both
low and high energy scales.

A question that remains open from this work is how
the unparticle sector interact with the particle sector to
renormalize the quasiparticle weights. Physically, the un-
particle sector should be thought of as the incoherent
part of the spectrum. The question we address here is:
what is the fate of particles in the presence of an inco-
herent sector? This question is of utmost relevance at
present since the experiments indicate that it is the elec-
tron scattering rate that exhibits a power-law scaling.
Ultimately, a secondary question that rises is what role
do unparticle-unparticle interactions play. We postpone
the latter question to a subsequent paper and focus here
on the former to see how close we can come to a descrip-
tion of the power-law liquid with just electron-unparticle
interactions. Consequently, to address the experiments,
we consider the interaction between electrons and the
unparticle sector directly. The quantity we focus on is
a quasiparticle’s lifetime τ , which is proportional to the
imaginary part of electron’s self-energy. In particular,
we want to know how τ depends on the temperature,
T , and frequency, ω, and in what situation τ exhibits
a power law as a result of interactions with the scale-
invariant sector. We evaluate electron self-energies per-
turbatively using a G0W type diagram in which the in-
teraction W is mediated by the bosonic scalar unparticle
sector. We find that at high temperatures, the quasi-
particle’s lifetime is linear in T as a result of bosonic
excitations of unparticles. In the low-temperature limit,
the electron’s energy dispersion becomes linear in mo-
mentum and thus the scaling analysis can be applied.
The quasiparticle’s lifetime in this case is a power law
of the form τ ∼ T d−2+2α and τ ∼ |ω|d−2+2α, where
1 − α = d+1

2 − du. To satisfy the unitarity bound19

du > (d− 1)/2, the only constraint on α is α > 0. How-
ever, in perturbation theory, further constraints arising
from the Matsubara summations and the convergence of
the integrals place α in the interval (3 − d)/2 < α < 1.
Hence, while the current perturbative particle-unparticle

treatment can describe non-trivial power-law behaviour
of the self-energy with respect to temperature and fre-
quency, it cannot access the regime α < (3− d)/2 where
the current theory gives infrared divergences. Whether
the divergences which arise for α < (3 − d)/2 vanish
when unparticle-unparticle interactions are included will
be explored in a further publication. We then turn our
attention to a problem regarding a violation of a sum
rule when unparticles are present in a system. In this
discussion, instead of using the bosonic unparticles, we
use a fermionic propagator with a fractional power, since
the results obtained can be readily compared with known
standard sum rules. We expand the propagator into co-
herent and incoherent contributions, and study how the
incoherent part violates the density of states (DOS) and
density-density correlation function sum rules.

II. ELECTRON-UNPARTICLE

We investigate a system consisting of electrons that
interact with a scale invariant sector. We model such
a scale invariant sector by a bosonic scalar unparticle
with a momentum cutoff Λ. The cutoff signifies that the
unparticle is an effective infrared description of some high
energy model. The interaction between an electron and
an unparticle is chosen to be a constant Yukawa coupling,
u. The action of the model we consider in Matsubara-
Fourier space is given by

S = T
∑
m

Λ∫
ddp

(2π)d
φ†m(p)G−1

u,m(p)φm(p)

−T
∑
n

∫
ddq

(2π)d
ψ†n(q)G−1

e,n(q)ψn(q)

+uT 2
∑
m,n

Λ∫
ddp

(2π)d

∫
ddq

(2π)d
ψ†m+n(p + q)φm(p)ψn(q)

(3)

where φ is a bosonic unparticle and ψ is a non-relativistic
electron field. Here, Gu is the unparticle propagator,
Ge is the non-interacting electron propagator, T denotes
the temperature, and the subscripts of the fields and the
propagators denote the dependence on Matsubara fre-
quency. The bosonic unparticle propagator is given by

Gu,m(p) =
1

(ω2
m + E2

p)1−α , (4)

where α is related to d and du by 1− α = d+1
2 − du, and

Ep is a quantity with units of energy. Since the spec-
tral function calculated from Gu is gapped between −Ep

and Ep (Fig. 1), Ep can be interpreted as the minimum
energy required to excite an unparticle of momentum p.

We choose Ep to have a form Ep = |p|v = pv in order
for Gu to be scale covariant. Here, v is a dimensionless
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FIG. 1. The spectral function of unparticles when 0 < α < 1.

constant. If α = 0, Gu turns into a propagator of a free
scalar field. The electron propagator Ge is given by

Ge,n(q) =
1

iωn − εq
, (5)

where εp = p2

2m − µ and µ = εf is the chemical potential
which we assume to be temperature independent.

We want to point out that the system of electrons
and unparticles we consider here resembles the stan-
dard electron-phonon system modeled by the Fröhlich
Hamiltonian20, but with key differences. In contrast to
the phonon being a quanta of lattice vibration, the unpar-
ticle in our model is an effective scale invariant object of
some high energy model, such as the Mott physics in the
Hubbard model. It is the lack of the quanta concept be-

ing relevant to unpartices that is the origin of the branch-
cut behavior of the unparticle propagator. Nonetheless,
as with phonons, unparticle stuff exists only up to Λ in
the same way that phonon has a momentum cutoff ∼ 1/a
with a being a lattice spacing.

FIG. 2. The Feynman diagram for the electron’s self-energy.
The solid line represents an electron propagator. The dashed
line represents an unparticle propagator.

We are interested in the quasiparticle’s lifetime τ which
is given by τ = − 1

2 ImΣ, where Σ is the electron’s self-
energy. The expression for the electron self-energy at the
lowest order (Fig. 2) as a function of fermionic Matsub-
ara frequency ωn and momentum q can be written as

Σn(q) = u2

∫
ddp

(2π)d
T
∑
m

Gu,m(p)Ge,n+m(q + p).(6)

We perform the summation over the bosonic Matsubara
frequency ωm using the standard contour integral tech-
nique (see Appendix A). We then perform an analytic
continuation, iωn → ω + iη, to obtain the retarded self-
energy. The self-energy in the case of 0 < α < 1 is

Σ(ω,q) = −u2

∫
ddp

(2π)d
gF (εp+q)

(−εp+q + Ep + ω + iη)1−α(εp+q + Ep − ω − iη)1−α

+
sin(πα)

π
u2

∫
ddp

(2π)d

∞∫
Ep

dz
gB(z)

(z + Ep)1−α(z − Ep)1−α

(
1

(z + ω + iη − εp+q)
− 1

(z − ω − iη + εp+q)

)
, (7)

where gF (z) = 1
2 tanh(βz2 ) is a fermionic factor and

gB(z) = 1
2 coth(βz2 ) is a bosonic factor obtained from

converting the summation to the contour integral. Here,
the phase angle needed when one evaluates the power
1 − α in the first term is in the range −π ≤ θ < π. We
denote the first term by ΣF and the second term by ΣB
since their integrands contain the fermionic and bosonic
factors. We are interested in the behavior of the imagi-
nary part of this self-energy as a function of temperature
and frequency.

A. Behavior of ImΣ(T )

We now turn to the evaluation of the relevant terms.
When T � |εp+q|, we have gF (εp+q) = 1

2 tanh
βεp+q

2 ≈
βεp+q

4 . Hence, the first term in Eq. 7, ΣF , goes like O( 1
T ).

Taking the imaginary part of the second term in Eq. 7
and then integrating over z using the delta functions, one
obtains
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Im ΣB(ω,q) = − sin(πα)u2

∫
ddp

(2π)d

(
Θ(−ω + εp+q − Ep)

gB(−ω + εp+q)

(−ω + εp+q + Ep)α(−ω + εp+q − Ep)α

+Θ(ω − εp+q − Ep)
gB(ω − εp+q)

(ω − εp+q + Ep)α(ω − εp+q − Ep)α

)
. (8)

In the high-temperature limit, gB(z) can be expanded

as gB(z) = 1
2 tanh βz

2 → 1
βz + O(βz). So when T �

|εp+q − ω|, ImΣB(ω,q) = −Cu2T + O( 1
T ) where C is a

temperature-independent constant. Consequently, in the
high-temperature limit, one has

ImΣ = ImΣF + ImΣB ∝ −T. (9)

Since we do not explicitly use the form Ep = pv in the
above argument, this result also holds for any form of
Ep, provided the integral in Eq. 8 converges.

For the low-temperature case, we consider only the
electrons on the Fermi surface (q = qf ) with ω = 0.
In this case, the expression εp+q simplifies to εp+q =
p2

2m+ p·q
m . If the momentum cutoff Λ is much smaller than

qf , it should be reasonable to omit the term p2

2m in εp+q.
From Eq. 7, we separate the temperature dependent
parts using gF (z) = 1

2 − nF (z) and gB(z) = 1
2 + nB(z)

where nF and nB are the Fermi and Bose distributions,
respectively. We drop the 1

2 terms from gF and gB , since
we are only interested in the temperature dependence
of Σ. Performing the change of variables z → pz′ and
p→ pT , one obtains

Σ = u2T d−2+2α

Λ/T∫
ddp

(2π)d
p−2+2α 1

(e
p·qf
m + 1)(− p̂·qfm + v + iη)1−α(

p̂·qf
m + v − iη)1−α

+
sin(πα)

π
u2T d−2+2α

Λ/T∫
ddp

(2π)d
p−2+2α

∞∫
v

dz′
1

(epz′ − 1)(z′ + v)1−α(z′ − v)1−α

(
1

(z′ + iη − p̂·qf
m )
− 1

(z′ − iη +
p̂·qf
m )

)
(10)

where p̂ denotes a unit vector in the direction of p. Upon
taking the limit T → 0, i.e. T � vΛ, the upper limit of
the momentum integral can be taken to∞ provided that
there is no infrared divergence from the integrals over p.
By counting the powers of p, one needs d − 3 + 2α > 0,
i.e. α > 0 for d = 3 and α > 0.5 for d = 2. Therefore,
one has

ImΣ ∝ −T d−2+2α (11)

at low temperatures. If the coupling constant u depends
on momentum p, the criterion for the absence of the in-
frared divergence and the scaling of ImΣ will be different.
A more in-depth analysis for the d = 3 case in Appendix
B shows that when Λ

2 < qf −mv and mv < qf the term
p2

2m in εp+q contributes to ImΣ as O(T d−1+2α). This re-

sults justifies our omission of the p2

2m term in the scaling
analysis above. The same argument used in Appendix B
cannot be applied to the d = 2 case. Nevertheless, the
numerical results below indicate that Eq. 11 still holds
for the case d = 2 and α > 0.5 (see Fig. 4).

We numerically evaluate the imaginary part of the self-
energy as a function of temperature using Eq. B11 for
d = 3 and Eq. B20 for d = 2. Here we use Λ = m,

qf =
√

2m, and v = 0.4. With these parameters, the

conditions Λ
2 < qf −mv and mv < qf are satisfied. The

results for the α = 0.8 case are shown in Figs. 3(a) and
3(b). We find that, for both the d = 3 and d = 2 cases,
ImΣ depends linearly on temperature at large T . At low
T , ImΣ exhibits a power law ∼ Tn. The exponent n
follows Eq. 11 for d = 3 when 0 < α < 1, and for d = 2
when 0.5 < α < 1 as shown in Fig. 4.

B. Behavior of ImΣ(ω)

We numerically study ImΣ(ω) (see Appendix C). We
work in d = 3 and use the same parameters as in Sect.
II A, i.e. Λ = m, q = qf =

√
2m, and v = 0.4. The

results are displayed in Fig. 5(a) for the low-temperature
case, and in Fig. 5(b) for the high-temperature case. We
find that, in the low-temperature case, ImΣ(ω) exhibits
a power law at low frequencies. This power law has the
form

ImΣ ∼ |ω|d−2+2α (12)

as shown in Fig. 6.
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(a) d = 3 and α = 0.8

(b) d = 2 and α = 0.8

FIG. 3. Log-log plots of the imaginary part of the self-energy
as a function of temperature.

C. Discussion

We find that, at high temperatures, the imaginary part
of the electron’s self-energy depends linearly on tempera-
ture. The linear T behavior is a common feature in a sys-
tem of fermions interacting with bosons. One well-known
example is an electron-phonon system in metals20. In the
context of unparticles, this result is somewhat surprising
as there is no concept of quantization. Mathematically,
the origin of the T -linear behavior seems to arise from
the summation over the bosonic Matsubara frequency in
a self-energy diagram (Fig. 2) which yields the Bose fac-
tor gB = 1

2 coth( ε
2T ). Since the leading term in the large

T expansion of gB is proportional of T , the imaginary
part of the self-energy is also linear in T .

At low temperatures, ImΣ of the electron on the
Fermi surface exhibits a fractional power law of the form
T d−2+2α and |ω|d−2+2α, in qualitative agreement with
the experiments1. This power law behavior occurs be-
cause the excitation energy of electrons close to the Fermi
surface becomes linear in momentum i.e. εp+qf ∝ p. One
can see this by noting that when the momentum cutoff Λ

FIG. 4. Plots of ImΣ’s temperature power law exponent n
vs. α at low temperatures. Squares and circles correspond to
the exponents obtained by fitting the low T parts of ImΣ to
power law in d = 3 and d = 2, respectively. Black lines are
the plots of n = d− 2 + 2α.

of the unparticles is much smaller than the Fermi momen-
tum, it is reasonable to drop the p2/2m term in εp+qf .
For the d = 3 case, we give a precise argument that jus-
tifies the omission of the p2 term in Appendix B. The
scaling obtained for ImΣ by using εp+qf ∝ p is ∝ T 1+2α

and the error from neglecting the p2 term in εp+qf is

O(T 2+2α). As a result, the error is much smaller than
ImΣ in the low-temperature limit. Hence, εp+qf is linear
in p. We are not able to use the same argument to show
the analogous result for d = 2, but the direct numerical
integration reveals that ImΣ ∝ T 2α. This indicates that
for the d = 2 case, εp+qf is also linear in p. One thing
to note is that the fractional power law comes directly
from the anomalous scale, α, in the unparticle propaga-
tor. The presence of the two branch cuts does not play
a major role in determining the low-temperature power
law of ImΣ. This gives us a hint that, to obtain a power
law, we can consider a model in which the anomalous
scale appears in the coupling constant i.e. u ∝ pα and
the bosonic unparticle is replaced by a gapless bosonic
particle. However, such an unconventional model would
require further motivation for a detailed study.

While we have so far studied only the first-order cor-
rection to the self energy, it is possible to also perform
the perturbative expansion to higher orders if the fol-
lowing two conditions are satisfied. First, the exponent
α must be greater than 3−d

2 to ensure the convergence

of the integral. When α < 3−d
2 , there is an infrared

divergence arising from the Bose distribution at zero en-
ergy. Second, the coupling constant, u, must be small.
The stronger condition can be found by deriving the ana-
logue of Migdal’s theorem21 for our model. We find that

the combination
u2pd−2

f (vΛ)−1+2α

v2
f

must be small. Here

vf = pf/m is the Fermi velocity. To derive this result,
we need the unparticle propagator Gu(ω, p) to fall off to
zero quickly when ω � EΛ. Hence, the stronger condi-
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(a) Low temparture T = 0.01m

(b) High temperature T = m

FIG. 5. Plots of the imaginary part of the self-energy as a
function of frequency in the case α = 0.7 and d = 3.

tion from Migdal’s theorem of this system becomes less
valid when α is close to 1. Still, the weaker condition is
sufficient for the validity of the perturbation theory. We
also note that, in our system, the unparticle energy scale
Λ serves as a natural high energy (UV) regulator of this
system. This Λ is analogous to the Debye energy in an
electron-phonon system.

III. SUM RULES

In this section, we study the effect of the fractional di-
mension in the propagator on the widely used sum rules.
The simplest and most common of these is the spectral or
the density of states (DOS) sum rule involving the imag-
inary part of the electron Green function with excitation
energy ω0 and lifetime τ given as

−
∫ W

−W
Im

(
1

ω − ω0 + iτ−1

)
dω = 2 arctan (Wτ) , (13)

where W is the bandwidth of the electrons in the Fermi
sea. In the limit when the excitations are well defined
(i.e. when Wτ → ∞), we obtain the DOS sum rule
where the above integral in Eq. 13 sums to π. The DOS
sum rule basically states that the quasiparticle spectral

FIG. 6. Plot of ImΣ’s frequency power law exponent n vs. α
at low frequency and temperature (T = 0.01m). The spatial
dimension in this case is d = 3. Squares (Circles) correspond
to exponents obtained by fitting the positive (negative) ω part
of ImΣ to a power law. The black line is the plot of n =
d− 2 + 2α.

weight, measured, for example, in photoemission or in-
verse photoemission experiments, is conserved when in-
tegrated over all energy scales. To examine the effect of a
fractional energy denominator has on the DOS sum rule,
we make the substitution

1

ω − ω0 + iτ−1
→ 1

(ω − ω0 + iτ−1)1−α . (14)

Note that this propagator represents a general fermion,
and is not obtained from the one-loop calculation in Sec.
II. The new integral, I, we wish to evaluate takes the
form

I = −
∫ W

−W
Im

[
τ1−α

(ωτ − ω0τ + i)1−α

]
dω. (15)

One could, in principle, be more general by adding a mo-
mentum dependence in the place of a constant excitation
energy, which is usually the case. However, it is suffi-
cient to assume it to be a constant in order to extract
the singular behavior in Wτ that we anticipate due to
the fractional dimension. If we define ωτ = t, ω0τ = t0
and Wτ = κ and take the limit ω0 �W , we find that

I = −
∫ κ

−κ
Im

[
τ−α

(t+ i)1−α

]
dt. (16)

To see the effect of a nonzero but small α, we can perform
a Taylor expansion of the propagator about α = 0 to
obtain

1

(t+ i)1−α ≈
1

i+ t
+ α

log(i+ t)

i+ t
+O(α2). (17)

The first and second terms are the “coherent” and “in-
coherent” contributions to the Green function, respec-
tively. The decoherence in the problem due to a branch
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FIG. 7. (Left) Plot of the imaginary part of the fermionic
density-density correlation function (Lindhard type) as a
function of the transferred frequency ω for various values of
α. The plots are shown for |q| = 0.5|kf |. (Right) Violation
of the sum rule integral S as a function of the anomalous di-
mension α. The dashed line shows the α = 0 value (nq2/m),
the enclosed area between the red points and the dashed line
shows the deviation from this value. The energy cut-off is
fixed at ωc

2εf
= 2

cut is now completely transferred into a logarithm in the
second term. As a result of this separation, any measur-
able quantity or correlation function will have contribu-
tions from pure coherent and incoherent terms, as well
as mixed contributions that come from cross terms. As
expected and as will be seen, any violation to the DOS
or f-sum rule must come from the incoherent part of the
Green function. To finish the evaluation of the integral I,
we need the imaginary part of the Green function which
is given by

Im

[
1

(t+ i)1−α

]
≈ − 1

1 + t2
(18)

+α

[
t
arg(i+ t)

1 + t2
− log(1 + t2)

2(1 + t2)

]
+O(α2).

The t integral can now be performed to obtain

−1

π

∫ κ

−κ
Im

[
τ−α

(i+ t)1−α

]
dt ≈ τ−α (1 + α log κ) +O(α2).

(19)
Thus, in the limit of a sharp quasiparticle peak and small
α, the correction due to a fractional energy dimension
in the Green function is proportional to α and diverges
logarithmically.

We will now numerically evaluate the sum rule viola-
tion for the density-density correlation function (f-sum
rule) which is traditionally given as

S ≡ −2

π

∫ ∞
0

ωdωχ′′0(ω,q) =
nq2

m
, (20)

where n is the electron density, q is the absolute value
of q, and m is the electron mass. Physically, Eq. 20
says that the total electron density contributing to the
density response in a certain energy window is given by
the area under the curve of the experimentally measured

FIG. 8. Dependence of the sum rule integral S on the energy
cut-off ωc

2εf
. The value of the anomalous dimension parameter

is fixed at α = 0.09.

density-density correlation function in that energy win-
dow. Similar sum rules can be formulated for the opti-
cal conductivity or the dielectric response where one can
equivalently estimate the charge density. Such a counting
procedure of the particle or charge density forms a con-
sequence of the single particle description of a response
system. However, there is no reason to expect that such a
counting procedure should continue to hold in the pres-
ence of interactions. To test this conjecture, we artifi-
cially introduce a fractional dimension to the fermionic
Matsubara Green function

1

iωn − ε(k)
→ 1

(iωn − ε(k))1−α , (21)

where ωn are the fermionic Matsubara frequencies, ε(k)
is the electron band energy with a Fermi energy εf
(and momentum kf ), and α is the fractional dimension.
Although the form of the above substitution is not
strictly that of a scale-invariant fermionic unparticle,
it gives us a flavor of the sum rule violation. The
breakdown of the f-sum rule for different values of the
fractional dimension α is shown numerically in Fig. 7.
The left panel shows the characteristic shark-fin shaped
Lindhard response obtained for q/kf = 0.5 and different
values of α. Clearly, there is a high energy tail that
develops with nonzero values of α. The right panel
shows the sum S with the energy cutoff fixed at ωc = 4εf
and |q| = 0.5|kf | with the dashed line showing the value
evaluated at α = 0. The shaded region quantifies the
deviation from the α = 0 value with the deviation being
linearly proportional to α, just like in the case for the
DOS scenario. The sum rule violation due to the cutoff
dependence (see Fig. 8), on the other hand, deviates
faster than the DOS case where the dependence on the
energy cutoff was logarithmic.
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IV. CONCLUSION

We have studied the interaction of a scale-invariant
sector with electron quasiparticles, and found that it is
the bosonic character of scalar unparticles that gives rise
to the linear T in ImΣ at high temperatures. At low
temperatures, the electrons on the Fermi surface become
scale-covariant with z = 1. One can then simply use
the scaling analysis to show that ImΣ ∝ T d−2+2α. Sim-
ilar results hold also for the frequency dependence, as
indicative of the power-law liquid seen experimentally1.
It would be interesting to see how the result we find here
translate into a temperature dependence of an electri-
cal resistivity, ρ, which is proportional to the relaxation
time, τrl.

The logarithmic divergence in the spectral sum rule is
not unexpected. The long high-energy tails, acquired as
a result of the anomalous dimension, go to infinity, giving
rise to divergent integrals if a high energy cutoff is not
imposed. However, in order to recover the sum rule, one
may need to define a “fractional” energy integral which
absorbs or cancels the logarithmic term. This seems like

the most natural prescription to derive a useful sum rule
as the necessary route to obtaining a fractional dimension
in the Green function involves fractional calculus22–25.

Because mass is energy, integrating over mass is
equivalent to integrating over all energy scales. In doped
Mott insulators, removing a single hole26,27 leads to
spectral weight transfer over all energy scales. This
gives rise to an incoherent background in the electron
spectral function. Unparticles are an attempt to model
such incoherence, and the continuous mass formalism is
designed to capture this aspect of Mott physics. That
unparticles effectively give rise to power-law contribu-
tions to the electron self-energy points to a possible
physical mechanism underlying power-law liquids1.
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Appendix A: Calculation of the Electron-Unparticle Self Energy

The summation over ωn in Eq. 6 can be converted into a contour integral:

Σn(q) = u2

∫
ddp

(2π)d

∫
C

dz

2πi

gB(z)

(E2
p − z2)1−α(z + iωn − εp+q)

(A1)

where gB(z) = 1
2 coth βz

2 is a bosonic pole function and the contour C is shown in Fig. 9.

FIG. 9. The contour C of the integral over z in Eq. A1. A solid dot represents a first order pole. A dotted line represents a
branch cut.

It is tempting to rewrite the term 1
(E2

p−z2)1−α as eiπ(1−α)

(z−Ep)1−α(z+Ep)1−α . To do this properly, we need to choose a

proper Riemann surface. Such choices must satisfy the condition that upon performing the residue integral over

the poles along the imaginary axis the integral
∫
C

dz eiπ(1−α)

(z−Ep)1−α(z+Ep)1−α is real and is equal to T
∑
m

1
(ω2
m+E2

p)1−α . The

following choice of Riemann surface satisfies the above condition. The base of the term (z−Ep)1−α is chosen to have
its phase angle in the range 0 ≤ θ1 < 2π whereas the base of the term (z + Ep)1−α is chosen to have its phase angle
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in the range −π ≤ θ2 < π. Performing residue integrals along the imaginary axis in Eq. A1 leads to substituting
z = iωm into the terms (z − Ep)1−α and (z + Ep)1−α. The results are

(z + Ep)1−α
∣∣∣∣
z=iωm

= |iωm − Ep|1−α exp(i(π − arctan(
ωm
Ep

))(1− α))

(z − Ep)1−α
∣∣∣∣
z=iωm

= |iωm + Ep|1−α exp(i arctan(
ωm
Ep

)(1− α)).

Consequently, eiπ(1−α)

(z−Ep)1−α(z+Ep)1−α

∣∣∣∣
z=iωm

= 1
(ω2
m+E2

p)1−α and so we can rewrite 1
(E2

p−z2)1−α = eiπ(1−α)

(z−Ep)1−α(z+Ep)1−α in

Eq. A1. By deforming the contour to a circle of large radius R, we find that there are four contributions to the self
energy:

Σ = ΣF + ΣB + Σε + ΣR. (A2)

ΣF comes from the pole at z = εp+q − iωn. ΣB comes from the two branch cuts. Σε comes from the small circles of
radius ε around the two branch points at ±Ep. Finally, ΣR comes form the large circle of radius R. We discuss these
four terms below.

1. ΣF

Calculating the residue of Eq. A1 at z = εp+q − iωn, we obtain

ΣF,n(q) = −eiπ(1−α)u2

∫
ddp

(2π)d
gF (εp+q)

(εp+q − Ep − iωn)1−α(εp+q + Ep − iωn)1−α (A3)

Here we use

gB(z + iωn) =
1

2
coth

β(z + i (2n−1)π
β )

2
=

1

2
tanh

βz

2
= gF (z). (A4)

to simplify the result. Note that the phase angle of the term εp+q − Ep − iωn when raise to the power 1 − α is
defined in the range 0 ≤ θ1 < 2π. We can covert the phase angle to be −π ≤ θ2 < π by (εp+q − Ep − iωn)1−α

∣∣
θ1
→

eiπ(1−α)[e−iπ(εp+q − Ep − iωn)]1−α
∣∣
θ2

. Here x1−α
∣∣
θi

means computing x1−α with the definition of θi. Changing the

definition to θ2, ΣF becomes

ΣF,n(q) = −u2

∫
ddp

(2π)d
gF (εp+q)

(−εp+q + Ep + iωn)1−α(εp+q + Ep − iωn)1−α . (A5)

2. ΣB

We can rewrite this contribution to the self energy as discontinuities across the two branch cuts as

ΣB,n(q) = eiπ(1−α)u2

∫
ddp

(2π)d

∞∫
ε+Ep

dz

2πi

gB(z)

(z + iωn − εp+q)

1

(z + Ep)1−α

(
1

(z+ − Ep)1−α −
1

(z− − Ep)1−α

)

+eiπ(1−α)u2

∫
ddp

(2π)d

−ε−Ep∫
−∞

dz

2πi

gB(z)

(z + iωn − εp+q)

1

(z − Ep)1−α

(
1

(z+ + Ep)1−α −
1

(z− + Ep)1−α

)
(A6)

where z± ≡ z ± iη. Using definitions of the phase angles, θ1 and θ2, we define above, the discontinuities are given by

1

(z+ − Ep)1−α −
1

(z− − Ep)1−α =
2i sin(πα)e−iπ(1−α)

|z − Ep|1−α

1

(z+ + Ep)1−α −
1

(z− + Ep)1−α = − 2i sin(πα)

|z + Ep|1−α
.
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Substituting them into ΣB , we obtain

ΣB,n(q) =
sin(πα)

π
u2

∫
ddp

(2π)d

∞∫
ε+Ep

dz
1

(z + Ep)1−α(z − Ep)1−α

(
gB(z)

(z + iωn − εp+q)
+

gB(−z)
(z − iωn + εp+q)

)
. (A7)

3. Σε

For the integral around the branch point at z = Ep, we let z = Ep + εeiθ with 0 < θ < 2π and for the integral
around the branch point at z = −Ep, we let z = −Ep + εeiθ with −π < θ < π. The result is

Σε,n(q) = −εαeiπ(1−α)u2

∫
ddp

(2π)d

2π∫
0

dθ

2π

eiαθgB(Ep + εeiθ)

(2Ep + εeiθ)1−α(Ep + iωn − εp+q + εeiθ)

−εαeiπ(1−α)u2

∫
ddp

(2π)d

π∫
−π

dθ

2π

eiαθgB(−Ep + εeiθ)

(−2Ep + εeiθ)1−α(−Ep + iωn − εp+q + εeiθ)
. (A8)

This means lim
ε→0

Σε,n(q) = 0 when α > 0.

4. ΣR

For the contribution from the large circle at radius R, we let z = Reiθ. One has

ΣR,n(q) = eiπ(1−α)u2

∫
ddp

(2π)d

2π∫
0

dθ

2π

ReiθgB(Reiθ)

(Reiθ + Ep)1−α(Reiθ − Ep)1−α(Reiθ + iωn − εp+q)
.

In the limit of large R, we have

|ΣR,n(q)| ≈ R−2(1−α)u2

∫
ddp

(2π)d

2π∫
0

dθ

2π
|gB(Reiθ)| (A9)

This means lim
R→∞

ΣR,n(q) = 0 when α < 1.

5. Total Σ

By restricting the exponent α to be in the range 0 < α < 1, the terms Σε and ΣR can be omitted. Combining ΣB
and ΣF from subsections A 1 and A 2 and then performing analytic continuation iωn → ω+ iη, one obtains the result

Σ(ω,q) = −u2

∫
ddp

(2π)d
gF (εp+q)

(−εp+q + Ep + ω + iη)1−α(εp+q + Ep − ω − iη)1−α

+
sin(πα)

π
u2

∫
ddp

(2π)d

∞∫
Ep

dz
gB(z)

(z + Ep)1−α(z − Ep)1−α

(
1

(z + ω + iη − εp+q)
− 1

(z − ω − iη + εp+q)

)
.

(A10)

Appendix B: Scaling of the Imaginary Part of the Self Energy at Low Temperature

In this section, we analyze Eq. A10 at low temperature. We work with electrons on the Fermi surface (q = qf )
and ω = 0 in d = 3 spatial dimensions.
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1. ΣB

We start by considering ΣB (the second term of Eq. A10). Using the identity 1
x±iη = P ( 1

x ) ∓ iπδ(x) and taking

the imaginary part yields

Im ΣB(ω,q) = − sin(πα)

4π2
u2

Λ∫
0

dp

1∫
−1

dx

∞∫
Ep

dz
p2gB(z)

(z + Ep)1−α(z − Ep)1−α

(
δ(z + ω − p2

2m
− pqx

m
− q2

2m
+ εf )

+δ(z − ω +
p2

2m
+
pqx

m
+

q2

2m
+ εf )

)
(B1)

where P denotes the principal part of the Cauchy principal integral. Here we let x = cos θ. Since the range of x is
from −1 to 1, the integral of the two delta functions over x yields two Heaviside functions,

m

pq
Θ(1− m

pq
|z − p2

2m
− q2

2m
+ εf + ω|) +

m

pq
Θ(1− m

pq
|z +

p2

2m
+

q2

2m
− εf − ω|). (B2)

They put restrictions on the range of the integral over z. The imaginary part of ΣB is now

Im ΣB(ω,q) = − sin(πα)

4π2

mu2

q

Λ∫
0

dp

∞∫
Ep

dz
pgB(z)

(z + Ep)1−α(z − Ep)1−α

(
Θ(1− m

pq
|z − p2

2m
− q2

2m
+ εf + ω|)

+ Θ(1− m

pq
|z +

p2

2m
+

q2

2m
− εf − ω|)

)
. (B3)

We substitute Ep = pv, q = qf , and ω = 0 into the above equation, and then perform a change of variable z → p(z+v).
The result is

Im ΣB(ω = 0,qf ) = − sin(πα)

4π2

mu2

qf

Λ∫
0

dp

∞∫
0

dz
p2αgB(p(z + v))

(z + 2v)1−αz1−α

(
Θ(qf −m|z + v − p

2m
|)

+ Θ(qf −m|z + v +
p

2m
|)
)

(B4)

In the case of small momentum cutoff Λ
2m <

qf
m − v and small velocity v <

qf
m , the range of the z-integral is given by

∞∫
0

dz

(
Θ(qf −m|z + v − p

2m
|) + Θ(qf −m|z + v +

p

2m
|)
)
−→

1
m (qf−mv+ p

2 )∫
0

dz +

1
m (qf−mv− p2 )∫

0

dz. (B5)

Thus, the imaginary part of ΣB is

Im ΣB(ω = 0,qf ) = − sin(πα)

4π2

mu2

qf

Λ∫
0

dp

( 1
m (qf−mv+ p

2 )∫
0

dz +

1
m (qf−mv− p2 )∫

0

dz

)
p2αgB(p(z + v))

(z + 2v)1−αz1−α . (B6)

2. ΣF

We now turn to the fermionic part of the self energy (the first term of Eq. A10). For α < 1 and η → 0+, we have

1

(x± iη)1−α =
1

|x|1−α
((Θ(x)−Θ(−x) cosπα)∓ iΘ(−x) sinπα). (B7)

Applying these identities, one can show that ImΣF is given by

ImΣF (ω,q) = − sin(πα)u2

∫
ddp

(2π)d
gF (εp+q)

| − εp+q + Ep + ω|1−α|εp+q + Ep − ω|1−α

×(Θ(−εp+q + Ep + ω)Θ(−εp+q − Ep + ω)−Θ(εp+q + Ep − ω)Θ(εp+q − Ep − ω)).

(B8)
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We set d = 3, q = qf , ω = 0, and Ep = pv. The result is

Im ΣF (ω = 0,qf ) =− sin(πα)

4π2
u2

Λ∫
0

dp

1∫
−1

dx
p2gF ( p

2

2m +
pqfx
m )

| − p2

2m −
pqfx
m + pv|1−α| p2

2m +
pqfx
m + pv|1−α

×(Θ(− p2

2m
− pqfx

m
+ pv)Θ(− p2

2m
− pqfx

m
− pv)−Θ(

p2

2m
+
pqfx

m
+ pv)Θ(

p2

2m
+
pqfx

m
− pv)).

(B9)

The first term restricts x to be −1 < x < m
qf

(− p
2m − v). With the assumptions that v <

qf
m and Λ

2 < qf − mv,

we find m
qf

(− p
2m − v) > −1 for the whole range of p. As a result, the integration limits of the first term become

Λ∫
0

dp

− 1
qf

( p2 +mv)∫
−1

dx. The second term restricts x to be m
qf

(− p
2m + v) < x < 1. With the assumptions that v <

qf
m and

Λ
2 < qf − mv, we find −1 < m

qf
(− p

2m + v) < 1 for the whole range of p. As a result, the integration limits of the

second term become
Λ∫
0

dp
1∫

1
qf

(− p2 +mv)

dx. The imaginary part of ΣF is now

Im ΣF (ω = 0,qf ) = − sin(πα)

4π2
u2

Λ∫
0

dp

( − 1
qf

( p2 +mv)∫
−1

dx−
1∫

1
qf

(− p2 +mv)

dx

)
p2gF ( p

2

2m +
pqfx
m )

| − p2

2m −
pqfx
m + pv|1−α| p2

2m +
pqfx
m + pv|1−α

= − sin(πα)

4π2

mu2

qf

Λ∫
0

dp

( −v∫
p

2m−
qf
m

dx′ −

p
2m+

qf
m∫

v

dx′
)

p2αgF (px′)

|x′ − v|1−α|x′ + v|1−α

= − sin(πα)

4π2

mu2

qf

Λ∫
0

dp

(
−

− p
2m+

qf
m∫

v

dx′ −

p
2m+

qf
m∫

v

dx′
)

p2αgF (px′)

|x′ − v|1−α|x′ + v|1−α

=
sin(πα)

4π2

mu2

qf

Λ∫
0

dp

( − p
2m+

qf
m −v∫

0

dz +

p
2m+

qf
m −v∫

0

dz

)
p2αgF (p(z + v))

z1−α(z + 2v)1−α . (B10)

On the first line, we make a change of variable x′ = p
2m +

qfx
m and, on the first integral of the second line, we let

x′ → −x′. Finally, we make a shift x′ → z = x′ − v on the third line.

3. Total Σ

Combing ImΣF and ImΣB , one has

ImΣ(ω = 0,qf ) = − sin(πα)

4π2

mu2

qf

Λ∫
0

dp

( − p
2m+

qf
m −v∫

0

dz +

p
2m+

qf
m −v∫

0

dz

)
p2α gB(p(z + v))− gF (p(z + v))

z1−α(z + 2v)1−α

= − sin(πα)

4π2

mu2

qf

Λ∫
0

dp

( − p
2m+

qf
m −v∫

0

dz +

p
2m+

qf
m −v∫

0

dz

)
p2αnB(p(z + v)) + nF (p(z + v))

z1−α(z + 2v)1−α (B11)
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Here we use the identities gB(z) = 1
2 + nB(z) and gF (z) = 1

2 − nF (z). We split the limits of the integrals as follows:

1
m (qf−mv+ p

2 )∫
0

dz −→

1
m (qf−mv)∫

0

+

1
m (qf−mv+ p

2 )∫
1
m (qf−mv)

1
m (qf−mv− p2 )∫

0

dz −→

1
m (qf−mv)∫

0

+

1
m (qf−mv− p2 )∫
1
m (qf−mv)

. (B12)

The imaginary part of Σ is now given by

Im Σ(T ) =− sin(πα)

2π2

mu2

qf

Λ∫
0

dp

1
m (qf−mv)∫

0

dzp2αnB(p(z + v)) + nF (p(z + v))

z1−α(z + 2v)1−α

− sin(πα)

4π2

mu2

qf

Λ∫
0

dp

( 1
m (qf−mv+ p

2 )∫
1
m (qf−mv)

dzp2αnB(p(z + v)) + nF (p(z + v))

z1−α(z + 2v)1−α

+

1
m (qf−mv− p2 )∫
1
m (qf−mv)

dzp2αnB(p(z + v)) + nF (p(z + v))

z1−α(z + 2v)1−α

)
. (B13)

The second term is much smaller than the first term at low temperatures. We will justify that this is the case below.
Dropping the second term, one finds

Im Σ(T ) = − sin(πα)

2π2

mu2

qf

Λ∫
0

dp

1
m (qf−mv)∫

0

dzp2αnB(p(z + v)) + nF (p(z + v))

(z + 2v)1−αz1−α . (B14)

Making a change of variables p = Tx/v, one obtains

Im Σ(T ) = − sin(πα)

2π2

mu2

qfv3
T 1+2α

vΛ/T∫
0

dx

1
m (qf−mv)∫

0

dz
x2α

( zv + 2)1−α( zv )1−α

(
1

(ex( zv+1) − 1)
+

1

(ex( zv+1) + 1)

)
.(B15)

In the limit T � vΛ, if the integral over x converges when the upper limit is replaced by ∞, we have

Im Σ(T ) = −C1u
2T 1+2α (B16)

where C1 is a constant. The error of dropping the second term in Eq. B13 is bounded by

|∆ImΣ(T )| < sin(πα)

8π2

u2

qf

Λ∫
0

dpp1+2α

(
nB(

pqf
m ) + nF (

pqf
m )

(
qf
m + v)1−α(

qf
m − v)1−α +

nB(p(
qf
m −

Λ
2m )) + nF (p(

qf
m −

Λ
2m ))

(
qf
m + v − Λ

2m )1−α(
qf
m − v −

Λ
2m )1−α

)
(B17)

Making a change of variables p = mTx
qf

in the first term and p = mTx
(qf−Λ

2 )
in the second term, we get

|∆ImΣB(T )| < u2T 2+2α sin(πα)

8π2qf

(
(mqf )2+2α

(
qf
m + v)1−α(

qf
m − v)1−α

qfΛ

mT∫
0

dxx1+2α(
1

ex − 1
+

1

ex + 1
)

+
( m
qf− Λ

2m

)2+2α

(
qf
m + v − Λ

2m )1−α(
qf
m − v −

Λ
2m )1−α

(qf−
Λ
2

)Λ

mT∫
0

dxx1+2α(
1

ex − 1
+

1

ex + 1
)

)
(B18)
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In the small T limit, i.e. T � qfΛ
m and T � (

qf
m −

Λ
2m )Λ, we find that

|∆ImΣ(T )| < C2u
2T 2+2α (B19)

where C2 is a constant. Hence, |ImΣ| � |∆ImΣ|. This result justifies the omission of the second term in Eq. B13 at
low temperatures.

The analogous expression to Eq. B11 in the d = 2 case is

ImΣ(ω = 0,qf ) = − sin(πα)

2π2

mu2

qf

Λ∫
0

dp

( − p
2m+

qf
m −v∫

0

dz
p2α−1√

1− m2

q2
f

(z + v + p
2m )2

nB(p(z + v)) + nF (p(z + v))

z1−α(z + 2v)1−α

+

p
2m+

qf
m −v∫

0

dz
p2α−1√

1− m2

q2
f

(z + v − p
2m )2

nB(p(z + v)) + nF (p(z + v))

z1−α(z + 2v)1−α

)
.

(B20)

Because of the factors 1√
1−m2

q2
f

(z+v± p
2m )2

in the integrands, the argument we used in the d = 3 case cannot be applied

to show that ImΣ ∝ −T 2α at low temperatures.

Appendix C: Calculation of ImΣ(ω)

In section II B, we numerically study ImΣ(ω) at fixed T using the sum of Eq. B3 and the imaginary part of Eq.
A5. We find that if we simply perform the integral over z in Eq. B3 with lower limit z = Ep, ImΣ becomes positive
when ω = 0 and T is close to zero (ImΣ is negative at finite frequencies and higher temperatures as it should be). To
resolve this issue, it is necessary to keep ε in Appendix A 3 finite and small. This means that the lower limit of the
integral over z is changed to ε + Ep instead of Ep. The term Σε (Eq. A8) which we dropped upon taking the limit
ε→ 0 is also included.
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