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Can topological quantum entanglement between anyons in one topological medium “stray” into a different,
topologically distinct medium? In other words, can quantum information encoded non-locally in the combined
state of non-Abelian anyons be shared between two distinct topological media? For one-dimensional topolog-
ical superconductors with Majorana bound states at the end of system, the quantum information store in those
Majorana bound states can be transfered by directly coupling nearby Majorana bound states. However, cou-
pling of two one-dimensional Majorana states will produce a gap, indicating that distinct topological regions of
one-dimensional wires unite into a single topological region through the information transfer process. In this
paper, we consider a setup with two two-dimensional p-wave superconductors of opposite chirality adjacent
to each other. Even two co-moving chiral modes at the domain wall between them cannot be gapped through
interactions, we demonstrate that information encoded in the fermionic parity of two Majorana zero modes,
originally within the same superconducting domain, can be shared between the domains or moved entirely from
one domain to another provided that vortices can tunnel between them in a controlled fashion.

I. INTRODUCTION

The emergence of quasiparticles known as anyons, i.e., par-
ticles whose quantum exchange statistics is neither bosonic
nor fermionic [1–3], is one of the most interesting collective
phenomena in condensed matter systems [4]. An even more
exotic possibility opens whenever a multidimensional degen-
erate Hilbert space is associated with several quasiparticles
at fixed positions – these quasiparticles can potentially obey
non-Abelian statistics [5–7]. In such a case, braiding of the
quasiparticles results in a non-trivial rotation of vector-states
in this multidimensional subspace. As a consequence, the fi-
nal state of the system after multiple exchanges depends on
their sequence. These properties – the multidimensionality
of the Hilbert space combined with the braiding operations
which enable transformations of vector-states in this space –
make non-Abelian anyons a promising platform for quantum
computation [7, 8]. The non-local nature of the computational
basis used for encoding quantum information immunizes it
from local perturbations; the discreteness of braiding opera-
tions promises additional robustness of quantum circuitry that
relies on them. Before these conceptual ideas are turned into
functioning quantum devices, however, many aspects of topo-
logical quantum architecture must be worked out.

One of the important questions from the computational
point of view deals with the mechanisms for transferring
quantum information between different circuit elements. Ide-
ally, one would imagine that such a transfer happens on-chip
between different qubits (or qudits) defined within the same
topological medium where braiding and measurement opera-
tions are employed to manipulate quantum information. How-
ever, this may not always be feasible, particularly if the com-
plexity of quantum devices were to be scaled up. One pos-
sible way of transferring quantum information would involve
more “conventional”, non-topological qubits as intermediate
agents [10–14].

An interesting physical question, however, is whether it

is possible to transfer quantum information between distinct
topological media directly without merging them into one
topological phase during the process. An even more inter-
esting question, at least from the physics point of view, is
whether such information can be shared between two such
distinct media. Naı̈vely, this seems counterintuitive: topologi-
cal quantum information is stored in the (superposition of) de-
generate states pertaining to a given quantum system; sharing
such information would require entanglement between two
different quantum systems of macroscopic size. The goal of
this paper is to address these questions. As we show, the an-
swer is, surprisingly, affirmative!

One potentially serious obstacle to this idea is that transfer-
ring an anyon between two distinct media is not only contin-
gent on an anyon of this type being supported by both media, it
also requires that such a transfer is accomplished solely by the
means of electron tunneling: fractionalized excitations cannot
exist outside of their host media and hence cannot tunnel be-
tween them. E.g., a fractionally charged Laughlin quasiparti-
cle cannot tunnel between two separate quantum Hall droplets
simply due to the fact that each droplet is made of an integral
number of electrons. In order to avoid these issues, we focus
on a particular example of non-Abelian anyons – Majorana
zero modes bound to superconducting vortex cores in chiral p-
wave superconductors [15–17]. For more details on Majorana
zero modes and their potential utility for topological quan-
tum computation the reader is referred to the recent reviews,
Refs. [18] and [19]. While recent experimental advances in
detecting Majorana zero modes [20–24] have followed their
theoretical predictions in one-dimensional (1D) systems [25–
28], in this paper we focus on two-dimensional (2D) systems
instead. 2D chiral superconducting systems have a distinct
conceptual advantage from our point of view: by considering
two superconductors with different chiralities we can be cer-
tain that the two topological regions can never be merged into
one while a Majorana-hosting vortex can be effectively trans-
ferred between the two regions. This is in sharp contrast to
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FIG. 1. (a) An idealized setup involving moving a vortex across the
domain wall between px + ipy and px − ipy superconductors. Red
arrows indicate chiral Majorana edge states at the boundaries of the
superconducting domains. γ1 denotes a Majorana zero mode asso-
ciated with the vortex being moved, while Γ1, Γ2 and Γ3 represent
the stationary modes which, along with γ1 encode a qubit. (b) The
schematic setup of the model we used to “mimic” the move of a vor-
tex across the domain wall. Majorana modes Γ1,. . . Γ3 are decoupled
from the edge states, while γ1 and γ2 are coupled to chiral Majorana
edge states with time-dependent coupling constants α1(t) and α2(t)
at x = x1 and x = x2 along the edge, respectively. Here, we assume
x2 > x1. (c) A schematic setup considered in Ref. [9]: two Majo-
rana modes γ1 and γ2 coupled to a single chiral Majorana edge with
time-dependent coupling constants α1(t) and α2(t), respectively.

the case of a 1D topological superconductor, where coupling
nearby Majorana bound states to transfer quantum informa-
tion between two distinct topological regions always opens a
gap and effectively merges them into one topological region.

An idealized setup considered in this paper is schematically
shown in Fig. 1(a). Quantum information is encoded in the
fermionic parity shared between two Majorana zero modes,
γ1, Γ1. In the standard four-Majorana qubit encoding [29], two
additional modes, Γ2 and Γ3, serve as a parity reservoir; they
do not appear in the mathematical description of our model
in any way. The vortices hosting these four Majorana modes
are initially located within the same superconducting droplet.
One of the vortices is then transferred across the domain wall
to a different droplet. Quantum entanglement is maintained
if each of the droplets is individually no longer in a state of
definitive fermionic parity; instead such parity is a “shared”
property of the droplets.

Intuitively, such a transfer should lead to decoherence of
quantum information as the domain wall separating the two
droplets hosts co-propagating gapless chiral edge states [30,
31], these states cannot be gapped and hence even the no-
tion of adiabaticity is not applicable to such a transfer process.
However, as we shall see, these gapless edge states can actu-
ally be used as intermediate agents facilitating quantum infor-
mation transfer [32]. We should also mention that in this paper

we do not concern ourselves with the actual motion of vortices
which host Majorana zero modes. Not only such a motion can
lead to other sources of decoherence (e.g. via dissipation in
the vortex cores), it is not even obvious what a vortex should
look like close to the domain wall between two orthogonal
order parameters; supercurrent-carrying Cooper pairs cannot
tunnel between the two droplets. We circumvent these issues
by considering a simplified model where the locations of all
vortices are fixed sufficiently far from the domain wall; in-
stead the couplings of Majorana zero modes to the edge states
are varied as functions of time – see Fig. 1(b). When the cou-
pling is weak, the vortex is effectively well-separated from the
edge, and when it is large – the vortex essentially becomes a
part of the edge [33, 34]. By manipulating these couplings,
one vortex can be effectively “dissolved” into the edge while
another vortex is “nucleated” from the edge on the other side.

The paper is organized as follows. In Sec. II, we present the
minimal model describing the low energy degrees of freedom
of our Gedanken setup consisting of (i) a pair of coupled co-
propagating Majorana edge states at the domain wall and (ii)
Majorana zero modes hosted inside the droplets and coupled
to the edge modes with time-dependent coupling strengths. In
Sec. III, we show how this setup allows the quantum informa-
tion encoded by Majorana zero modes to be transferred across
the domain wall. We present analytical results obtained within
the Heisenberg picture. In Sec. IV, the amount of transferred
quantum information is evaluated within a specific protocol
governing the time dependence of the coupling strengths. In
Sec. V, we discuss the relevant experimental parameters nec-
essary to achieve high fidelity of such information transfer.
Details of derivations are presented in two Appendices.

II. SETUP

A. Domain wall between px ± ipy superconductors:
Co-propagating Majorana edge states

The presence of a pair of co-propagating Majorana edge
states at a domain wall between px + ipy and px − ipy super-
conductors, as shown in Fig. 1, is a direct consequence of the
fact that px ± ipy superconductors are in two distinct topolog-
ical superconducting phases. As both px ± ipy superconductor
are fully gapped in the bulk, these chiral Majorana edge states
are the lowest energy degrees of freedom at the domain wall
and are described by the Hamiltonian [35]

He = i
∫

dx
{
−
~vm

4

[
ηL(x)∂xη

L(x) + ηR(x)∂xη
R(x)

]
+ m(x)ηL(x)ηR(x)

}
. (2.1)

As shown in Fig. 1(b), ηL,R(x) are the chiral Majorana edge
fields localized at the left and right sides of the domain wall
and m(x) is the tunneling coupling strength between two edge
fields. The Majorana edge fields obey the anti-commutation
relation, {ηi(x), η j(y)} = 2δi jδ(x − y), where i, j = L,R. Here,
we have assumed that both edge states have the same velocity,
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vm. We shall discuss the effect of unequal edge state velocities
in Appendix C.

Let us consider Majorana modes localized in the vortex
cores as depicted in Fig. 1(b), four of them, Γ1, . . .Γ3 and γ1,
are on the left side of the domain wall, while the other one,
γ2, is on the right side. All Majorana operators anticommute
with one another and satisfy Γ2

a = γ2
a = 1. In addition, Ma-

jorana operators anticommute with the operators describing
the edge fields. Initially, the quantum information (fermion
parity) is encoded by two Majorana modes, Γ1 and γ1, with
eigenvalue iΓ1γ1(t0) = ±1 at initial time t0 → −∞. Here plus
(minus) sign corresponds to odd (even) parity. (As has been
pointed out earlier, two additional modes, Γ2 and Γ3, serve as
a parity reservoir and do not explicitly enter the description
of our model). In order to transfer the quantum information,
Majorana modes γ1 and γ2 are coupled to the chiral Majo-
rana edge field ηL(x1) and ηR(x2), respectively. On the other
hand, Γa’s, the auxiliary Majorana modes needed for encoding
the fermionic parity, are decoupled from the edges and from
other zero modes. The Hamiltonian governing the dynamics
of γ1 and γ2 is then

Hc =
i
2

∫
dx

{
α1(t)ηL(x)γ1δ (x − x1)

+α2(t)ηR(x)γ2δ (x − x2)
}
, (2.2)

where the coupling strengths αa(t) for a ∈ 1, 2 are time-
dependent; by optimizing this time dependence we can control
the transfer of quantum information.

As a special consequence of the fact that the 1D chiral
modes are co-propagating, the coupling between them (whose
strength is given by the coupling constant m(x) in Eq. (2.1))
will not induce a gap. Instead, the coupled edge fields can be
diagonalized by a spatially dependent unitary transformation(

ηL(x)
ηR(x)

)
=

(
cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

) (
η1(x)
η2(x)

)
, (2.3)

where mixing angle θ depends on the coupling between the
two edges and is given by

θ(x) = θ0 +

∫ x

x0

dx′
2m(x′)
~vm

. (2.4)

In terms of the “rotated fields”, the edge Hamiltonian reads

He = −
i~vm

4

∫
dx

[
η1(x)∂xη

1(x) + η2(x)∂xη
2(x)

]
, (2.5)

while the Hamiltonian describing the coupling of the Majo-
rana zero modes to the edge states becomes

Hc =
i
2

∫
dx

{(
λ1

1(t)η1(x)γ1 + λ2
1(t)η2(x)γ1

)
δ(x − x1)

+
(
λ1

2(t)η1(x)γ2 + λ2
2(t)η2(x)γ2

)
δ(x − x2)

}
(2.6)

Here, coupling constant λi
a(t) with i, a ∈ 1, 2 represents the

coupling strength between transformed field ηi(xa) and Majo-
rana zero mode γa. The full set of λi

a’s is given by

λ1
1(t) = +α1(t) cos θ(x1), λ1

2(t) = −α2(t) sin θ(x2),

λ2
1(t) = +α1(t) sin θ(x1), λ2

2(t) = +α2(t) cos θ(x2).
(2.7)

When two coupled chiral edge states have different veloc-
ities, the low energy effective theory can still be described in
terms of two independent chiral edge states [36]. The crucial
difference now is that these decoupled Majorana edge states
will in general have a non-linear dispersion, in contrast to the
linear dispersion for the case of equal velocities. As a result,
there is no simple spatial-dependent unitary transformation,
akin to the one given by Eq. (2.3), which decouples the two
coupled co-propagating edge states. However, as long as the
velocity difference differnce is small, ~δv/m∆x � 1 (where
∆x = x2 − x1), the essential physics is still captured by the
simplified Hamiltonian given by Eq. (2.1), as discussed in Ap-
pendix C.

B. Simplified single Majorana edge state setup

The goal of this paper is to analyze the transfer of quantum
entanglement between two Majorana zero modes, γ1 and γ2,
whose dynamics is governed by the Hamiltonian H = He + Hc
with He and Hc given by Eqs. (2.5) and (2.6). In effect, this
Hamiltonian describes two zero modes simultaneously cou-
pled to two independent chiral edge states. Prior to delving
into this problem, however, let us first study a simplified setup
with both Majorana zero modes coupled to a single chiral Ma-
jorana edge state as shown in Fig. 1(c). The Hamiltonian rel-
evant to this setting is given by

HSE =
i
2

∫
dx

{
−
~vm

2
η(x)∂xη(x)

+ α1(t)η(x)γ1δ(x − x1) + α2(t)η(x)γ2δ(x − x2)
}
, (2.8)

where we assume x2 > x1. As shown in Fig. 1(c), we also
consider an auxiliary Majorana zero mode, Γ1 which allows
us to define the initial fermion parity, iΓ1γ1 = ±1. throughout
the whole process, Γ1 remains decoupled from the edge state
and other zero modes and hence does not enter the Hamil-
tonian (2.8) which governs the dynamics of the system. As
in the case of two edge states, here the time dependent cou-
pling strengths αa control the transfer of quantum information.
We note that employing a chiral edge state of a topological
medium to transport quantum information has been previously
discussed in a different context in Ref. [32].

In what follows, we first study this simplified setup and es-
tablish the necessary formalism to investigate how the quan-
tum information stored in the Majorana mode γ1 can be trans-
ferred to the Majorana mode γ2. We will then apply this for-
malism to study the original setup described by Hamiltonian
Eqs. (2.1) and (2.2) and discuss the relation of the original
setup and the simplified setup.



4

III. TRANSFERRING QUANTUM INFORMATION

A. Single Majorana edge state

A straightforward way to understand the time evolution of
quantum states is to employ the Heisenberg picture in quan-
tum mechanics. From Eq. (2.8) together with the commuta-
tion relations, the Heisenberg equations of motion of operators
are given by

(∂t + vm∂x)η =
α1

~
γ1δ(x − x1) +

α2

~
γ2δ(x − x2), (3.1a)

∂tγ1(t) = −
α1(t)
~

η(x1, t), (3.1b)

∂tγ2(t) = −
α2(t)
~

η(x2, t). (3.1c)

In terms of the initial operators, γ̄a ≡ γa(t0) and η(x, t0), the
time evolved operators γa(t) are given by

γ1(t) = K1(t0, t) γ̄1 −

∫ t

t0
dt′ α1(t′) K1(t′, t) η(0)(x1, t′), (3.2a)

γ2(t) = K2(t0, t) γ̄2 + W(t0, t,∆x) γ̄1

−

∫ t

t0
dt′ α2(t′) K2(t′, t) η(1)(x2, t′). (3.2b)

Note that, Eq. (3.2a) contains η(0)(x, t) ≡ η(x − vm(t − t0), t0),
an unperturbed chiral Majorana edge field. On the other hand,
Eq. (3.2b) contains η(1)(x, t) – an edge field already perturbed
by the “upstream” coupling with γ1. The evolution of the edge
field η(1)(x2, t) is given by

η(1)(x2, t) = η(0)(x, t) − Θ

(
t −

(
t0 +

∆x
vm

))
α1(t − ∆x/vm)
~2vm

×

∫ t− ∆x
vm

t0
dτ0 α1(τ0) K1(τ0, t − ∆x/vm) η(0)(x1, τ0). (3.3)

A detailed derivation of Eqs. (3.2) and (3.3) is presented in
Appendix A. The two functions which determine the time
evolution of operators in Eqs. (3.2) and (3.3) are the kernel
function

Ka(ti, tf) = exp
[
−

∫ tf

ti

αa(t′)2

2~2vm
dt′

]
, (3.4)

and the weight function

W(t0, t,∆x) = −

∫ t

t0+ ∆x
vm

dt′
α2(t′)α1(t′ − ∆x/vm)

~2vm

× K2
(
t′, t

)
K1

(
t0, t′ − ∆x/vm

)
. (3.5)

Several comments are in order. Firstly, γa(t) as well as
η(x, t) satisfy the proper equal-time anticommutation rela-
tions, as should be expected from unitarity. The first terms
in Eqs. (3.2a) and (3.2b) represent the loss of memory of the

initial conditions for both operators to the coupling of the cor-
responding zero modes to the edge. Most importantly, the sec-
ond term in the Eq. (3.2b) describes how the second Majorana
mode γ2(t) acquires the memory of the initial condition for
γ1(0); the weight function W(t0, t,∆x) given by Eq. (3.5) is ex-
actly the quantum information transferred from the zero mode
γ̄1 to γ2(t). Explicitly, let us consider the case where the oper-
ator iΓ1γ1(t0) has eigenvalue ±1 for the initial quantum state.
Using Eq. (3.2b), we have 〈iΓ1γ2(t)〉 = ±W(t0, t,∆x), which
represents the fidelity of the quantum information transfer. In
the next section, we will show that owing to the chiral nature
of the edge state, a high fidelity of transfer can be achieved by
employing specific protocols for αa(t).

As a side note, a non-zero expectation value of 〈iγ1γ2(t)〉
will also develop. Physically, this phenomenon comes from
the edge-state coupling that correlates two Majorana zero
modes and can be understood as contributions from the
η(0,1)(x, t) terms in Eqs. (3.2). This polarization reaches its
peak value of 2/π in the limit of ∆x → 0 with the time-
independent couplings of equal strength, α1 = α2 [9, 34]. Our
approach provides a clear interpretation for the origin of this
polarization, which is discussed in more detail in Appendix B.

B. Two co-propagating Majorana edge states

Having analyzed the case of single edge coupling, we are
now ready to discuss the actual setup of interest shown in
Fig. 1(b) where two Majorana modes are coupled to two co-
propagating chiral Majorana edge states, respectively. The
strategy remains the same: starting with the Hamiltonian
given by Eqs. (2.5) and (2.6), to solve the Heisenberg equation
of motion, akin to Eq. (3.1), and to obtain the time evolution
of Majorana modes γa(t) in the following form

γ1(t) =K1(t0, t)γ̄1 + . . . ,

γ2(t) =K2(t0, t)γ̄2 + W2E(t0, t,∆x)γ̄1 + . . . .
(3.6)

Here, the . . . represents contributions from ηL,R(x, t0). As
those terms play no part in the quantities we are interested
in, we will omit them for simplicity. Again, γ̄a ≡ γa(t0) rep-
resent initial operators while the kernel function Ka is defined
in Eq. (3.4).

The weight function, which describes the transfer of the
quantum entanglement across the domain wall, can be related
to that of the single Majorana edge state in Eq. (3.5) by

W2E(t0, t,∆x) = W(t0, t,∆x) sin ∆θ. (3.7)

The phase factor ∆θ depends on the coupling strength m(x)
between two chiral Majorana edge states and is given by

∆θ = −

∫ x2

x1

dx′
2m(x′)
~vm

. (3.8)

The reduction of the fidelity for quantum information transfer
due to this phase factor can be intuitively understood as fol-
lows. The coupling m(x) between two Majorana edge states
spatially interchanges contents of the edge fields ηL,R(x) in
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terms of the mixed edge fields η1,2(x). As a result, the quan-
tum entanglement associated with the initial operator γ̄1 car-
ried away by the edge field ηL(x) from x = x1 is partially
transferred across the domain wall with the ratio sin ∆θ and
is then picked up by the γ2 coupled to the edge field ηR(x) at
x = x2.

IV. TIME-DEPENDENT PROTOCOL AND QUANTUM
INFORMATION TRANSFER

To mimic the process of moving a vortex across the domain
wall, the time-dependent profiles for coupling strengths αa(t)
are chosen to satisfy the following boundary conditions. At
the initial time t → −∞, Majorana mode γ1 is decoupled from
the edge while Majorana mode γ2 is strongly coupled to the
edge. At the end of the process, t → ∞, the Majorana mode
γ1 is strongly coupled to the edge while the mode γ2 becomes
decoupled from the edge. We choose to parameterize the time
dependence of the coupling strengths as

α1(t) =
Λ

2
(1+ tanh βt), α2(t) =

Λ

2
(1− tanh β(t−∆t)), (4.1)

which satisfy the aforementioned boundary conditions. Here,
Λ determines the strength of the coupling between the Majo-
rana modes in the bulk and the edge states, the inverse time
constant β controls how fast the couplings are turned on and
off, and ∆t is the time delay between the two processes.

With these time-dependent coupling constants, the weight
function W(t0, t,∆x) in Eq. (3.5) is governed by two dimen-
sionless parameters, Λ2/β~2vm and β(∆x/vm − ∆t). We evalu-
ate the weight function with time t → ∞ and plot the weight
strength as functions of these two dimensionless parameters
in Fig. 2. When both Majorana modes couple to single Ma-
jorana edge, the quantum information transferred from Majo-
rana mode γ1 to γ2 is fully determined by this weight strength.
From Fig. 2, one can easily achieve more than 95% of fidelity
for quantum information transferring. The inset of Fig. 2
shows the weight function W(t0, t → ∞,∆x) along the line
β(∆x/vm − ∆t) = 0. The peak value of this function is about
99.6% and can be achieved by tuning the ratio of Λ2/(vm~

2β).
I.e., there is a range of parameters allowing for a reasonable
amount of quantum information to be transferred across the
domain wall.

The fidelity of the information transfer across a chiral p-
wave domain wall, can be further reduced by the factor sin ∆θ
– see Eq. (3.7)). However, as we discuss in the next section,
this problem can be in principle alleviated, resulting in an op-
timal quantum information transfer.

V. DISCUSSION

Let us now discuss the experimental parameters pertinent
to our setup and their tunability for optimizing the transfer of
quantum information across the domain wall separating two
p-wave superconductors with opposite chiralities. To reach
the optimal fidelity, the accumulated phase in Eq. (3.8) due

Λ2/(βvm)

β(
Δ
x
/v

m
-Δ
t)

W
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FIG. 2. The contour plot shows the weight W(t0, t,∆x) as a func-
tion of dimensionless parameters, Λ2/β~2vm and β(∆x/vm − ∆t). The
weight function is given in Eq. (3.5) and is evaluated using the time-
dependent coupling strengths given in Eq. (4.1). The inset shows the
weight function W along the line cut β(∆x/vm − ∆t) = 0 as indicated
by the dashed horizontal line.

to the coupling between chiral Majorana edge states has to
be ∆θ = π/2 (mod π), while the weight function W(t0, t →
∞,∆x) should be at its maximum.

In order to satisfy the former condition, we observe that
the coupling strength m(x) relates to the superconducting
phase difference ∆φ(x) across the domain wall by m(x) =

m0(x) cos(∆φ(x)/2). [30, 31] Here m0(x) is the bare coupling
strength along the domain in the absence of the phase dif-
ference. As threading a magnetic field through the domain
wall effectively changes the phase difference ∆φ(x)/2, it ef-
fectively tune the coupling strength m(x). Hence, the accu-
mulated phase can be adjusted to ∆θ = π/2 (mod π). With the
estimated value of the bare coupling strength m0 ∼ 0.025 meV
and the typical edge velocity vm ∼ 105 m/s, [35] the accumu-
lated phase is estimated to be ∆θ ∼ ∆x × 106 µm−1. This
implies that ∆x should be of order 1 − 2 µm in order to have
∆θ = π/2.

On the other hand, the weight strength W(t0, t → ∞,∆) can
be tuned by β, Λ, and ∆t. Assuming that the inverse time
constant is in the range of β ∼ 106 – 109 s−1, it should be easy
to achieve sufficiently small values of β(∆x/vm −∆t) when ∆x
is in the order of 1−2 µm and edge velocity vm ∼ 105m/s. With
this condition, the weight function reaches its peak value with
the ratio Λ2/(vm~

2β) ∼ 7, as seen in the inset of Fig. 2. This
requires the value of Λ ∼ 5×10−10 – 2×10−8 eV·m1/2. Again,
we should emphasis that the actual values of β and Λ are not
essential. Instead, it is their combination, Λ2/(vm~

2β), that is
crucial for determining the amount of quantum information
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transferred.
It is also worth mentioning that while we have studied a

specific protocol given by Eq. (4.1), other protocols may lead
to even more reliable transfer of quantum entanglement.

VI. CONCLUSION

We have described a process whereby quantum entangle-
ment associated with Majorana zero modes in a chiral p-wave
superconductor can stray from the original medium into an-
other, topologically distinct medium. As a result, the topolog-
ical quantum information initially encoded within one super-
conducting domain can now be shared between two domains
of opposite chirality. In principle, this can be done very effi-
ciently provided that the fermion tunneling between supercon-
ducting vortices and edge states can be judiciously controlled.
From the physical point of view, this effect can be understood
from the fact that the quantum information is encoded in the
fermionic parity. Different domains, even though topologi-
cally distinct, need not be in the parity eigenstates individu-
ally; coupling their respective edge states through fermionic
tunneling provides a mechanism for moving this parity across
and creating entangled states between the domains. Utilizing
this mechanism repeatedly, quantum information can be trans-
ferred from one medium to another directly, without any need
for measuring it or employing intermediate quantum buses.

The reliance of our proposed setup on fermionic tunneling
does appear to be a limiting factor as far as potential gener-
alizations of this scheme to other topological platforms are
concerned. Unfortunately, it is not clear to us how this con-
straint can be physically avoided in the cases of more exotic
non-Abelian anyons.

While our idealized setup does not take into account some
“real life” complications, such as a finite stretch of the edge
state (rather than its single point) coupled to a vortex – which
will somewhat degrade the fidelity of the information transfer
– our main goal has been to provide a “proof of principle”.
Further optimization of the transfer protocols with an eye on
those experimentally relevant effects should be a subject of
future research.
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Appendix A: Solution of the equation of motion

Let us recall the Heisenberg equation of motion (EOM) in
Eq. (3.1) for the case of single chiral Majorana edge state:

(∂t + vm∂x)η =
α1

~
γ1δ(x − x1) +

α2

~
γ2δ(x − x2), (A1a)

∂tγ1(t) = −
α1(t)
~

η(x1, t), (A1b)

∂tγ2(t) = −
α2(t)
~

η(x2, t). (A1c)

Here operators in Eqs. (A1) are in the Heisenberg picture. The
goal is to solve these EOM, i.e., how these operators evolute
as the function of time given the initial operators, γ̄a = γa(t0)
and η̄(x, t0) = η(x, t0) at time t = t0 → −∞.

To solve these EOMs in Eqs. (3.1), we first observe that the
retarded Green functions for η(x, t) and γa(t) are given by

Gη(x, t; x′, t′) = Θ(t − t′)δ(x − x′ − vm(t − t′)), (A2a)
Gγa (t, t′) = Θ(t − t′), (A2b)

where Θ(t) is a Heaviside Theta function. We can then relate
the η(x, t) field with Majorana modes γa(t) from Eq. (A1a) and
give η(xa, t) as

η(x1, t) = Θ (t − t0)
α1(t)
2~vm

γ1(t), (A3)

η(x2, t) = Θ

(
t − t0 −

∆x
vm

)
α1(t − ∆x/vm)

~vm
γ1

(
t −

∆x
vm

)
+
α2(t)
2~vm

Θ (t − t0) γ2(t), (A4)

where ∆x ≡ x2 − x1 > 0 and we have used Θ(0) ≡ 1/2. On
the other hand, γa(t) can be related to η(xa, t) by Eqs. (A1b)
and (A1c) as

γa(t) = −

∫ t

t0
dt′

αa(t′)
~

η(xa, t′)dt′ (A5)

We can now obtain a set of coupled differential equations
only for Majorana modes by substituting Eqs. (A3) and (A4)
into Eqs. (A1b) and (A1b) yielding

∂tγ1(t) = −Θ (t − t0)
α1(t)2

2~2vm
γ1(t), (A6a)

∂tγ2(t) = −Θ

(
t −

(
t0 +

∆x
vm

)) α2(t)α
(
t − ∆x

vm

)
~2vm

γ1

(
t −

∆x
vm

)
−Θ (t − t0)

α2(t)2

2~2vm
γ2(t). (A6b)

In terms of initial operators γa(t0) ≡ γ̄a, solutions of these
differential equations give the first part of solution in Eq. (3.2),
Ka(t0, t) and W(t0, t,∆x) in Eqs. (3.4) and (3.5).

On the other hand, a decoupled integral-differential equa-
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tion for η(x, t) can be obtained similarly and is given by

(∂t + vm∂x)η(x, t)

= −
α1(t)
~2 Θ(t − t0)δ(x − x1)

∫ t

t0
dt′α1(t′)η(x1, t′)

−
α2(t)
~2 Θ(t − t0)δ(x − x2)

∫ t

t0
dt′α2(t′)η(x2, t′). (A7)

As η(x, t) is a chiral field, we can include the effect of cou-
plings at x = x1 and x = x2 in sequence for solving this
integral-differential equation. Therefore, let us consider the

first part of the integral-differential equation

(∂t + vm∂x)η(1)(x, t) =

−
α1(t)
~2 Θ(t − t0)δ(x − x1)

∫ t

t0
dt′α1(t′)η(1)(x1, t′), (A8)

which implies the following formal solution

η(1)(x, t) = η(0)(x, t)

− Θ(x − x1)
α1(t − x−x1

vm
)

~2vm

∫ t− x−x1
vm

t0
dτα1(τ)η(1)(x, τ). (A9)

Here, η(0)(x, t) ≡ η(x − vm(t − t0), t0) origins from the chiral
flow of the initial Majorana edge field. Then, the full solution
can be solved iteratively and can be formally expressed by

η(1)(x, t) = η(0)(x, t)−Θ(x− x1)
α1(t − x−x1

vm
)

~vm
×


∫ t− x−x1

vm

t0
dτ0

α1(τ0)
~

η(0)(x1, τ0) −
∫ t− x−x1

vm

t0
dτ0

α1(τ0)2

~2vm

∫ τ0

t0
dτ1

α1(τ1)
~

η(0)(x1, τ1)

+

∫ t− x−x1
vm

t0
dτ0

α1(τ0)2

~2vm

∫ τ0

t0
dτ1

α1(τ1)2

~2vm

∫ τ1

t0

α1(τ2)
~

η(0)(x1, τ2) + . . .

 . (A10)

Now the order of integrations in each term can be rearranged with the following identity∫ A

t0
dτ0g(τ0)

∫ τ0

t0
dτ1 f (τ1) =

∫ A

t0
dτ1 f (τ1)

∫ A

τ1

dτ0g(τ0)
τ0↔τ1

−−−−−−→

∫ A

t0
dτ0 f (τ0)

∫ A

τ0

dτ1g(τ1). (A11)

After summing infinite terms, one obtains

η(1)(x, t) = η(0)(x, t) − Θ(x − x1)
α1(t − (x − x1)/vm)

~2vm

×

∫ t− x−x1
vm

t0
dτ0 α1(τ0) K1

(
τ0, t −

x − x1

vm

)
η(0)(x1, τ0). (A12)

We note that this solution of η(1)(x, t) can be fully related by
initial operators, η(x, t0).

To include the coupling at x2 in Eq. (A7), we can use
η(1)(x, t) as the incoming condition for Eq. (A7) at x = x2 be-
cause of the chirality of the EOM. Therefore, the full solution
of (A7) is given by

η(x, t) = η(1)(x, t) − Θ(x − x2)
α2

(
t − x−x2

vm

)
~2vm

×

∫ t− x−x2
vm

t0
dτ0 α2(τ0) K2

(
τ0, t −

x − x2

vm

)
η(1)(x2, τ0). (A13)

Again, the solution of η(x, t) is expressed in terms of
η(x, t0). Finally, the contribution of initial operators η(x, t0)
to γa(t), i.e. the second part (the integration part) of solutions
in Eqs. (3.2), can be obtained by employing Eq. (A5) with
solution in Eq. (A13).

Appendix B: Edge-induced Polarization

The goal of this Appendix is to describe the phenomenon
of edge-induced polarization, namely the non-zero expecta-
tion value 〈iγ1(t)γ2(t)〉 for two Majorana modes coupled to a
chiral Majorana single edge [9]. Here we will focus on the
situation where the coupling constants α1 and α2 are time in-
dependent and will consider the limit ∆x = x2 − x1 → 0 and
t → ∞. In this limit, we observe that the contributions of ini-
tial operators γ̄a to Eqs. (3.2) decay exponentially and hence
the only important contributions are those resulting from the
coupling to the chiral edge state. Hence γa’s can be approxi-
mated as

γ1(t) ∼ − α1

∫ t

t0
dt′K1(t′, t)η(0)(x1, t′),

γ2(t) ∼ − α2

∫ t

t0
dt′K2(t′, t)η(1)(x2, t′).

(B1)

The qubit polarization is then formally expressed as
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〈iγ1(t)γ2(t)〉 = i
α1α2

~2

〈∫ t

t0
dt′K1(t′, t)η(0)(x1, t′)

∫ t

t0
dt′′K2(t′′, t)

η(0)(x2, t′′) −
α2

1

~2vm

∫ t′′

t0
dτ0K1(τ0, t′′)η(0)(x1, τ0)

〉 , (B2)

where we have used Eq. (A12) with ∆x → 0+ for η(1)(x2, t′).
We observe that the polarization are induced through two
mechanisms: (I) polarization due to direct entanglement of
Majorana modes and edge state, i.e., the first part of Eq. (B2),
and (II) polarization due to transfer quantum information of
Majorana mode γ1 to mode γ2 through the edge, i.e. the sec-
ond part of Eq. (B2).

Before we evaluate the magnitude of the induced polariza-
tion, we first observe that

Ka(ti, t f ) = exp
[
−

α2
a

2~2vm
(t f − ti)

]
(B3)

because αa is time independent. We will also need the follow-
ing correlation function

〈η(0)(x, t)η(0)(y, t′)〉 =
1
iπ

1
(x − y) − vm(t′ − t′′)

. (B4)

Let us first focus on the contribution from mechanism (I),

〈iγ1(t)γ2(t)〉(I) = i
α1α2

~2

∫ t

t0
dt′

∫ t

t0
dt′′K1(t′, t)K2(t′′, t)

×
〈
η(0)(x1, t′)η(0)(x2, t′′)

〉
. (B5)

Using Eqs. (B3) and (B4) together with changes of variables
τ′ = t − t′ and τ′′ = t − t′′ , we have

−
α1α2

π~2vm

∫ ∞

0
dτ′

∫ ∞

0
dτ′′

exp
[
−

α2
1

2~2vm
τ′ −

α2
2

2~2vm
τ′′

]
τ′′ − τ′

. (B6)

Here we have taken t − t0 → ∞. With a further change of
variable T = (τ′ + τ′′)/2 and ∆τ = (τ′′ − τ′)/2, the double
integral can be carried out and gives

〈iγ1γ2(t → ∞)〉(I) =
2α1α2

π(α2
2 + α2

1)
ln

(
α2

α1

)2

(B7)

Now we turn to evaluate the contribution from mechanism
(II),

〈iγ1(t)γ2(t)〉(II) = −i
α3

1α2

~4vm

∫ t

t0
dt′K1(t′, t)

∫ t

t0
dt′′K2(t′′, t)

×

∫ t′′

t0
dτ0K1(τ0, t′′)

〈
η(0)(x1, t′)η(0)(x1, τ0)

〉
. (B8)

Exchanging the order of integral over t′′ and τ0 and using
Eq. (A11) and explicitly integrate out t′′, we obtain

2α3
1α2

π~2vm(α2
2 − α

2
1)

∫ t

t0
dt′e−

α2
1

2~2vm
(t−t′)

×

∫ t

t0
dτ0

e
α2

1
2~2vm

(τ0−t)
− e

α2
2

2~2vm
(τ0−t)

t′ − τ0
(B9)

By performing changes of variables τ′ = t − t′ and τ′′ = t − τ0
and taking t − t0 → ∞, we then have

2α3
1α2

π~2vm(α2
2 − α

2
1)

∫ ∞

0
dτ′dτ′′e−

α2
1τ
′

2~2vm
e−

α2
1τ
′′

2~2vm − e−
α2

2τ
′′

2~2vm

τ′′ − τ
. (B10)

This integral is similar to that in Eq. (B6). Hence, with similar
procedure, we can show that

〈iγ1γ2(t → ∞)〉(II) =
4α3

1α2

π(α2
2 − α

2
1)(α2

2 − α
2
1)

ln
(
α2

α1

)2

. (B11)

By adding two part of contributions, the total polarization
when two Majorana modes are coupled to the edge is give by

〈iγ1γ2(t → ∞)〉 =
2α1α2

π(α2
2 − α

2
1)

ln
(
α2

α1

)2

. (B12)

This result is consistent with what found in Ref. 9 and has its
peak value 2/π for α1/α2 = 1.
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Appendix C: Unequal velocities

If the two edge states propagate with different velocities, the approach taken in the main text, Sec. II and III, is no longer valid.
One can not reduce the problem to that of a single edge state. Instead, we can investigate directly the Green’s function that enter
the calculation of W2E in Eq. (3.6). Starting with the Hamiltonian of the two edges, we have:

He =

∫
dx

{
−i
~

4

[
vLη

L(x)∂xη
L(x) + vRη

R(x)∂xη
R(x)

]
+ im(x)ηL(x)ηR(x)

}
. (C1)

This can be rewritten in terms of Pauli matrices:

He =

∫
dx


(
ηL

ηR

)† [
−i
~

4
(v1 + δvσz) ∂x + m(x)σy

] (
ηL

ηR

) . (C2)

where we define δv = (vL − vR) /2 and v = (vL + vR) /2. The equations of motion for the Green function are[
∂t + (v1 + δvσz) ∂x − i

m(x)
~

σy
] (

GηL (x − x′, t − t′)
GηR (x − x′, t − t′)

)
= 1δ(x − x′)δ(t − t′). (C3)

Here, x′ and t′ are the source space and time. When m(x) has no spatial dependence, the Green’s function is formally resolved
in Fourier space as

G(x − x′, t − t′) = −i
∫

dk
2π

∫
dω
2π

(vk − ω) − δvkσz + (m/~)σy

(vk − ω)2 − (δvk)2 − (m/~)2 eik(x−x′)−iω(t−t′). (C4)

By integrating over the frequency domain and choosing the pole that gives the retarded Green’s function, we obtain

G(x − x′, t − t′) = Θ(t − t′)
∫

dk
2π

eik(x−x′)

2

[(
e−iω+(t−t′) + e−iω−(t−t′)

)
+

~δvkσz

√
m2 + ~2k2δv2

(
e−iω+(t−t′) − e−iω−(t−t′)

)
+

mσy

√
m2 + ~2k2δv2

(
e−iω−(t−t′) − e−iω+(t−t′)

)]
, (C5)

with ω± = vk ±
√

(m/~)2 + k2δv2. In the limit δv→ 0, the 2 × 2 Green’s function becomes

G(x − x′, t − t′) = Θ(t − t′)δ((x − x′) − v(t − t′))
(
cos

(m
~

(t − t′)
)

1 + i sin
(m
~

(t − t′)
)
σy

)
, (C6)

after taking the k integration. As an alternative way, this Green’s function will lead to results obtained in Sec. III B.

Because the term that mixes the two edges plays important
role for constructing W2E in Eq. (3.6), we shall focus on the
off-diagonal σy term, Gy(x − x′, t − t′). The role this function
plays becomes clear when we consider how to modify the re-
sult for the all-important W function from Eq. (3.5). The way
our answer is modified when the velocities are different is:

W(t0, t,∆x) = −

∫ t

t0
dt1

∫ t

t1
dt2

α2(t2)α1(t1)
~2vm

× K2(t′, t2)K1(t0, t1)Gy(∆x, t2 − t1), (C7)

and Gy(∆x, t2 − t1) reduces to a sin ∆θ · δ(t2 − t1 −∆x/v) in the
equal-velocity case, with ∆θ defined in Eq. (3.8).

Let us next approximate Gy(∆x, t2 − t1). To allow infor-
mation transferring between the two edges, we must have
m∆x
~v ∼ 1 and hence ~kv

m ∼ 1. In the limit δv � v, we can
confine ourselves to the case of ~kδv � m. Thus we can ex-
pand the expression in Eq. (C5) to the second order in δv and

obtain a Gaussian integral

Gy(x − x′, t − t′) ≈ Θ(t − t′)
∫

dk
2π

σy

2
eik[(x−x′)−v(t−t′)]

×

(
e
− 1

2 ( ~δvk
m )2

+i
(

m
~ +
~(kδv)2

2m

)
(t−t′)
− e
− 1

2 ( ~δvk
m )2

−i
(

m
~ +
~(kδv)2

2m

)
(t−t′)

)

= iσyΘ(t − t′)
m

√
2π~δv

Im

e−
1
2 ( m
~δv )

2 ((x−x′)−v(t−t′))2

1−im(t−t′)/~ +im(t−t′)/~

√
1 − i m(t − t′)/~

 .
(C8)

Gy(∆x, t2 − t1) has a time width of about δt ∼ ~δv
vm around

(x− x′)− v(t− t′) = 0. Hence the higher mx
~v is, the more oscil-

latory the function will be as a function of time at the second
Majorana site. Observing that Eq. (C8) reduces to the result
in Eq. (C6) for ~δvm → 0. As a result, we expect that the effect
of the velocity difference becomes negligible when ~δvm � ∆x.
In the limit of our consideration, this condition is in general
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satisfied. Indeed, carrying out the integral in Eq. (C8) approx-
imately yields a simple suppression term of e(−δv/v)2

relative to
the results in Fig. 2.
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