
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Towards a quantitative description of tunneling
conductance of superconductors: Application to LiFeAs

A. Kreisel, R. Nelson, T. Berlijn, W. Ku, Ramakrishna Aluru, Shun Chi, Haibiao Zhou, Udai
Raj Singh, Peter Wahl, Ruixing Liang, Walter N. Hardy, D. A. Bonn, P. J. Hirschfeld, and

Brian M. Andersen
Phys. Rev. B 94, 224518 — Published 27 December 2016

DOI: 10.1103/PhysRevB.94.224518

http://dx.doi.org/10.1103/PhysRevB.94.224518


Towards a quantitative description of tunneling conductance of superconductors:
application to LiFeAs

A. Kreisel,1, 2 R. Nelson,3 T. Berlijn,4, 5 W. Ku,6, 7 Ramakrishna Aluru,8, 9 Shun

Chi,10, 11 Haibiao Zhou,9 Udai Raj Singh,8 Peter Wahl,9, 8 Ruixing Liang,10, 11

Walter N. Hardy,10, 11 D. A. Bonn,10, 11 P. J. Hirschfeld,12 and Brian M. Andersen1

1Niels Bohr Institute, University of Copenhagen,
Universitetsparken 5, DK-2100 Copenhagen, Denmark

2Institut für Theoretische Physik, Universität Leipzig, D-04103 Leipzig, Germany
3Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany

4Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
5Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

6CMPMSD, Brookhaven National Laboratory, Upton, NY 11973 USA
7Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

8Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
9SUPA, School of Physics and Astronomy, University of St. Andrews,

North Haugh, St. Andrews, Fife, KY16 9SS, United Kingdom
10Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z1

11Quantum Matter Institute, University of British Columbia, Vancouver BC, Canada V6T 1Z4
12Dept. of Physics, U. Florida, Gainesville, FL 32611 USA

(Dated: November 18, 2016)

Since the discovery of iron-based superconductors, a number of theories have been put forward
to explain the qualitative origin of pairing, but there have been few attempts to make quantitative,
material-specific comparisons to experimental results. The spin-fluctuation theory of electronic
pairing, based on first principles electronic structure calculations, makes predictions for the super-
conducting gap. Within the same framework, the surface wavefunctions may also be calculated,
allowing e.g. for detailed comparisons between theoretical results and measured scanning tunneling
topographs and spectra. Here we present such a comparison between theory and experiment on the
Fe-based superconductor LiFeAs. Results for the homogeneous surface as well as impurity states
are presented as a benchmark test of the theory. For the homogeneous system, we show that and
why the maxima of topographic image intensity may be located at positions above either the As
or Li atoms, depending on tip height and the setpoint current of the measurement. We further
report the experimental observation of transitions between As and Li-registered lattices as functions
of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed
comparison between the simulated scanning tunneling microscopy images of transition metal defects
with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory
with true predictive power for STM in Fe-based systems.

PACS numbers: 74.55.+v, 74.70.Xa, 74.20.-z, 74.81.-g

I. INTRODUCTION

The Fe-based superconductor LiFeAs, with Tc of 18 K,
has lent itself particularly well to spectroscopic character-
ization by angular resolved photoemission spectroscopy
(ARPES) and scanning tunneling microscopy (STM) due
to the non-polar surface and the high quality of the sam-
ples. This enables a detailed comparison between spec-
troscopy and predictions by theory, and to assess the sta-
tus of the theoretical understanding of superconductiv-
ity in LiFeAs and iron-based superconductors in general.
The gap structure of LiFeAs has been studied both by
ARPES1,2 as well as quasi-particle interference? , which
show a fourfold anisotropy of the gap and a character-
istic distribution of gap magnitudes on different Fermi
surface sheets - yet neither of these yields information
on the sign of the gap. There are a number of theoret-
ical attempts to explain these results and in particular
to calculate the detailed gap function, all of which led

to the identification of sign-changing s-wave gaps3–8, but
differed on the sets of Fermi surface pockets that mani-
fested the same sign. In part, this may be due to details
of the low-energy band structure of LiFeAs, where there
are several hole bands very close to the Fermi level, and
electronic correlations are known to be important9,10.

A realistic description of the tunneling conductance as
measured in STM has become attainable with the devel-
opment of methods which account for the wave function
overlap between the states of the tip and the surface11–14.
In this work, we present a detailed comparison between
theoretical predictions for high-resolution spectra, to-
pographs, and conductance maps with experiment. The
results shed light on the current status on the progress
towards a quantitative description of superconductivity
in iron-based materials.

The plan of this paper is as follows. In section II, we
give details of the LiFeAs samples as well as of the mea-
surement techniques. In section III, we present the the-
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oretical framework used to analyze the data. In section
IV, we present our results for the homogeneous system
and point out in particular that the interference of surface
wavefunctions detected by the tip can lead to a change in
registration of the conductance maxima at the Li or As
lattices depending on tip height, setpoint bias, and other
factors. In section V, we compare experimental results
on pristine surfaces to these predictions. In section VI,
we present calculations for impurity states and compare
with experimental results. In section VII we assess the
success of the current framework and point out ways in
which it could be improved. Finally, in section VIII we
present our conclusions.

Some highlights of this work related to the impurity
states were presented earlier in Ref. 15.

II. EXPERIMENTAL DETAILS

Experiments were performed in a home-built low tem-
perature STM operating at temperatures down to 1.5 K
and in magnetic fields up to 14T in cryogenic vacuum16.
Samples were prepared by in-situ cleaving at low tem-
peratures in cryogenic vacuum, resulting in atomically
clean surfaces. We used tips cut from a PtIr wire. Bias
voltages are applied to the sample, with the tip at vir-
tual ground. Differential conductance spectra have been
recorded through a lock-in amplifier with f = 413Hz and
a modulation of Vmod = 500µV, unless stated otherwise.
Data obtained in the superconducting state have been
recorded at a temperature of 1.5K. Single crystals were
grown using a self-flux method17. Three transition metal
elements were substituted for iron separately, with the
substitution levels of Mn ∼ 0.2%, Co ∼ 0.5%, and Ni
∼ 0.3%, respectively. Superconducting transitions de-
termined by SQUID magnetometry show little changes
with such minimal substitution levels comparing to non-
substituted LiFeAs with T onset

c = 17 K and a sharp su-
perconducting transition ∆T ∼ 1 K.

III. THEORY OF HOMOGENEOUS SURFACE

First we will establish a theoretical framework to cal-
culate how the clean surface of the material is imaged by
STM.

A. Density functional theory calculations

The starting point is a first principles calculation to
obtain the material specific electronic structure. In the
present investigation we obtain the band structure us-
ing the Wien2K18 package, followed by projecting onto
a Wannier basis preserving all local symmetries19,20; for
details see Appendix A. The resulting five orbital tight-

binding Hamiltonian of the electrons c†Rσ on the lattice
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FIG. 1. Isosurface plots of a Fe-dxz Wannier orbital in LiFeAs
at two different values (a, c) and corresponding plots of the
same Wannier function at two different heights (b,d). The
green plane at height z0 in (a,c) is inserted for visual clarity
of the isosurfaces. Red and blue indicate the phase of the
wave function, see scale. The arrows point to the maxima
of the Wannier function that gives rise to the maxima in the
conductance maps whenever the weight of the Fe-dxz Wannier
function is large. Note that the maxima move from positions
above the atomic As positions (open squares) at small heights
(e.g. large isovalues) to positions close to the atomic Li posi-
tions (open circles) at larger heights (e.g. smaller isovalues of
the wavefunction). Experimental STM topography showing
a native defect exhibiting chiral nature (e).

is then given by

HTB =
∑

R,R′σ

tµνR,R′c
†
RµσcR′νσ, (1)

where tµνR,R′ are hopping elements between orbitals µ and

ν on Fe sites labeled with R and R′. For convenience
and later reference, we denote matrix quantities of size
of the number of orbitals, e.g. 5×5 matrices, with a hat.
Thus, for example, the normal state Hamiltonian matrix
in momentum space reads

Ĥ(k)µν =
∑
δ

eik·δtµνδ , (2)

where δ = R−R′ is the real space distance of the hop-
ping tµνR,R′ . Since the electronic structure of LiFeAs

(and of Fe-based superconductors in general) exhibits
only limited dispersion in the kz direction, we consider a
model at kz = 0 in the following. The ab initio approach
also gives us a set of Wannier orbitals, one of them shown
in Fig. 1. Note that the symmetry of the Wannier func-
tions is only constrained by the space group symmetry of
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FIG. 2. Schematic illustration of the tunneling process indi-
cating how tunneling into As states can lead to an intensity
maximum above the Li positions: Interference between elec-
trons in Wannier states of neighboring Fe atoms (phase of
wavefunction symbolized by red/blue color) can give rise to
maximal tunneling when the STM tip is located above the
Li atom. A tip closer to the surface will shift the maximal
tunneling positions towards the As atoms.

the crystal structure, e.g. the overall symmetry is lower
than for d-states in a cubic environment. Furthermore,
individual Wannier functions typically exhibit significant
weight on nearby atoms as well.

It is interesting to note from Fig. 1(b,d) the chiral na-
ture of the dxz orbital shown, since certain native defects
in LiFeAs are known to exhibit such a chiral topographic
structure. We do not study these defects here, but note
that local orbital ordering that distinguishes between dxz
and dyz

21 could lead to a chiral defect map (for compar-
ison see Fig. 1(e) for an STM image of such a defect).

The As p states form the major contribution to the
Fe-3d Wannier function shown at several Å above the
surface of the sample, where the tip is positioned. As
seen in Fig. 1, they have a rather large extent, such that
the maximum values of the function sufficiently far above
the surface occur closer to the Li sites rather than the
As sites, as shown schematically in Fig. 2. It is im-
portant to recognize that since the Li states are quite
far from the Fermi level, they have negligible contribu-
tions in the Fe-3d bands, rendering the Li itself effectively
invisible for STM. Nevertheless there are consequences
for STM, which is sensitive to the wavefunctions several
Å above the surface, leading to possible misidentification
of atomic lattice positions, as discussed further below.

B. Superconducting gap

The superconducting gap of the homogeneous sys-
tem is obtained by the self-consistent solution of the
Bogoliubov-de Gennes (BdG) equation in momentum
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FIG. 3. (a) Superconducting gap from the self-consistent BdG
equation, plotted at the positions of the Fermi surface in mo-
mentum space. (b) For the s++ gap function we use the same
gap structure (thus giving rise to the same DOS), but without
the sign change.

space. For this purpose, the Nambu Hamiltonian

Ĥ =

(
Ĥ(k) ∆̂(k)

∆̂(k)T −Ĥ(−k)

)
, (3)

is diagonalized on a k-grid (of typical size 32×32), yield-
ing the eigenvalues {±El(k)} and the unitary transfor-

mation Û(k) = (ûk, v̂k; v̂k, ûk) that diagonalizes Ĥ. The
gap in orbital space is calculated from the self-consistency
relation

∆̂(k)µν =
∑
µ′,ν′

∑
k′,l

Γµ′µνν′(k,k
′)ulµ′v

l
ν′f(El(k)), (4)

where ulµ′ (vlν′) are the elements of the column vectors

ûk (v̂k) and f(E) denotes the Fermi function. The pair-
ing interactions Γµ′µνν′(k,k

′) are derived from standard
spin-fluctuation theory22 together with a proper sym-
metrization in the spin-singlet channel23 as outlined in
Appendix B 1. For a visualization of the superconduct-
ing gap in band space, the normal state transformation
that diagonalizes Ĥ(k) of Eq. (2) from orbital space to
band space is used, yielding the gap structure shown in
Fig. 15 of Appendix B 1.

In order to provide a clear picture, the gap structure
is plotted on the kz = 0 Fermi surface in Fig. 3(a) where
the sign changing s± symmetry is explicitly seen. In
agreement with conclusions drawn from a variety of ex-
periments, the gap function is nonzero everywhere on
the Fermi surface, and the gap on the outer, Γ-centered
dxy pocket appears to be the smallest in magnitude.
Because the DFT Fermi surface is not consistent with
ARPES experiments, which find tiny or nonexistent inner
dxz,yz hole pockets, the gap function cannot be regarded
as a completely correct representation of the true gap
in the system. Nevertheless the relative magnitudes of
the gaps appear qualitatively quite reasonable compared
with ARPES.1,2

For the calculation of the density of states (DOS) in the
superconducting state we construct the matrix Green’s
function

Ĝ(k, ω) = (ω − Ĥ(k) + iη)−1, (5)
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FIG. 4. (a) Orbital resolved DOS of the homogeneous super-
conductor. The orbital content changes strongly between the
energy scales 10 meV and 20 meV due to the gap structure.
Note renormalization of DFT energy scale by Z as discussed
in text. (b) Experimental STM spectrum showing the dif-
ferential conductance of homogeneous LiFeAs. (Vs = 15mV,
I = 150pA,T = 1.6K).

from the self-consistent solution of the BdG equation,
which allows us to calculate the orbitally resolved homo-
geneous DOS ρµ(ω) = − 1

π Im
∑

k Ĝ(k, ω)µµ, manifesting
a two gap feature at low energies and a prominent change
of weight from mainly dxy within the large gap feature, to
dominantly dxz/dyz starting from energies of the order of
the coherence peak, see Fig. 4. By a Fourier transform,
we obtain the real space lattice Green’s function

Ĝ
0

R,R′(ω) =
∑
k

e−ik·R−R
′
Ĝ(k, ω) = Ĝ

0

R−R′(ω) , (6)

which we introduce for later reference.

Note that the gaps in our approach appear to give
an LDOS spectrum for the homogeneous system which
agrees well with the conductance spectrum measured in
STM, as seen from Fig. 4(b). Our results are gener-
ally quite similar to those found in Ref. 24, and show
a small gap feature arising from the dxy states and a
larger gap derived from the dxz,yz states, with relative
magnitude consistent with experiment. Note that the
gap structure as calculated from the full BdG equation
is also very similar to the result of the solution of the lin-
earized gap equation with the present two dimensional
band structure and a result obtained from a three di-
mensional DFT derived band structure when plotted in
the kz = 0 plane4. Finally, we note that correlations will
give rise to a renormalization factor Z which essentially
changes the overall energy scale in the calculation. Set-
ting Z = 1/2 then matches the experimental magnitude
of the superconducting gap and roughly agrees with ob-
served renormalizations of the electronic structure in the
normal state2,9,10

C. Wannier functions to calculate tunneling
current

The differential tunneling conductance in an STM ex-
periment at a given bias voltage V is given by25

dI

dV
(r, eV ) =

4πe

h̄
ρt(0)|M |2ρ(r, eV ), (7)

where r = (x, y, z) denote the coordinates of the tip,
ρ(r, ω) is the continuum LDOS (cLDOS), ρt(0) is the
DOS of the tip, and |M |2 is the square of the matrix
element for the tunneling barrier. The cLDOS can be
calculated by

ρ(r, ω) ≡ − 1

π
ImG11(r, r;ω), (8)

where Gσ(r, r′;ω) is the normal part of the Nambu con-
tinuum Green’s function given by

G(r, r;ω) =

(
G↑(r, r

′;ω) F (r, r′;ω)
F ∗(r, r′;ω) −G↓(r, r′;−ω)

)
, (9)

defined as usual using the field operators ψσ(r). These
are related to the lattice operators defined earlier via

ψσ(r) =
∑
Rµ

cRµσwRµ(r), (10)

where the first principles-derived Wannier functions
wRµ(r) are the matrix elements.

Employing the Wannier basis transformation, we can
compute the continuum Green’s function12 by the ex-
pression

G(r, r′;ω) =
∑

R,R′,µν

Ĝ
µ,ν

R,R′(ω)wRµ(r)wR′ν(r′), (11)

and finally obtain the conductance from Eq. (7). Note
that the cLDOS ρ(r, ω) involves not only local lattice

Green’s function contributions ĜR,R(ω), but also nonlo-
cal contributions with R 6= R′. Due to this, the spectral
and spatial properties of the cLDOS are typically both
quantitatively and qualitatively different from those of
the lattice DOS. We stress that Eq. (7) for the conduc-
tance in a STM experiment only holds under the assump-
tions that the tip is sharp enough such that only one atom
contributes to the tunneling process. Below we explore
the variability of surface imaging within the scope of this
Ansatz.

IV. RESULTS: HOMOGENEOUS SYSTEM

In this section, we use the lattice Green’s function,
Eq. (6) of the homogeneous system in Eq. (11) and calcu-
late the cLDOS using Eq. (8). In Fig. 5, we show the cor-
responding differential conductance maps of the homo-
geneous system calculated at different tip heights. Using
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FIG. 5. Continuum LDOS calculated at different heights (left
column, (a-b): 340 pm, right column, (c-d): 440 pm) above
the surface, energies as indicated on the plots (ω/Z = 10 meV,
ω/Z = 20 meV). While for the small tip height the positions
of the maxima change from the surface As positions at high
energies to the Li positions at small energies, there is no such
change when the tip is at larger distances from the surface.
All plots are with the same field of view covering an area of
1 × 1 nm2 with the atomic positions of the surface atoms as
marked in (e). Lines along the crystallographic axis in the cal-
culated maps are artifacts from using a Wannier function that
has a finite extension in the plane. These become stronger at
larger heights because the Wannier function is less peaked,
see Fig. 1.

the cLDOS, we can access intra-unit-cell structure reflect-
ing the properties of the electronic wavefunctions above
the surface, in contrast to traditional calculations in Fe-
based superconductors restricted to the lattice LDOS in
the Fe plane (which is of course independent of the lattice
position R in the homogeneous case). As shown in Fig. 5,
changing the height of the STM tip may change the po-
sitions of the conductance maxima, as already suggested
by Figs. 1 and 2, and this change may be bias dependent.

At large height, i.e. small tunneling current, the maxima
are above the positions of the Li atoms for all setpoint
voltages shown. The reason is the constructive interfer-
ence of the Fe Wannier functions from nearby Fe atoms,
as shown schematically in Fig. 2. On the other hand,
the small height cLDOS maps show maxima at positions
of As atoms on the surface when the setpoint voltage is
outside the superconducting gap, and maxima close to
the Li positions are observed for energies below the large
gap.

This switching can be understood in terms of the domi-
nant orbital weight at these energies in conjunction with
the form of the Wannier functions. At large energies
(ω/Z > 15 meV), the orbital weight is dxz/dyz and dxy,
see Fig. 4. In the maps at large tip height, one sees that
the dxz Wannier function is actually maximal close to
the NNN Li positions (see Fig. 1), such that construc-
tive interference will give enhanced contributions at these
positions leading to the maxima as observed. At small
energies, the dxy orbital dominates the DOS, but it is
also larger at the NNN Li positions than at the NNN As
positions.

The same happens at lower tip height in the low energy
regime. However with increasing energy, e.g. including
also contributions of the dxz/dyz Wannier functions, the
maxima move towards the As positions since the dxz/dyz
Wannier functions at the lower height are larger at the
NN As positions than at the NNN Li positions, see Fig. 1.
These results are robust in terms of the approximations
made for the calculations since the Wannier functions
represent largely high-energy properties of the system,
i.e. should be well described by the first principles ap-
proach.

Whether the switching of the lattice can be observed
experimentally via STM, may well depend on the prop-
erties of the STM tip which we assumed until now to be
a small tip without structure25. A more realistic descrip-
tion of the tunneling process would involve convolving
the surface wavefunctions with the wavefunction of the
tip. While we do not discuss the effects of tip orbital
structure here, it is clear that even assuming a spheri-
cal symmetric tip wavefunction26 some smearing of the
cLDOS will occur when calculating the actual conduc-
tance maps. If this smearing due to the tip wavefunction
is too large, the switching of the lattice registration from
Li to As with bias seen in Fig. 5 will be removed, and
the maxima will always be observed above the Li sites
until the tip is unphysically close to the surface. Lattice
registration switchings with bias of this sort discussed
here have been seen occasionally in experiment, but are
rarely reported. One exception is Ref. 27 where the spa-
tial positions of the maxima of the tunneling current are
seen to switch as a function of bias voltage and contrast
asymmetries with respect to the sign of the voltage are
discussed.

In order to simulate images of topographs, we calculate
the cLDOS ρ(r, eV ) at several heights and energies, then
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FIG. 6. Topographs of an area of 1 × 1 nm2 calculated such
that the closest point of the tip is fixed to zdown = 440 pm
(measured from the Fe plane, see Fig. 2) for different bias
voltages (a-c) as indicated. Note that for huge positive set-
point bias voltages, the maximal heights are above the As
atoms in the lattice (c), whereas for smaller voltages the maxi-
mal heights are registered above the Li atoms (a,b). For even
smaller setpoint bias voltages, e.g. within the large super-
conducting gap, the maxima are again found above the As
positions, see Fig. 5 (e). Artifacts of the finite range of the
Wannier functions used in the calculations are present, mostly
visible in (b). See Fig. 5 for the relative lattice position of
the surface atoms in the field of view.

solve

I0 =
4πe

h̄
ρt(0)|M |2

∫ eV

0

dω ρ(x, y, z(x, y), ω) , (12)

at setpoint current I0 for the height map z(x, y).
We obtain topographs that show the same switching

of the observed positions of the maxima (now in z), as
shown in Fig. 6. The effect is, however, less pronounced
due to the integration over energy which adds up contri-
butions with maxima at Li positions and As positions,
giving rise to a relative flat result. Topographs for large
bias away from the superconducting gap magnitude can
however still give rise to switching of the positions as seen
from Fig. 6.

V. COMPARISON WITH EXPERIMENT

As stated above, there are no systematic studies of
these effects reported in the literature. Here, we show a
series of topographic STM images taken at different bias
voltages clearly revealing a phase shift between images

taken at large bias voltage and small bias voltage (see
Fig. 7), consistent with the theoretical prediction. Note
that the theoretical calculations have been done just for
the homogeneous system Fig. 7 (g-l) and show maximal
height at the positions of the Li atoms when the abso-
lute bias voltage is larger than 30 mV, while the height
maxima gradually move to As positions for smaller bias
voltage. All simulations have been done for fixed current
conditions such that the z-position gets reduced at small
bias. This behavior can be understood in the picture of
the interference as sketched in Fig. 2. Experimentally,
the switching is not as clean since the topographs show
some deviations from a non-spherical tip, but by help of
the fixed position of the same impurity, it can be seen
that the maxima clearly move horizontally as a function
of bias voltage in qualitative agreement to the simula-
tions.

It is worth noting though that not all tip configura-
tions exhibit this shift. To illustrate the effect on the
Li/As lattice imaging due to tip characteristics, we dis-
play in Fig. 8 experimental topographs obtained with
two different tips near a Mn defect which serves only as
a point of reference. While both tips image the surface
and the defect with high spatial resolution, despite the
rather similar tunneling parameters, they image the sur-
face atomic structure once with maxima on the Li atoms
and once on the As lattice. From the theoretical anal-
ysis, this suggests that the tip orbital probes different
electronic states of the surface, as is also evident from
the scattering patterns detected in the images.

VI. IMPURITY STATES

A. Calculation of impurity potentials

To obtain the impurity potentials of transition metal
substituents for Fe from first principles, we make use
of the Wannier function based effective Hamiltonian
method for disordered systems12,28,29 The influence of the
transition metal (TM) substitutions on the Hamiltonian
is extracted from two DFT calculations: the undoped
LiFeAs and the impurity supercell system Li8Fe7TMAs8,
according to the procedure described in Ref. 28.12 The
orbitally averaged potentials for Ni, Mn, Co are sum-
marized in Table I of Appendix B and are very similar
in magnitude to those calculated earlier for a different
compound30. The orbital dependence of the impurity po-
tentials is not very pronounced, but has been taken into
account for the following calculation of impurity states.

B. T-matrix approach

Including an impurity term in the Hamiltonian

Himp =
∑
µσ

V̂ µµimpc
†
R∗µσcR∗µσ, (13)
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FIG. 7. (a-f) Topographic experimental STM images taken with different bias voltages with the same current I = 2 nA. All
images show the same defect and have been taken with the same tip configuration. The small red dots label the same lattice
positions relative to the impurity; for the theoretical calculations (g-l), these are the positions of the Li atoms. The black lines
cross at the center line of the defect state (Fe position), whose position is fixed and can be used as a reference. A phase shift
is observed in the atomic lattice when the bias voltage and tip-sample distance is reduced, compare e.g. panels (a,f) to panels
(b-e). A similar shift is found in the theoretical simulations within the same energy range where the cross also marks a Fe
positon. Note that for the theoretical calculations, the energy has been renormalized by a factor of Z = 1/2 consistent with all
other calculations in this and previous work15.

where the V µµimp are on-site potentials as calculated from
first principles, we first construct the lattice Green’s func-
tions in the presence of the impurity via the T-matrix
approach

ĜR,R′(ω) = Ĝ
0

R−R′(ω) + Ĝ
0

R(ω)T̂ (ω)Ĝ
0

−R′(ω) . (14)

The T-matrix is obtained from

T̂ (ω) = [1− V̂ impĜ(ω)]−1V̂ imp, (15)

with the local Green function Ĝ(ω) =
∑

k Ĝ(k, ω). For
the TM impurities, the corrections to the nearest neigh-
bor hopping and potentials are generally small, e.g. one
order of magnitude smaller such that we do not include
them here. In contrast to fully self-consistent BdG cal-
culations in real space (Refs. 8, 12, and 24), the local
suppression of the superconducting gap is not captured
by the calculation, but much larger spectral resolution
can be achieved with reasonable computational effort.

The local lattice DOS in the presence of the impurity
is

ρ(R, ω) = − 1

π
Im Tr’ ĜR,R(ω) , (16)

where Tr’ is the orbital trace over the normal part of the
Nambu Green’s function.

A plot of ρ(R, ω) at the resonance energy for a Ni
impurity is now shown in Fig. 9(a). Because the under-
lying lattice Hamiltonian has C4 symmetry, the point-
like impurity state inherits this symmetry. On the other
hand, when the cLDOS ρ(r, ω) is calculated at the same
energy, the characteristic “geometric dimer” state with
maximum intensity on the NN As sites is immediately

recovered12, as evident from Fig. 9(b). Note that this
conductance map impurity of the impurity resonance is
obtained in an s± state calculated within the spin fluc-
tuation framework described in the previous section, as
indicated in the inset of Fig. 10 (a), where the corre-
sponding spectra at various near neighbor sites of the Ni
impurity are also shown.

Within this framework, it is also possible to show the
effect of a sign-changing order parameter: the s± state
exhibits in-gap bound states. These are easiest to iden-
tify via difference spectra (impurity spectrum subtracted
from the homogeneous result) that are strongly asym-
metric in energy, see Fig.10(c). A calculation where the
sign change of the order parameter has been artificially
removed lacks the in-gap bound states and consequently
shows a nearly particle-hole symmetric difference spec-
trum as seen from Fig. 10(d), i.e. allowing one to distin-
guish experimentally the two scenarios for non-magnetic
scatterers.

There are other important differences between the lat-
tice and continuum representations. We stress that the
impurity spectra themselves can be modified by taking
into account the tunneling process more precisely13,14,25.
For example, looking at spectra obtained from Eq. (16)
for various positions around a Ni impurity in an s± state,
reveals that the effect of the impurity is much stronger
on the negative bias than on positive bias24, as it can be
seen best in the difference spectra Fig. 10(c). This fea-
ture changes when the continuum Green’s functions are
used to calculate the tunneling current. In Fig. 11, we
present the spectra for the same impurity potential of a
Ni impurity, but now calculated using Eq. (11), where
the changes at negative energies are very small, but at
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FIG. 8. Imaging the atomic lattice in STM with differ-
ent tips; (a) STM topography showing a single Mn impu-
rity with maxima imaged at the position of lithium (Li)
atoms. (Vs = −25mV, I = 100pA). The impurity here
serves merely as a point of reference. (b) STM topography of
the same Mn impurity obtained with a different apex of the
tip, imaging maxima at the positions of arsenic (As) atoms.
(Vs = −50mV, I = 300pA). Topographs are imaged in the
normal state at B = 10T and T = 12K. (c) height profile
of the Mn defect along the vertical dashed lines indicated in
(a,b) and (d) height profile of the atomic modulation of the
homogeneous system extracted along the horizontal lines in
(a,b). The atomic resolution is found to be in anti-phase be-
tween the two topographs.

positive energies a peak in the difference spectra (b) is
obvious. On the other hand, the conclusions from the
calculation for the non-sign changing order parameter do
not change, e.g. the spectra do not show any indication
of in-gap bound states and consequently the difference
spectra, Fig. 11 (d), are particle-hole symmetric as ex-
pected. Experimentally, weak bound states at positive
bias have been observed for such Ni impurities15 giving
evidence for a sign changing order parameter.

To make further connection to experimental investiga-
tions using known impurities in LiFeAs, we show a set of
calculated impurity spectra for the different substituents
assuming a s± order parameter, see Fig. 12. In all cases,
the impurity potentials have been taken from our ab ini-
tio investigation, but divided by the same factor of 2.5,
see Appendix A. It can be seen that the Mn impurity has
opposite effect than the Co impurity which is due to the
different sign of the impurity potential (d,e), while the Ni
impurity is stronger and shows an enhancement of the in-
ner gap coherence peak, an effect that is consistent with
experimental evidence and can be understood in terms
of the multiorbital nature of the electronic structure15.

The method outlined so far was only considering non-

FIG. 9. (a) Lattice LDOS at ω/Z = −30 meV around a Ni
impurity showing a C4 symmetric impurity state and the po-
sitions of the surface As and Li atoms in the field of view. (b)
Corresponding cLDOS with the same field of view of 1×1 nm2

at z = 340pm reflecting the symmetry to be seen in conduc-
tance maps and topography close to a Fe centered impurity.
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FIG. 10. Lattice LDOS spectra close to a Ni impurity (po-
tential renormalized down by a factor of 2.5) calculated in
the lattice representation where r = (x, y) refers to the dis-
tance in Fe bond lengths from the impurity. Panel (a) shows
the result for the sign-changing gap function calculated from
spin-fluctuation pairing theory, as plotted in the inset over the
Fermi surface using colors blue=+, red=-, with (c) the asso-
ciated difference LDOS with spectrum far from the impurity
subtracted. Panel (b) is the corresponding LDOS result for an
analogous gap structure where the signs have been artificially
removed (see Fig. 3(b)), showing no in-gap bound states. The
associated spectra are quite particle-hole symmetric, as seen
in the LDOS difference spectrum in (d).

magnetic impurity potentials, but it is straightforward to
include a magnetic scatterer in the classical approxima-
tion by making the potential spin-dependent, i.e. replac-
ing V µµimp → V µµσ,imp in Eq. (13) and doing the calculation
for each spin species separately, eventually summing up
the two contributions to simulate a non-spin polarized
experimental setup. At this point, we do not intend to
present any results for a magnetic scatterer, because in
a phenomenological approach, more free parameters ap-
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FIG. 11. Comparison of cLDOS results for a non-sign chang-
ing order parameter (right) and a sign-changing order param-
eter (left): cLDOS close to a Ni impurity (top row) and the
relative continuum LDOS (bottom row).
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FIG. 12. Continuum LDOS close to a Mn impurity (a), Co
impurity (b) and Ni impurity (c) and the corresponding rel-
ative spectra (d-f) calculated for the sign-changing order pa-
rameter. All impurity potentials reduced by 2.5 relative to ab
initio calculations.

pear and make the discussion more complicated. In addi-
tion we expect the non-magnetic potentials to dominate
over potential magnetic contributions, especially for Co
and Ni ions. From the ab-initio perspective, there are no
indications that Co and Ni have a significant magnetic
contribution; the same is also true from an experimental
point of view. As for Mn impurities, on the other hand,
they are expected to be magnetic31–33 but only weakly
coupled to the itinerant electron spins and hence one ex-
pects their magnetic potential to not strongly modify the
LDOS34.

Finally, we discuss consequences of our basis transfor-
mation for the spatial modulations of the tunneling cur-
rent, spectra and topographs close to impurities, e.g. use
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FIG. 13. Simulated topograph (a) for a Ni impurity at a bias
of 30 mV calculated using a shifted Wannier function at the
impurity position to approximate the distortion close to the
impurity (see text) and corresponding cut along the dashed
lines in vertical and horizontal direction (b). (c) Experimental
STM topograph of a single Ni impurity at Vs = 10mV, I =
500pA. (d) Line cuts along and normal to the Ni impurity
shown in (c).

Eq. (14) to calculate the continuum Green’s function in
Eq. (11) to obtain the cLDOS following Eq. (8). The-
oretical results for simulations of topographs close to a
Ni impurity are given in Fig. 13. The topographs z(x, y)
are calculated from Eq. (12), and give our estimate for
absolute height variations given a tip height and setpoint
bias, as shown. Here local distortions of the atomic po-
sitions due to the impurity have been taken into account
by simply moving the Wannier function (from the homo-
geneous calculation) ∆z = 20 pm upwards. Without this
adjustment by hand, we find that the topographs for tip
heights several Å above the plane do not provide suf-
ficient contrast around the impurity site relative to the
surrounding homogeneous surface. We believe that this
feature of the current calculation can be improved by
the use of inhomogeneous Wannier functions, but this is
beyond the scope of the current project.

While the height modulations through the impurity
site shown in Fig. 13 are of the order of experimental
values, they are still larger by a factor of 2 compared
to experiment in the case of the near-impurity modula-
tions, and an order of magnitude larger than experiment
far from the impurity site. This results from a tip height
that is probably too low compared to the real experi-
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ment; we are prevented from going higher by the noise in
the exponential tails of the Wannier functions whose cal-
culation was described in Ref. 28. As discussed earlier,
the position of the maxima in a topograph for the homo-
geneous case can depend on the bias voltage and current,
but the orientation of the impurity dimer appears always
towards the NN As positions in our calculation. In the
case of the Ni dimer, the maxima are located close to the
positions of the NN “up” As atoms, as in experiment.

VII. DISCUSSION

We have simulated STM spectra and the correspond-
ing topographs, accounting for wavefunction information
in real space together with the electronic structure from
first principles calculations. Of course, it is well known
that while ab initio approaches capture qualitative fea-
tures of the electronic structure of Fe-SC, they cannot ac-
curately describe many important near-Fermi level prop-
erties of Fe-SC in general35 and LiFeAs in particular9,10.
These uncertainties represent some of the underlying rea-
sons that the pairing state in this material is still under
debate. The results of our theoretical calculations de-
riving from DFT-based band structures agree quite well
in many qualitative respects with the experimental find-
ings, but clearly do not represent a complete quantitative
solution to the problem. In this section, we list discrep-
ancies and possible explanations together with proposals
to investigate them more deeply.

As mentioned earlier, the impurity potentials obtained
from a first principles calculation are too strong in magni-
tude to yield the weak in-gap bound states at the lower
gap edge observed experimentally. Since the identities
of the impurities in these studies are well known, and
they are well isolated, a one-impurity problem for the
given chemical substituent is appropriate. It seems likely
therefore that the ab initio method simply overestimates
the impurity potentials36 relative to the actual electronic
structure. Assuming a screening that is present for all
TM impurities in a similar way, the impurity potentials
were multiplied with the same overall renormalization,
ultimately giving a reasonable agreement of the spectra.
Thus the relative strengths seem to be calculated cor-
rectly, together with the signs of the various potentials.

Remaining discrepancies may also be due to an inade-
quate treatment of electronic correlations in the LiFeAs
system. While ideal from the point of view of experi-
mental conditions for STM, LiFeAs near-Fermi level elec-
tronic structure shows significant deviations from DFT,
and current methods such as LDA+DMFT are unable to
properly account for it2,9,10. The consequences of this
discrepancy for the superconducting gap in spin fluctua-
tion theory were discussed at some length in Ref. 37. For
the moment, the current approach is the best we have,
but a truly quantitative theory awaits a proper calcula-
tion of the electronic structure in this system.

Finally, we note that even with the renormalizations

to account for the proper electronic structure introduced
above there are quantitative discrepancies in the mag-
nitudes of the observed oscillations of the tip near im-
purities. We believe that accounting for local structural
relaxations around the impurities and the use of an in-
homogeneous Wannier basis can improve the description
quantitatively. To some extent similar issues arise in our
treatment of the homogeneous system, indicating that a
more accurate treatment of the far field of the Wannier
functions is also necessary.

VIII. CONCLUSIONS

We have presented a combined theoretical and exper-
imental analysis of the superconducting state of LiFeAs
and the modification of the LDOS due to defects. The
theory is able to explain many, if not all of the fea-
tures found in experiments. The theory is based on a
spin-fluctuation pairing prediction for the superconduct-
ing state using first principles calculations for the elec-
tronic structure as input. The resulting pairing gap has
s± character, with the small gap located on the dxy band
and the large gap on the dxz/yz bands, in good agreement
with experiments. Impurity potentials were also calcu-
lated within first principles approach. The continuum lo-
cal density of states for a single defect embedded at the
LiFeAs surface was calculated using recently developed
Wannier-function based methods.

A surprising result of the theoretical study was that
conductance maps and topographs of the homogeneous
system were found to be sensitive to tip height and set-
point bias, such that under different circumstances either
the As or Li lattice could correspond to intensity max-
ima in the image. This preliminary study suggests cau-
tion in assigning site identification without a complete
study varying experimental conditions. Experimentally,
impurity states are suitable to identify the correct posi-
tions of the Fe lattice and thus allows for the observation
of a movement of the registered maxima in topographs
depending on current and bias voltage. This effect is
also predicted in our present framework and allows a
more close comparison between theory and experiment
to investigate more complicated impurity configurations
or possibly unravel exotic electronic orders. Comparison
of topographic images as well as spectra of defects show
that ab initio impurity potentials have to be renormalized
by a factor of 2.5 to yield agreement with experiments.

Understanding the existence of the dimer peaks at pos-
itive bias requires the use of the Wannier-based analysis
and is not consistent with conventional calculations of
the Fe lattice LDOS. The calculations may only prop-
erly account for these when introducing relaxation effects
around the impurity. The good qualitative agreement of
theory and experiment reported here bodes well for a
future true quantitative analysis of inhomogeneous su-
perconductivity and STS spectra in these systems. We
discussed improvements in theoretical methods that are
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needed to reach this goal, as well as further experimental
tests that may be important.
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Appendix A: Electronic structure

For the construction of our model using ab initio meth-
ods, two first-principles calculations have been done: In
order to obtain a reasonable description of the electronic
structure (bands) which eventually lead to superconduc-
tivity, a calculation for a bulk system was done using
experimental crystal structure of LiFeAs as reported in
Ref. 38 with symmetry group P4/nmm and lattice con-
stants a = b = 7.164 bohr, c = 12.026 bohr as well as the
fractional position z = 0.2365 of the As atoms.

After a Wannier projection, we map the 10 band model
at kz = 0 onto a 5 band model via a standard gauge
transformation39–44, resulting in Eq. (1). The mapping
from 10 orbitals to a 5 orbital model is exact in this plane
such that the Fermi surface of the 5 orbital model and
its orbital character as shown in Fig. 14 matches the cor-
responding Fermi surface of the 10 orbital model when
plotted in the 2 Fe zone (not shown). Next, a calcu-
lation of a monolayer LiFeAs is performed to obtain a
set of Wannier functions describing the electronic densi-
ties in the vacuum above the layer of Li and As atoms.
For this purpose, the elementary cell is extended in the
z-direction by 20 bohr to allow for a reasonably large vac-
uum between the two Li As layers. As inferred from the
partial density of states projected on the atoms, one sees
that the electronic states close to the Fermi level that are
considered in our model are dominantly of Fe d charac-
ter with small weight of As p states. These contributions
express themselves in the lobes of the Wannier functions
showing hybridization with As p states. On the other
hand, Li states are negligible at low energies and thus do
not hybridize significantly with the Wannier functions,
e.g. the numerical value of the Wannier function is not
enhanced close to the Li atoms unlike what happens close
to the As atoms.
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FIG. 14. Orbital character of the Fermi surface shown in
k-space (set the lattice constants a = c = 1) plotted in
the unfolded (1-Fe) reciprocal unit cell, visualized with the
summed-color method where the absolute value of the over-
lap is mapped to the RGB value of the color.

Impurity dz2 dx2−y2 dyz = dyz dxy

Mn 0.315126 0.261420 0.271584 0.24206

Co -0.371654 -0.30793 -0.310513 -0.305179

Ni -1.56574 -1.86283 -1.84138 -1.68037

TABLE I. Orbital resolved on-site impurity potentials (un-
renormalized, in eV) of the transition metal ions as obtained
from first principles calculations.

Appendix B: Impurity potentials from ab initio
approach

The impurity potentials for the transition metal ions
were obtained from an ab initio supercell calculation as
outlined in Ref. 28. For completeness, we cite in Table
I the values of these potentials (on-site) orbital resolved.
These have been multiplied with a factor of 0.4 for the
calculations as presented in the main text.

1. Spin-fluctuation theory

Next, we calculate the pairing interactions in momen-
tum space following Ref. 22, first adding the Hubbard
Hund interaction to the Hamiltonian,

H =U
∑

R,µ nRµ↑nRµ↓ + U ′
∑′

R,ν′<µ nRµnRν

+ J
∑′

R,ν<µ

∑
σ,σ′ c

†
Rµσc

†
Rνσ′cRµσ′cRνσ (B1)

+ J ′
∑′

R,ν 6=µ c
†
Rµ↑c

†
Rµ↓cRν↓cRν↑,

where the interaction parameters U , U ′ = U − 2J , J ,
J ′ = J are expressed in the notation of Kuroki et al.45.
Assuming spin rotational invariance, we now calculate
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FIG. 15. Converged superconducting gaps ∆̂(k)nm (units in
eV) from the BdG calculation at T = 1meV in orbital space
(a) and transformed to band space (b). One nm element in
each square represents the 1-Fe Brillouin zone with the Γ point
at the center. These gaps are calculated using the interaction
parameters U = 0.9 eV and J = U/4 and are used for all sub-
sequent real-space calculations. The elements marked with a
star ∗ are imaginary. In the band space representation , the
corresponding Fermi surfaces are marked in black in part of
the Brillouin zone, compare Fig. 14.

the pairing vertices in momentum space as

Γµ1µ2µ3µ4
(k− k′) =

[
3

2
ŪsχRPA

1 (k− k′)Ūs

+
1

2
Ūs − 1

2
Ū cχRPA

0 (k− k′)Ū c +
1

2
Ū c
]
µ1µ2µ3µ4

,

(B2)

where the charge and spin susceptibilities are treated in
the random phase approximation (RPA),

χRPA
1µ1µ2µ3µ4

(q) =
{
χ0(q)

[
1− Ūsχ0(q)

]−1}
µ1µ2µ3µ4

,

(B3a)

χRPA
0µ1µ2µ3µ4

(q) =
{
χ0(q)

[
1 + Ū cχ0(q)

]−1}
µ1µ2µ3µ4

,

(B3b)

and the orbital-dependent susceptibilities have been cal-
culated on a k-grid of 80 × 80 together with a temper-
ature broadening of TB = 20 meV. Definitions of the
bare orbital susceptibilities and interaction matrices Ūs

and Ū c are given in Ref. 22. The generalization of the
symmetrized pairing interaction in the spin singlet chan-
nel for the multiorbital case in momentum space is then
given by23

Γµ1µ2µ3µ4(k,k′) =
1

2
[Γµ1µ2µ3µ4

(k−k′)+Γµ1µ2µ3µ4
(k+k′)] .

(B4)

The result of Eq. (4) that has to be obtained self-
consistently, is shown in Fig. 15 where each orbital com-
ponent of the order parameter is plotted in the Brillouin
zone. At first sight, one sees that the diagonal compo-
nents (especially of the orbitals which are present on the
Fermi level, dxz, dyz and dxy) are largest, a consequence
of the pairing interaction, Eq. (B2), which is strongest
in the intraorbital channel. We note further that indi-
vidual components reflect the symmetry relations of the
orbitals, e.g. the dxy, d2z and dx2−y2 orbitals show a C4

symmetric order parameter while the order parameter
in the dxz and dyz orbital only has C2 symmetry. The
small off-diagonal elements, which are emphasized by the
non-linear color scale, show similar properties, reflecting
the transformation characteristics of the participating or-
bitals, some of them are purely imaginary. A transfor-
mation of the Hamiltonian given in Eq. (3) to the band
basis by help of a unitary transformation that diagonal-
izes Ĥ(k) yields the gap structure in band space shown in
Fig. 15 (b). This normal state transformation does not
diagonalize the full Nambu Hamiltonian, thus the off-
diagonal terms (not shown) in band space are not zero
indicating that our model also captures interband pair-
ing. We are not discussing consequences of this property,
but just mention that the gap structure in band space
is the well know sign-changing s± with the gap on the
k-points of the Fermi surface in the normal state as pre-
sented in Fig. 3.
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