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Superconducting flux qubits are a promising candidate for realizing quantum information processing and

quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune

the “atoms” internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the

inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition, as

an example of many-body physics in such an ensemble, we show how to observe superradiance, and its quadratic

scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the inhomogeneous

broadening itself to excite only a sub-ensemble of the qubits. Our scheme opens up an approach to using

superconducting circuits to explore the properties of quantum many-body systems.

I. INTRODUCTION

Superconducting flux qubits (FQ) are a unique quantum

technology which allow for a high degree of controllability1–3.

With such devices high-fidelity gate operations have already

been implemented4 and quantum non-demolition measure-

ments have been realized using Josephson bifurcation ampli-

fiers. Moreover, since superconducting FQs behave as con-

trollable artificial atoms, it is possible to design circuits to

reach regimes typically inaccessible with real atoms5–7.

As well as featuring high-controllability, flux qubits are at-

tractive because it is possible to fabricate an array of FQs on

the same chip8. Coupling such an array of many supercon-

ducting FQs to a common cavity (see Fig. 1 for a schematic)

is important both for a range of quantum information process-

ing tasks and for the study of quantum many-body physics9,10,

like quantum phase transitions11–15. In addition, an array of

superconducting FQs could be used as a quantum metamate-

rial to control the propagation of microwaves16–19. Such a de-

vice also allows for the possibility of generating multi-particle

entanglement between the FQs via the cavity, with the poten-

tial to employ this entanglement to improve the sensitivity of

measurements20–23.

One obstacle to such applications with an ensemble of FQs

is the inhomogeneity of the FQ energies. In the context of

strong coupling to a cavity, this can be overcome to some de-

gree by using the superradiance principle19,24,25; if N qubits

are collectively coupled with a microwave cavity, the coupling

strength is enhanced by
√
N , as long as the collective cou-

pling strength is larger than the inhomogeneous width 26–41.

Recently, by using this principle, coupling between 4300 su-

perconducting flux qubits and a microwave resonator has been

demonstrated8. In this experiment, spectroscopic measure-

ments were performed by detecting the transmitted photon in-

tensity of the resonator, and a large dispersive shift of 250
MHz has been observed. This already indicates a collective

behavior involving thousands of FQs.

In this paper, we discuss how the intrinsic inhomogeneity

can be reduced by a globally applied external field, an effect

which we will show to be a direct consequence of the corre-

lation between the tunneling energy and persistent current in

FQs. In addition, we show how, as one of the potential appli-

Microwave control lineFlux qubit ensemble

Coplanar waveguide

FIG. 1. (Color online) Schematic of a potential flux qubit ensem-

ble system. We estimate upto 4300 FQs can be coupled with a mi-

crowave cavity. One may characterize this system by measuring the

transmission through the cavity.

cations of this device, one can observe superradiant emission

from such an ensemble via the microwave cavity. Superradi-

ance is the fascinating phenomena whereby an ensemble of

atoms interacting with a common cavity or environment emits

photons in a fast, collective, superradiant burst, due to correla-

tions between atomic decay events. For this type of superradi-

ance, the loss rate of the cavity needs to be larger than the col-

lective coupling of the ensemble with the cavity mode, while

the collective coupling strength should be much larger than

the inhomogeneous width of the FQ ensemble. The observa-

tion of superradiance provides a direct signal of the collective

coupling between the ensemble and the common field.

To date superradiance has been observed in various many-

particle systems42–46. In addition, there are some experimen-

tal demonstrations of superradiance with only small ensem-

bles of engineered quantum systems47–51. Typically the ob-

servation of this superradiant burst requires the careful prepa-

ration of all the atoms in their excited states, and the sub-

sequent observation of the time-dependent photonic intensity

(though steady-state driven superradiance can also occur un-

der the right conditions52). In the latter half of this article we

show theoretically that we can prepare the ensemble of FQs

with a common drive, and see not only the typical large inten-

sity superradiance emission pulse, but also the N2 scaling of

that pulse, without local control of each qubit.

This paper is organized as follows. Firstly, we review the

recent experimental spectroscopic measurements to explain

the standard properties of the system. Secondly, we intro-

duce a scheme to suppress the inhomogeneous broadening of

the FQs, which is crucial to observe superradiance and other
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many-body properties of such a system. Finally, we present

numerical results showing how collective driving of the en-

semble can selectively excite the ensemble, allowing us to di-

rectly observe the N2 superradiant emission.

II. SPECTROSCOPIC MEASUREMENTS

The first experimental test one could make to validate a cou-

pling between the ensemble and the cavity is to look for vac-

uum Rabi splitting or frequency shift in spectroscopic mea-

surements. In a recent experiment, spectroscopic measure-

ments of the microwave resonator coupled with 4300 FQs8

showed a large dispersive frequency shift, in the spectrum of

the cavity, of the order of 250 MHz. Although similar sig-

nals of collective behavior have been observed in many other

systems46,53,54, for a system composed of a large FQ ensem-

ble and a microwave resonator, this is the first strong signature

of a large collective coupling8. There, the coupling strength

between a single FQ and the resonator was estimated to be

around 15 MHz, and the inhomogeneous width of the FQ fre-

quency was between 2 and 3 GHz. Interestingly, even if there

is an inhomogeneous width of a few GHz, a clear dispersive

frequency shift can be observed, because the collective cou-

pling strength (
√
Ng ≃ 1 GHz) is comparable with the inho-

mogeneous width. It is worth mentioning that, in principle,

one can increase this coupling strength by using a Josephson

junction as a coupler5, and so one could achieve the ultra-

strong coupling regime6,7 with this system where
√
Ng is both

much larger than the inhomogeneous width and of the order

of the flux qubit and cavity energies themselves.

III. SUPPRESSION OF THE INHOMOGENEOUS

BROADENING

To observe superradiance in such an ensemble, the collec-

tive coupling strength
√
Ng should be larger than the vari-

ance of the frequency distribution of the FQs. Moreover, to

invert the FQs using a global microwave control, the Rabi fre-

quency of the FQs should also be larger than the inhomoge-

neous width, as we will describe later. However, from the

direct parameters estimated in8, it is difficult to satisfy such

conditions.

To solve these problems, we propose here an approach to

suppress the inhomogeneous broadening of the FQs by ap-

plying an external magnetic flux. The inhomogeneous broad-

ening of the FQ energies comes from the non-uniform size

of the Josephson junctions, which are very sensitive to small

changes in fabrication conditions. We have investigated how

the non-uniform Josephson junctions affect the relevant pa-

rameters of the FQs, and have found that the variation of the

size of the Josephson junctions induces a correlated distribu-

tion between the persistent current and tunneling energy of

the FQs in the ensemble. Interestingly, due to this correla-

tion, the inhomogeneous width of the frequencies of the FQs

has a strong dependence on the applied magnetic flux, and

so there exists the possibility of choosing an optimal applied
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FIG. 2. (Color online) The potential of the flux qubit. We set α = 0.7
and f = 0.5. There are two minima separated by an energy barrier.

(a) The density plot of the potential. (b) A plot of the potential against

φm for φp = 0.

magnetic flux to suppress this broadening. We predict this

property could be useful to design more uniform ensembles

of quantum devices, thus allowing us to observe interesting

quantum many-body phenomena, such as superradiance.

To investigate how the non-uniform Josephson junctions af-

fect the frequency distributions of a FQ, we consider the La-

grangian of a FQ with three Josephson junctions

L = T − U (1)

U =

3
∑

j=1

Φ0

2π
IjC [1− cos(φj ]) (2)

T =

3
∑

j=1

1

2
Cj

(

Φ0

2π

)2

φ̇j
2

(3)

where U is the potential energy, T is the kinetic energy, φj
(j = 1, 2, 3) is the phase difference between the junctions,

Cj is the the Josephson junction capacitance, IjC is the critical

current, Φext is the external magnetic flux, and Φ0 = ~/2e
is the magnetic flux quantum. The phases φj (j = 1, 2, 3)
are bounded by a condition of φ1 − φ2 + φ3 = 2πf with

f = Φext/Φ0. Cj and IjC have a linear dependence on the

size of the junction. Here, the potential is given by U/EJ =
2 + α− cos(φp + φm) − cos(φp − φm)− αcos(2πf − 2φm)
where we set I1C = I2C = IC, I3C = αIC, φp = (φ1 + φ2)/2,

and φm = (φ1 − φ2)/2. If we set φp = 0 and f = 0.5, we

have dU
df = 2EJ sinφm(1 − 2α cosφm), and so the potential

shows minima for ±φ∗m, where cosφ∗m = 1/(2α). We plot

this potential in Fig. 2. By solving the Lagrangian, we can

calculate the tunneling energy and persistent current55. We

set EJ/Ec = 75 for our simulations, where E
(j)
J = Φ0

2π I
j
C

(Ec = e2/2Cj) is the characteristic scale of the Josephson

(electric) energy.

Usually, the size of one of the three junctions is designed to

be α times smaller than the other two junctions55. However,

with current technology it is difficult to fabricate homogenous

junctions, and this results in a random distribution of the tun-

neling energy and the persistent current. We assume a Gaus-

sian distribution for the normalized areas of the smaller junc-

tion (two larger junctions), where we have the mean value of

ᾱ (β̄k for k = 1, 2) and the standard deviation of σS (σ
(k)
L for

k = 1, 2).
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FIG. 3. (Color online) The probability density of the tunneling en-

ergies of the flux qubits when the size of the Josephson junctions

are non-uniform. There are three Josephson junctions in the super-

conducting circuit, and the size of one Josephson junction is de-

signed to be smaller than the size of the other two junctions. We

assume a Gaussian distribution for normalized areas of the smaller

junction (two larger junctions) where we have the mean value of

ᾱ = 0.7 (β̄k = 1 for k = 1, 2) and the standard deviation of σS

(σ
(k)
L for k = 1, 2). We set the parameters as σS/ᾱ = σ

(1)
L /β̄ =

σ
(2)
L /β̄ = 0.5 %, 1 %, 2 % respectively, and obtain the values of

∆j (j = 1, 2, · · · , N ) from numerical simulations. To plot the

density of the tunneling energy, we use a kernel density estima-

tor
∑N

j=1 K(
∆−∆j

h
), where we set K(x) = 1√

2π
exp

(

− 1
2
x2

)

,

N = 10000, and h = 0.1 GHz.

Firstly, in Fig. 3 we plot the distribution of the tunneling en-

ergies of the FQ. This confirms that the non-uniform Joseph-

son junctions affect the random distribution of the tunneling

energy. As expected, as we increase the width of the distribu-

tion of the Josephson junction size, the width of the tunneling

energy distribution also increases.

Secondly, we plot the distribution of the persistent current

and tunneling energy given by the non-uniform Josephson

junctions in Fig. 4. We randomly generate the values of the

Josephson junction size, and calculate the resulting tunneling

energy and persistent current. This result clearly show a cor-

relation between the tunneling energy and persistent current

where a FQ with a higher tunneling energy tends to have a

lower persistent current. We can qualitatively explain this cor-

relation as follows. As we increase the value of α, the poten-

tial gradient dU
df ≃ 2πEJ

[

1− 1
(2α)2

]1/2

becomes larger for

φp ≃ 0, φm ≃ φ∗m, and f ≃ 0.5. A larger potential gradient

makes the energy of the FQ more sensitive to the change in

the applied magnetic flux, which corresponds to a higher per-

sistent current. On the other hand, as we increase the value

of α, the tunneling barrier Et = U(φm = 0) − U(φm =
φ∗m) = EJ (−2 + 2α + 1

2α ) becomes larger for φp ≃ 0,

φm ≃ φ∗m, α ≃ 0.7, and f ≃ 0.5. The larger tunneling barrier

suppresses the tunneling energy of the FQ. Therefore, if the

persistent current becomes larger, the tunneling energy is ex-

pected to be smaller, which is consistent with our numerical

simulations. Moreover, it is worth mentioning that a simi-

lar model was used to reproduce the experimental results in8

where spectroscopy of a microwave resonator coupled to 4300

FQs was performed and good agreement between numerical

and experimental results was observed8. In that experiment,

the standard deviation of the Josephson junction size is around

a few percent, which corresponds to the yellow region in Fig.

4.

FIG. 4. (Color online) The persistent currents and tunneling ener-

gies of FQs with random-size Josephson junctions. We set the same

parameters as in Fig. 3. There is a clear correlation between the

tunneling energy ∆ and persistent current Ip.
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FIG. 5. (Color online) The standard deviation of the distribution of

the flux qubit frequencies versus the applied magnetic flux. We set

the same parameters as in Fig. 3. The standard deviation strongly

depends on the applied magnetic flux.

Thirdly, in Fig. 5 we plot the standard deviation of the

FQ frequency distribution against an applied magnetic field.

Interestingly, these results show that the standard deviation

of the frequency distribution strongly depends on the applied

magnetic flux; there exists an optimal point where the stan-

dard deviation of the flux qubit frequency becomes minimum.

The width of the distribution becomes one or two orders of

magnitude smaller at the optimal point than elsewhere. This

can be understood as a consequence of the correlation between



4

Narrow

distribution

Broad

distribution

Broad
distribution

Applied magnetic flux

F
lu

x
 q

u
b

it
en

er
g
y Flux

qubit B

Flux qubit A

FIG. 6. Energies of two flux qubits (A and B), with different size

junctions, as a function of an applied magnetic field. The flux qubit

energy is represented by ωj =
√

|ǫj |2 + |∆
(t)
j |2 for ǫj = 2Ij(Φext−

1
2
Φ0) where Φext denotes the applied magnetic flux. Flux qubit A has

a smaller (larger) tunneling energy (persistent current) than B. In this

case, we can make the frequency of the qubits the same by applying

an appropriate amount of the applied magnetic flux.

the tunneling energy and the persistent current, as shown in

Fig. 6.

To illustrate this idea, let us consider a pair of flux qubits

with different junction sizes. The FQ energy is given by

ωj =
√

|ǫj |2 + |∆(t)
j |2, for ǫj = 2Ij(Φext − 1

2Φ0) (j = 1, 2),

and we can assume ∆(t)
1 > ∆(t)

2 without loss of generality. In-

terestingly, when I1 < I2, which is the expected statistical

relationship given ∆1 > ∆2, we can show that there exists

an optimal flux such that ω1 = ω2 is satisfied. So we can

balance the two flux qubit energies just by applying a global

magnetic flux. This means that, even if we have several qubits

with different-size Josephson junctions, if there is a correla-

tion such that a smaller persistent current Ij tends to increase

the tunneling energy∆
(t)
j , we can make the frequency of these

qubits similar by tuning an external magnetic flux, as shown

in Fig. 4.

IV. SUPERRADIANCE

To illustrate how such an ensemble with a reduced inhomo-

geneous width can lead to observable collective effects, we

numerically simulate56,57 a small ensemble with an explicit in-

homogeneity. We also show how this residual inhomogeneity

can be used as a tool to aid initial-state preparation. We ex-

plicitly model N = 10 FQs, with inhomogeneous normally-

distributed energies ωj with mean value ω̄j and variance δωj .

These qubits are coupled to a single common microwave cav-

ity of frequency ωc with a common homogenous coupling

strength g. The general Hamiltonian for such a system reads,

H =

N
∑

j=1

ωj

2
σ(j)
z + ωca

†a+ g
(

J−a
† + J+a

)

, (4)

FIG. 7. (a) Maximum (over time) emitted intensity versus number

of initially-excited qubits M . For discrete M (green solid curve) we

artificially prepare a subset M of the total ensemble of N qubits in

their excited states. In the other case (purple dashed line), at t = 0
we prepare all qubits in their ground state and then evolve with the

Hamiltonian Hdrive(t) switched on, with a Gaussian function enve-

lope λ(t), as described in the main text. We then switch off the driv-

ing and allow the system to evolve under the influence of Eq. (10),

and record the maximum emitted intensity over a time period ex-

ceeding the expected superradiant pulse duration. We do this for a

range of λmax, which induce an effective number M of qubits to be-

come excited. For the other parameters we set ω̄j = ωc, δωj = 25
MHz, g = 50 MHz, κ = 400 MHz, N = 10, so as to give a value

for α > 1 as M becomes greater than 4. Panel (b) shows the loga-

rithmic intensity, which changes from linear to quadratic behavior as

M passes this M = 4 threshold (the gray dotted line is an artificial

linear comparison curve, while the orange dotted line is an artificial

quadratic comparison curve, to show this change clearly). Panel (c)

shows the explicit λmax values used in the Gaussian drive, and the

associated number of excited spins M in the ensemble after the drive

has been applied. Panel (d) shows the explicit time-dependent curves

of intensity for different values of M , increasing from the bottom up,

starting with M = 1 to 10, from which the green dotted-dashed line

in figure (a) is extracted. The change from normal to superradiant

emission around M = 4 is clear. Similarly, panel (e) shows the

same curves for the driven state preparation example. Note that all

curves are averaged over a large set of randomly-generated ensemble

energies.

where J+ =
∑

j σ
(j)
+ , J− =

∑

j σ
(j)
− , and we have set ~ = 1

for simplicity. In general we assume that the cavity decay,

with rate κ, is given by a Lindblad superoperatorκD[a], where

D[a] = 2aρa† − a†aρ− ρa†a.
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To begin with, we eliminate the cavity58,59, assuming the

bad-cavity limit: κ≫ δωj , g
2N/κ (superradiance is also pos-

sible in the dispersive good-cavity limit, see Appendix A). In

this bad-cavity case the equation of motion is reduced to the

following form

HAE =

N
∑

j=1

ωj

2
σ(j)
z + (ωc − ω̄j)

g2

Γ2
J+J− (5)

where Γ = κ+ i(ωc − ω̄j). There also arises a new loss term,

S[ρ] = κ g2

Γ2D[J−]ρ. It is this term that induces the superra-

diance phenomena, and we expect to observe such superradi-

ance when δωj ≪ g2N/κ.

Even though the cavity is eliminated, one can estimate the

intensity of the radiation emitted from the qubits from the

squared atomic polarization58,

I(t) =
2g2

κ
ωc〈J+(t)J−(t)〉. (6)

Typically the intensity grows with time, reaches a maximum

at the peak superradiance time τsr = κ/g2N and then decays.

The uccessful observation of this pulse requires that the co-

herence time of the qubits is longer than the expected peak

superradiance time. Assuming dephasing is dominated by the

inhomogeneity of the energies of the FQs, we can assess the

visibility of superradiance via the parameter α = T ∗
2 /τsr =

Ng2/κδωj , where T ∗
2 is the inhomogeneous dephasing time.

In addition to the qubits being inhomogeneous, the direct

control of individual qubits is challenging. However, we can

consider collective ways in which to prepare spin-polarized

states, which we can be used to observe superradiance. In

particular, by strongly driving the cavity, or using another

common control line, as per Fig. 1, we can induce a time-

dependent collective control term, such that the dynamics of

the qubits can be written as,

Hdrive =
N
∑

j=1

ωj

2
σ(j)
z + λ(t) cos(ωdt)

∑

j

σ(j)
x , (7)

H ′
drive ≈

N
∑

j=1

∆′
j

2
σ(j)
z +

λ(t)

2

∑

j

σ(j)
x , (8)

where in the second equation we moved to a frame rotating

at the drive frequency, such that ∆′
j = ωj − ωd, and made a

rotating-wave approximation. Later we will choose the drive

to be resonant with the average value of the qubit energies

ωd = ω̄j . If we consider just a single qubit, initially in its

ground state, we know that if we apply a drive of strength λ for

a period Tπ = π/λ we will find that the spin has a probability

of being in its excited state:

Pexc =
λ2

∆′2
j + λ2

, (9)

Extending this notion to N spins we expect that we will

have an effective excited number of spinsMeff =
∑

j
λ2

∆′2

j
+λ2

.

Thus, simply changing the magnitude of λ enables us to effec-

tively control the number of spins contributing to the super-

radiance emission (up to the limit of validity of the rotating

wave approximation). In addition, one can also control the

shape of the envelope of the drive, λ(t). While Pexc and Meff

only apply for a step-function envelope, they provide a use-

ful estimate. In practise we found that a Gaussian function

for λ(t) worked best in preparing the desired initial state, and

thus only show that example here. In principle one can also

use more sophisticated techniques from quantum control the-

ory to prepare the desired state60–62.

Importantly, when we need to excite most of the qubit en-

semble, the drive, or Rabi frequency, λ should be as large or

larger than the inhomogeneous width. Although it is possible

to achieve a Rabi frequency of a few GHz63 for a single FQ,

it is not straightforward to realize such a strong driving con-

dition for a large ensemble. For this reason, it is crucial to

decrease the width of the inhomogeneous broadening of the

FQs, by, for example, applying a magnetic flux, as described

earlier. This will allow us to both excite the ensemble with

moderate values of λ, and observe superradiance with accesi-

ble values of g.

To obtain numerical results we solve the master equation

for all N qubits explicitly by generating a random ensem-

ble of energies, preparing the qubit ensemble in the com-

mon ground state (without interaction with the cavity) ψ(0) =
|0〉1

⊗

|0〉2
⊗

. . .
⊗

|0〉N , and then “switch on” the driving

term H ′
drive(t) for a period τ such that

∫ τ

0
λ(t) ≈ π. We

assume that during this driving period the cavity and qubit en-

semble are far off-resonance. In other words, the ensemble

evolves under the free evolution of the ensemble Hamiltonian

and the drive, given by H ′
drive(t) in Eq. (8), without influence

from the cavity. In principle this implies we also require that

the period τ is shorter than the relaxation time of the qubits.

After this evolution, we record the effective number of ex-

cited qubits M = 〈
∑

j σ
(j)
z 〉, switch off the drive, and allow

the system to evolve under both HAE and the superradiant

loss term S[ρ] = κ g2

Γ2D[J−]ρ, as determined by the master

equation

ρ̇ = − i

~
[HAE, ρ] + S[ρ] (10)

for a time interval much longer than τsr (recalling τsr =
κ/g2M , where M are the number of qubits excited by the

drive). For this period of evolution we record the cavity

emission intensity by calculating I(t), and from this mea-

surement record the maximum (over time) acquired value

Max[〈J+J−〉]. Under perfect superradiance Max[〈J+J−〉]
should scale as M2.

We repeat this procedure as a function of the driv-

ing strength λ, and plot the recorded maximum intensity

Max[〈J+J−〉] as a function of M , the effective number of

qubits initially excited by the drive. Figure 7 shows this for

a Gaussian drive shape λ(t) = λmax exp
[

−
(

t−b
σ

)2
]

with

σ =
√
π/λmax and b = 4σ

√
2 ln 2. This is compared to the

test case where the actual number of initially excited qubits is

enforced “by hand”, which we refer to as the “discrete M”
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case. We now see that the drive prepares a subset of the

qubits in their excited states, thus altering the resultant pho-

tonic emission intensity. This allows us to directly observe the

quadratic scaling of that intensity as a function of the number

of qubits contributing to the collective decay. For the param-

eters chosen here, we see the onset of superradiance when M
becomes greater than about four (see caption of Fig. 7).

In practice, as the number of FQs increases, one can still

see superradiance for much larger values of the inhomogene-

ity, or smaller couplings, than we show here. For exam-

ple, from the simulations described above, we can extrapo-

late the behavior of a device composed of 4300 FQs coupled

with the microwave cavity. Due to the form of the loss term

S[ρ] = g2

κ D[J−]ρ, for ωc = ωj , we should have a similar

behavior for the emitted intensity from the cavity, as long as

the value of Mg2/κ is the same. Thus, if we fabricate a de-

vice with g = 5 MHz, δωj = 25 MHz, κ = 1.72 GHz, and

N = 4300, and excite the full ensemble, so that M = N ,

the value ofMg2/κ coincides with that used in our numerical

simulation with 10 excited qubits; and so we should be able

to observe the quadratic scaling of the intensity for this case

as well. This means that one can see superradiance from 4300

FQs even for coupling strengths as small as 5 MHz.

V. CONCLUSIONS

We have shown that, even though large ensembles of FQs

suffer from intrinsic fabrication-induced inhomogeneities,

this can be minimized by tuning the ensemble FQs properties

with an external flux. This opens up the possibility of observ-

ing collective many-body effects, a simple example of which

we give in terms of superradiant emission into a microwave

cavity. We expect that such large ensembles will enable the

investigation of a range of interesting physics in the future, in-

cluding criticality11–15, macroscopic coherence64,65, and spin

squeezing20–23.
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Appendix A: Dispersive superradiance model.

One can also obtain collective superradiant decay due to in-

teraction with a common cavity by moving to a dispersive cou-

pling regime22, where the cavity and qubits are off-resonance,

without necessarily demanding that the cavity losses be large.

Starting again with Eq. (4) one can apply the transformation

eRHDe
−R, where R = g

χ(J−a
† − J+a), χ = ωc − ω̄j , and

keeping terms to order (g/χ)2 find that,

Hdisp =

N
∑

j=1

(
1

2
ωj + βa†a)σ(j)

z +
β

2
J+J− (A1)

where β = 2g2/χ and again a new loss term arises,

Sdisp = κ
g2

χ2
D[J−]ρ (A2)

One expects in this case that superradiance will occur when

g2Nκ/χ2 ≫ δωj , giving an equivalent parameter to assess

the visibility αD = g2Nκ/(χ2δωj). However, this regime is

valid for (g/χ)2 ≪ 1, which implies Nκ/δωj ≫ (g/χ)2.

As with the adiabatic elimination case, the spin squeezing

term J+J− does not affect the superradiance dynamics sig-

nificantly.
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