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We give a further step in the quantum mechanical description of engineered atomic spin structures by deriving
a master equation of the Redfield type that governs the dynamics of the atomic spin density matrix. By gener-
alizing this approach to charge specific density matrices, we are able to describe magnetic transport quantities,
such as the average inelastic current and the shot noise, accessible by tunneling spectroscopy. Our method suit-
ably describes moderate lead-atom coupling regimes where quantum coherence effects cannot be disregarded.
We contrast our approach with the existing descriptions in terms of rate equations and show examples where
coherence effects are crucial to understand the physics of spin-polarized tunnel current through spin structures.

I. INTRODUCTION

Advances in the field of low-temperature scanning tun-
neling microscopy (STM) have enabled the detection and
manipulation of the spin of individual magnetic atoms and
molecules1. With current STM techniques magnetic atoms
can be arranged into artificial assemblies such as chains, lad-
ders or few-atom aggregates2–5, hereafter referred to as engi-
neered atomic spin devices (EASDs). The ability to manipu-
late and monitor individual atomic spins using inelastic elec-
tron tunneling spectroscopy has permitted to address a set of
new questions such as the origin and nature of magnetism in
few-atom aggregates and nano-structures; the effects of many-
particle correlations between the localized atomic spins and
the itinerant electrons crossing the system; and the identifica-
tion of spin excitations from differential conductance spectra.
In parallel to fundamental physics aspects, EASDs are of ma-
jor interest for spintronic applications6–9.

Up to now, EASDs have mostly been applied to improve
classical information storage technology. However, as the ex-
ploration of coherent quantum regimes is becoming experi-
mentally reachable, these devices are of great potential for
applications in quantum information processing and manip-
ulation.

A typical EASD consists of a set of magnetic atoms de-
posited on a crystalline few-atoms-thick layer of insulating
material that coats a metallic substrate (see Figure 1). The
presence of the insulator reduces the hybridization of the
atoms with the underlying metallic substrate and strongly sup-
presses charge fluctuations. This leaves the atomic spin as the
only relevant low-energy degree of freedom. Each atom can
be addressed individually by a metallic spin polarized STM
tip. An electronic current ensues by applying a finite bias
voltage between the substrate and the tip, collecting contri-
butions from elastic and inelastic processes. Elastic processes
arise when electrons pass from one metallic lead to the tip
with no energy change. They can be due to direct tip-substrate
hoping, amounting to a trivial contribution to the differential
conductance, or due to mediated hoping via degenerate en-
ergy states of the atomic structure - the mechanism responsi-
ble for Kondo-like physics10. However, for temperatures or
voltages larger than the Kondo energy scale, non-trivial elas-

tic processes can be neglected. Inelastic processes arise when
the electrons, while tunneling through the atomic structure,
exchange energy with its internal degrees of freedom.

The theory of inelastic tunneling through EASDs has re-
ceived important contributions in recent years. A perturbative
approach, assuming small tip-atom and substrate-atom cou-
plings, was developed11–14 in parallel with a strong coupling
approach15,16. These approaches, based on a set of classi-
cal rate equations, predict the current-voltage characteristics
of the system. In particular, they model the signature of the
atomic structure excitation spectrum in the measured differ-
ential conductance13,17. Despite these substantial advances, a
complete picture of the non-equilibrium transport processes in
EASDs is still far from complete. A particular aspect that re-
quires better understanding is the role of non-diagonal compo-
nents of the density matrix, i.e. quantum coherences. Existing
works mostly concentrate on the computation of the decoher-
ence times18–20, leaving out the question of the effect of coher-
ence in the observables. This issue is of major importance if
EASDs are to be operated in quantum coherent regimes, e.g.
as devices for quantum information processing.

In this work we give the first steps in the direction of a
quantum mechanical description of the dynamics in EASDs.
We use a theoretical approach based on the microscopically
derived Redfield equation21,22 for the density matrix of the
atomic subsystem. The Redfield equation is a type of master
equation describing the evolution of an open quantum system
weakly coupled to its environment. Originally employed to
model nuclear magnetic resonance23–25, it has been applied
in various fields including quantum optics22,26,27, chemical
dynamics28 and electronic transport29.

Our goal is to describe inelastic transport processes in
EASDs, in particular to predict the average value of the cur-
rent and the shot noise measured by STM. To access the in-
formation about the electronic current through the system, we
generalize the Redfield equation approach to charge specific
density matrices30–32. We derive expressions for the steady
state values of the average current and for the shot noise. In
order to illustrate our method, we consider single atoms of dif-
ferent total spin and an atomic chain as examples. We study
how coherences affect the current and shot-noise character-
istics for several setups including different tip polarization
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geometries. The results are compared with the previous ap-
proaches where coherences are neglected12,13 in order to high-
light regimes where coherent dynamics sets in.

The paper is organized as follows. Sec. II gives a de-
scription of the setup and the model Hamiltonian. Sec. III
describes the method. The subsection III A summarizes the
methodology and provides the final expressions for the aver-
age current and the shot noise. The details of the derivation
are presented in subsection III B and the application to EASDs
is given in subsection III C. In Sec. IV we present some illus-
trative examples: a single atom with spin 1/2, a single atom
with spin 5/2 and a chain of atoms with spin 1/2. We discuss
our results and draw conclusions in Sec. V. Appendices are
devoted to technical details of the derivation.

II. MODEL

A generic setup of EASD, sketched in Fig. 1, can be de-
scribed by the Hamiltonian H = HA +HR +HI , which includes
the Hamiltonian of the atomic subsystem HA, the Hamiltonian
of the electronic degrees of freedom of the tip and of the sub-
strate HR, and the coupling Hamiltonian HI . In the following
we specify and describe each term.

Magnetic atoms. We consider the limit when the atomic
charge gap is much larger than other characteristic energies.
The atoms thus possess a well defined number of electrons,
and tunneling through atomic orbitals is only possible by vir-
tual excitations of different charge states. Therefore, each
atom behaves as a localized spin coupled to other atoms and
to the spin of conduction electrons by an effective exchange
term33. As a result, the low-energy Hamiltonian of the atomic
ensemble can be expressed solely in terms of spin degrees
of freedom34, with symmetry arguments dictating its generic
form12,35,36

HA =
∑

r

[
DS 2

rz′ + E
(
S 2

rx′ − S 2
ry′

)]
+

+
∑
〈rr′〉

Jrr′Sr · Sr′ + gµB

∑
r

B · Sr,
(1)

where r = 1, ..., L enumerates the atoms. The first term de-
scribes the magnetic anisotropy of the crystal parametrized by
the coefficients D and E. Here the spin is quantized along the
principal axes of the crystal x′ (hard axis), y′ (intermediate
axis), z′ (easy axis). The second term corresponds to an effec-
tive exchange Jrr′ between pairs of neighboring atoms 〈rr′〉
arising from e.g. the superexchange, or the RKKY interaction
mediated by the substrate. The third term is the Zeeman split-
ting induced by an external magnetic field B and proportional
to the atomic g-factor.

Substrate and tip. We model the substrate as a set of iden-
tical metallic reservoirs each one coupled to a single atom
(see Fig. 1). This describes the limit when the substrate-
mediated correlations between the atoms, other than the ef-
fective exchange interaction, are negligible. The polarized tip
is modeled as an additional metallic reservoir coupled to a
specific atom r0. For an ensemble of L atoms, this amounts to

tip

surface

V

(a) (b)

Figure 1. (a) Schematics of a typical EASD. Magnetic atoms are
deposited on an insulating layer coating a metallic substrate. Upon
applying a voltage difference between the metallic STM tip and the
substrate, a charge current ensues. (b) Sketch of the model. The
substrate is modeled by a set of independent reservoirs sharing the
same chemical potential µS . The tip is modeled by an additional
reservoir with µT = µS − eV . All reservoirs are assumed to be wide
band metals.

consider an environment consisting of L + 1 electronic reser-
voirs in total. The Hamiltonian of the reservoirs is given by
HR = HT +HS with the corresponding tip and substrate Hamil-
tonians

HT =
∑
σk

ε(T )
σk f †

σk fσk, HS =
∑
rσk

ε(S )
σk c†rσkcrσk, (2)

where σ =↑, ↓ is the spin of electrons quantized along the tip
polarization vector P, and k runs over single-particle states of
the reservoirs. Electrons in all reservoirs (tip and substrate)
are in thermal equilibrium with a common temperature 1/β
(in energy units) and chemical potentials µS for the substrate
and µT = µS − eV for the tip, where V is the applied volt-
age and −e is the electron charge. The metallic nature of
the electronic reservoirs translates to a local density of states
%ησ(ε) = V−1

η

∑
k δ

(
ε − ε

(η)
σk

)
with η = T, S , that may be con-

sidered energy-independent within the energy scales of inter-
est. HereVη stands for the volume of the reservoir. We intro-
duce the spin dependent density of states to account for the tip
polarization. For electrons in the tip we assign %Tσ = wσ%T ,
with w↑ = 1 + p, w↓ = 1 − p, where p is the polarization
parameter ranging from −1 to 1. For electrons in the unpolar-
ized substrate %S ↑ = %S ↓ = %S . Even though we work in the
wide band approximation, for regularization purposes we use
rectangular shaped densities of states

%η(ε) = %ηΘ (W − |ε|) , (3)

where Θ is the Heaviside function and W is the bandwidth,
much larger than other energy scales of the system.

Coupling. The coupling of the atoms to the electrons
in the leads is described by the exchange interaction
Hamiltonian12,18,37,38 HI =

∑
ηη′ Hηη′ with

HTS =
√

JT JS

∑
aσσ′kk′

S r0a ⊗ c†r0σkτ
a
σσ′ fσ′k′ ,

HTT = JT

∑
aσσ′kk′

S r0a ⊗ f †
σkτ

a
σσ′ fσ′k′ ,

HS S = JS

∑
raσσ′kk′

S ra ⊗ c†rσkτ
a
σσ′crσ′k′ ,

(4)

where Jη ' 2u2
ηU∆−1

η

(
∆η + U

)−1
are the exchange coupling

energies determined by the lead-atom hopping amplitude uη,
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the intra-atomic Coulomb repulsion U between electrons and
the energy difference ∆η between the atomic level and the
Fermi energy of the lead39. τa and S ra with a = x, y, z, are
the Pauli matrices and the spin operators of the atom r respec-
tively. The axes are chosen so that z is aligned with the tip
polarization P. The inelastic current through the cluster orig-
inates from tip-to-substrate HTS and substrate-to-tip HS T =

H†TS tunneling, while the terms HTT and HS S yield purely
relaxational contributions due to tip-to-tip and substrate-to-
substrate electron scattering processes. In Eq. (4) we have
neglected momentum dependence of the lead-atom hopping
amplitude and used spin rotational invariant exchange cou-
pling. In the following we use dimensionless parameters
γη = πJη%ηVη to characterize the strength of the tip-atom and
substrate-atom couplings.

III. METHOD

A. Summary

In this section we summarize the main results of our ap-
proach to the description of the transport and dynamics in
EASD setups. We discuss the properties of the master equa-
tion governing the dynamics of the atomic subsystem and
present the generic expressions for the average value of the
inelastic current and the shot noise.

Master equation. Following a standard set of
approximations22,30 (see below), we derive a Redfield-
type master equation for the density matrix of the atomic
subsystem

∂tρ = Lρ, (5)

where the superoperator L is given in Eq. (46). The steady
state density matrix ρ∞ is calculated as the eigenstate of L
corresponding to zero eigenvalue, i.e. Lρ∞ = 0.

The derivation of Eq. (5) assumes the lead-atom coupling
to be small within the Born approximation and the leads to
have a short memory time. Nonetheless, although a Markov-
like approximation is employed, the Redfield equation does
not lead to purely Markovian evolution40–44. Therefore, the
Redfield equation is generally not of the Lindblad form and
may violate the positivity of the density matrix45. To prevent
the breakdown of positivity, the rotating wave approximation
(RWA) is sometimes performed leading to an equation where
the dynamics of populations and coherences decouple22, that
implies that the coherences vanish in the steady state. This
further approximation is valid when the damping rate is much
slower than the Bohr frequencies of the system and is equiv-
alent to a treatment in terms of rate equations. Neglecting
coherences may lead to wrong predictions when they become
of the same order as populations46,47. On the other hand, the
violation of positivity during the dynamics by the Redfield
equation generally occurs only far from equilibrium; the de-
scription of the stationary regime is in general accurate given
that the density matrix remains physical48.

In the present case, at low temperatures as compared with
the energy scales of the atomic spin system, this approach is

valid as long as the lead-atom coupling is moderate. Away
from its range of validity, the steady-state density matrix of
Eq. (5) may violate positivity yielding to unphysical results.
For vanishing coupling we recover the rate equation results
for the evolution of the populations. The method thus suitably
describes moderate lead-atom coupling regimes where coher-
ences cannot be disregarded. In our numerical studies below
we explicitly checked that ρ∞ is a physically sound density
matrix, i.e. has no negative eigenvalues.

The approach followed here, due to its perturbative na-
ture, is unable to capture non-perturbative phenomena in the
lead-atom coupling, e.g. elastic processes responsible for the
Kondo-like physics when the atomic structure has a degener-
ate ground-state manifold. Here we assume non-trivial elastic
processes to be absent either by considering non-degenerate
atomic spectra or by assuming temperature regimes where
such effects are washed away.

Current and shot noise. In order to describe transport
properties, Eq. (5) has been generalized to describe the evo-
lution of charge specific density matrices (CSDMs) that de-
scribe the state of the system given that a certain number
of charge carriers has left the tip. Using the method of
CSDMs30–32, we obtained the expression for the average value
of the inelastic current in the steady state as

I = −e tr (Jρ∞) , (6)

where the current superoperator J is defined in Eqs. (25) and
(47). Elastic terms, appearing in the current spectra due to
direct tunnelling of electrons between the tip and the substrate,
are not accounted in this expression. These contributions have
no impact on the dynamics of the atoms and can be calculated
independently.

The shot noise of the inelastic current in the steady state can
be expressed as31,32

S = 4e2tr
(
Dρ∞ − JL

−1Jρ∞
)
, (7)

where L−1 is the pseudo-inverse of L, and the superoperator
D is defined in Eqs. (25) and (47).

The above set of expressions allows to reproduce the re-
sults of Sec. IV and is given here for the benefit of a reader
who might not be interested in the detailed derivation of the
method.

B. Derivation

In this section we provide a derivation of the master equa-
tion for a generic system, as well as expressions for the current
and the shot noise in the steady state. Our approach is based
on the master equations for CSDMs introduced in Ref.30 for
an open quantum system driven by a particle flow. In Ref.30

the authors consider a system coupled to two reservoirs (here
identified as tip and substrate) with a coupling Hamiltonian
HI containing the terms HTS and HS T of Eq. (4). Here we
generalize this approach to include relaxation processes due
to tip-to-tip and substrate-to-substrate scattering of the elec-
trons, i.e. terms HTT and HS S in Eq. (4). Not to restrict
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the derivation to our particular spin system, in this section we
write

Hηη′ =
√

JηJη′
∑
αα′

Tαα′c†αcα′ , (8)

where Tαα′ are generic operators of the atomic subsystem, and
index α parametrizes quantum numbers of the electrons in the
substrate (η = S ) or the tip (η = T ), i.e. α = (σ, k) for η = T
and α = (r, σ, k) for η = S . The identification of Tαα′ with
specific spin operators of the magnetic atoms is done in Sec.
III C.

1. Charge specific density matrices

CSDMs ρn of the atomic subsystem are defined as

ρn = trR (Pnρtot) , (9)

where ρtot is the full density matrix of the system (atoms plus
leads) and trR stands for the trace over all reservoirs. The op-
erator Pn projects the full Hilbert space into a subspace with n
particles transferred from the tip to the substrate (compared to
the initial state). Note that summing up CSDMs recovers the
density matrix of the system

∑
ρn = ρ. As shown in Appendix

A, they evolve according to the equations of motion

∂tρn + i
[
HA, ρn

]
= −itrR

(
Pn

[
HI , ρtot

])
. (10)

The substitution of HI =
∑
ηη′ Hηη′ into the right hand side of

Eq. (10) leads to

∂tρn + i
[
HA, ρn

]
= −i

∑
ηα

Jη fαTαα, ρn

 +

+
∑
ηη′αα′

√
JηJη′

(
Tαα′C

(n)
αα′ + h.c.

) (11)

(see Appendix A) with operators C(n)
αα′ defined as

iC(n)
αα′ = trR

((
c†αcα′ − fαδαα′

)
ρtotPn

)
. (12)

The numbers fα = 〈c†αcα〉 are determined from the distribution
function of electrons in the leads. As shown in Appendix B,
the operators C(n)

αα′ satisfy the equations of motion

∂tC
(n)
αα′ + i[HA,C

(n)
αα′ ] − i (εα − εα′ ) C(n)

αα′ =

= −trR

((
c†αcα′ − fαδαα′

) [
HI , ρtot

]
Pn

)
.

(13)

2. Approximations

Up to this point all the equations were exact. To proceed
and obtain a closed set of equations for the evolution of CS-
DMs, a number of physically motivated approximations has
to be made. Following the standard derivation of the Red-
field master equation21,22, we employ both Born and Markov
approximations. Within these approximations components of

the full density matrix PmρtotPn with m , n vanish. This
is due to the fact that tunneling is rare and superpositions of
states with different numbers of particles in the leads do not
occur at this order in the lead-atom coupling. For diagonal
components we assume separabilityPnρtotPn ≈ ρn⊗ρR within
the Born approximation. This yields an approximate equation
of motion for C(n)

αα′

∂tC
(n)
αα′ + i

[
HA,C

(n)
αα′

]
− i (εα − εα′ ) C(n)

αα′ ≈
√

JηJη′×

×
(
(1 − fα) fα′ρn−nαα′T

†

αα′ − fα (1 − fα′ ) T †αα′ρn

)
,

(14)

whose solution is given by

C(n)
αα′ (t) =

√
JηJη′

t∫
0

e−iHAτ
(
(1 − fα) fα′ρn−nαα′ (t − τ)×

×T †αα′ − fα (1 − fα′ ) T †αα′ρn(t − τ)
)

eiHAτei(εα−εα′ )τdτ

(15)

(see Appendix B). We assume that the memory time of the
leads is short enough to extend the integration limit in the
former expression to infinity. Additionally, within the Born
approximation we obtain

e−iHAτρn(t − τ)eiHAτ ≈ ρn(t). (16)

Then C(n)
αα′ are time-independent and expressed as

C(n)
αα′ =

√
JηJη′

(
(1 − fα) fα′ρn−nαα′T

†

αα′−

− fα (1 − fα′ )T
†

αα′ρn

)
,

(17)

where we have introduced the operators

Tαα′ =

∞∫
0

e−iHAτTαα′eiHAτe−i(εα−εα′ )τdτ. (18)

In the eigenbasis |m〉 of HA, i.e. HA|m〉 = Em|m〉, the matrix
elements of Tαα′ are given by

〈m |Tαα′ | n〉 = πδ (εα − εα′ + Em − En) 〈m |Tαα′ | n〉 −

− iP
1

εα − εα′ + Em − En
〈m |Tαα′ | n〉 .

(19)

They include singularities at εα − εα′ = En − Em which dis-
appear after integrating over quasicontinuous spectra of elec-
tronic momentum in the leads, as we show below.

3. Equation of motion for CSDMs

Substituting Eq. (17) into Eq. (11) results in the equation
of motion for CSDMs

∂tρn = Lρn − Jρ
′
n +Dρ′′n (20)

(see Appendix C for derivation), where ρ′n and ρ′′n stand for
the discrete derivatives

ρ′n =
1
2

(ρn+1 − ρn−1) ,

ρ′′n = ρn+1 + ρn−1 − 2ρn,
(21)
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and L, J , D are linear superoperators defined below. The
superoperator L is responsible for the evolution of the density
matrix. Its action on a generic matrix χ is given by

Lχ = −i
[
H′A, χ

]
+

∑
ηη′αα′

JηJη′ (1 − fα) fα′×

×

(
Tαα′χT †αα′ −

1
2

{
T †αα′Tαα′ , χ

}
+ h.c.

)
,

(22)

where the curly braces stand for the anticommutator and

H′A = HA + ∆HA, (23)

accounts for the autonomous evolution of the atoms governed
by the Hamiltonian HA and corrected by the coupling to the
leads as

∆HA =
∑
ηα

Jη fαTαα +
∑
ηη′αα′

JηJη′×

× (1 − fα) fα′
1
2i

(
T †αα′Tαα′ − T

†

αα′Tαα′
)
.

(24)

The superoperators J and D acting on an arbitrary matrix χ
are defined as

Jχ = D+χ −D−χ,

Dχ =
1
2

(D+χ +D−χ) ,
(25)

with

D+χ = JT JS

∑
st

(1 − fs) ft
(
TstχT

†
st + TstχT †st

)
,

D−χ = JT JS

∑
st

(1 − ft) fs

(
TtsχT

†
ts + TtsχT †ts

)
,

(26)

where indices t and s parametrize electronic states in the tip
and the substrate correspondingly.

4. Summation over bands

We now perform the summation over k, k′ in Eqs. (22), (24)
and (26) for the specific case when the operators Tαα′ do not
depend on the momenta and the bandwidth of the reservoirs is
much larger than other energy scales, i.e. W � ∆η,U, eV, 1/β.
We introduce the index λ = (η, r, σ) that enumerates quan-
tum numbers of the reservoirs other than momentum, so that
α = (λ, k) and Tαα′ = Tλλ′ . Using Eq. (19), we evaluate the
following sum∑

kk′
(1 − fα) fα′Tαα′ = %ησ%η′σ′VηVη′

(
π

β
T ′λλ′−

−iWTλλ′ ln 4 + i ln
2βW
π

((
µη − µη′

)
Tλλ′ + [HA,Tλλ′ ]

)) (27)

(see Appendix D for derivation), where T ′λλ′ are operators with
matrix elements〈

m
∣∣∣T ′λλ′ ∣∣∣ n〉 = g

(
β
(
µη − µη′ + Em − En

))
〈m |Tλλ′ | n〉 , (28)

and g (x) = x (ex − 1)−1. After substitution into Eq. (20), the
imaginary part of Eq. (27) contributes to the Hamiltonian shift
(24) as

∆HA =
W
π

∑
λ

γλTλλ +
1
πβ

∑
λλ′

γλγλ′×

×
1
2i

(
T †λλ′T

′
λλ′ − h.c.

)
−

W ln 4
π2

∑
λλ′

γλγλ′T
†

λλ′Tλλ′+

+
1

2π2 ln
2βW
π

HA,
∑
λλ′

γλγλ′T
†

λλ′Tλλ′

 ,
(29)

where we have identified the parameters γλ = πJη%ησVη.
Substituting Eq. (27) into Eq. (22), one obtains

Lχ = −i
[
H′A, χ

]
+

1
πβ

∑
λλ′

γλγλ′×

×

(
T ′′λλ′χT †λλ′ −

1
2

{
T †λλ′T

′′
λλ′ , χ

}
+ h.c.

)
.

(30)

where we defined

T ′′λλ′ = T ′λλ′ + i
β

π
ln

2βW
π

[HA,Tλλ′ ] . (31)

In a similar way Eq. (26) becomes

D+χ =
1
πβ

∑
λS λT

γλS γλT

(
T ′′λS λT

χT †λS λT
+ h.c.

)
,

D−χ =
1
πβ

∑
λS λT

γλT γλS

(
T ′′λTλS

χT †λTλS
+ h.c.

)
.

(32)

In the following we do not take the imaginary part of the op-
erators (31) into account, as it leads to unphysical results. We
believe that this term is an artifact of performed approxima-
tions and would vanish in a more rigorous treatment, e.g. go-
ing beyond the Born approximation. We thus use T ′λλ′ instead
of T ′′λλ′ in Eqs. (30) and (32). We however leave the corre-
sponding logarithmic term in the Hamiltonian shift (29), as it
has a physical meaning49.

5. Master equation

As stated in Sec. III A, L determines the evolution of the
atomic subsystem. This can be seen by summing Eq. (20)
over charge specific components that leads to the equation of
motion for the unconditioned density matrix ρ =

∑
n ρn. We

use
∑

n ρ
′
n = 0 and

∑
n ρ
′′
n = 0 to obtain

∂tρ = Lρ. (33)

In principle, this equation can be put in a canonical form in
order to identify the coherence rates that characterize the dis-
sipative dynamics43. We were not able to perform this proce-
dure in general but observed in the specific examples below
that the decoherence rates are not always positive. This im-
plies that the evolution of the density matrix is generally non-
Markovian. A general proof that the density matrix evolving
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according to Eq. (33) remains positively defined has also not
been found. Nevertheless, for all the examples worked out in
Sec. IV we checked numerically that this was the case. We
note that the usual Markovian master equation is recovered in
some limiting cases, see Sec. III C.

6. Current

The probability that n electrons have been transferred from
the tip to the substrate is given by pn = trρn. The aver-
age current from the tip to the substrate is thus given by
I = −e∂t〈n〉 = −etr

∑
n n∂tρn. Using Eq. (20) and relations∑

n nρ′n = −ρ,
∑

n nρ′′n = 0, one can show that

I = −e trJρ. (34)

The steady state value of the current is calculated by substi-
tuting ρ = ρ∞ into Eq. (34), where the steady state density
matrix ρ∞ is calculated as the eigenstate of L associated with
zero eigenvalue.

7. Shot noise

Fluctuations of the current are characterized by the shot
noise defined as

S = 2e2∂t

(
〈n2〉 − 〈n〉2

)
. (35)

Using similar arguments as for the current, one can show that

S = 4e2tr

Dρ +J
∑

n

(n − 〈n〉) ρn

 . (36)

In contrast to the case of average current, the shot noise cannot
be expressed through the density matrix alone. One also needs
to evaluate the quantity

∑
n(n − 〈n〉)ρn = ρ(1) which satisfies

the equation of motion

∂tρ
(1) = Lρ(1) +Jρ − ρtrJρ. (37)

In the steady state we obtain

Lρ(1)
∞ = ρ∞tr (Jρ∞) − Jρ∞, (38)

which has a formal solution

ρ(1)
∞ = −L−1Jρ∞, (39)

(see Appendix E), where L−1 is the pseudo-inverse of L, i.e.
taken excluding the zero eigenvalue of L.

C. Application to EASD

Here we apply the presented method to the model of EASD
introduced in Sec. II. In particular, we specify Eqs. (29), (30),

(32) using the coupling Hamiltonian (4) that may be recovered
from the generic one used in Sec. III B by the substitution

Tλλ′ = S rσσ′δrr′
(
δrr0 +

(
1 − δrr0

)
δηS δη′S

)
, (40)

where λ = (η, r, σ) and S rσσ′ stands for the atomic operators

S rσσ′ =


S rz if σ = σ′ =↑,

S r+ = S rx + iS ry if σ =↓, σ′ =↑,

S r− = S rx − iS ry if σ =↑, σ′ =↓,

−S rz if σ = σ′ =↓ .

(41)

The delta functions are introduced in Eq. (40) to account for
the features of the model: (i) electrons only tunnel between
the leads coupled to the same atom, (ii) the tip is only coupled
to the atom r0.

As shown in Appendix F, the resulting expressions for Eqs.
(29), (30), (32) include S rσσ′ and operators Q(0)

rσσ′ , Q(+)
rσσ′ and

Q(−)
rσσ′ whose matrix elements are given by

〈m|Q(0)
rσσ′ |n〉 = g (β (Em − En)) 〈m|S rσσ′ |n〉,

〈m|Q(+)
rσσ′ |n〉 = g (β (Em − En + eV)) 〈m|S rσσ′ |n〉,

〈m|Q(−)
rσσ′ |n〉 = g (β (Em − En − eV)) 〈m|S rσσ′ |n〉.

(42)

For the Hamiltonian shift (29) we obtain

∆HA =
1
πβ

∑
rσσ′

1
2i

(
S †rσσ′Arσσ′ − h.c.

)
+

1
π

pγT WS r0z−

−
8 ln 2
π2 p2γ2

T WS 2
r0z +

2
π2 p2γ2

T ln
2βW
π

[
HA, S 2

r0z

]
+ C,

(43)

where the constant part is given by

C =
4W ln 2
π2

γ2
S

∑
r

S2
r +

+2γS γT S2
r0

+ γ2
T (1 − p2)S2

r0

)
,

(44)

and we have introduced operators

Arσσ′ = δrr0γS γT

(
wσQ(+)

rσσ′ + wσ′Q
(−)
rσσ′

)
+

+
(
γ2

S + δrr0γ
2
T wσwσ′

)
Q(0)

rσσ′ .
(45)

The terms in the shift (43), except for the first one, act as a
renormalization of the magnetic field and the anisotropy pa-
rameters in Eq. (1). We thus do not explicitly account for
them in the numerical calculations. For Eq. (30) we obtain

Lχ = −i
[
H′A, χ

]
+

1
πβ

∑
rσσ′

(
Arσσ′χS †rσσ′−

−
1
2

{
S †rσσ′Arσσ′ , χ

}
+ h.c.

)
.

(46)

Finally, the result for Eq. (32) is expressed as

D+χ =
γTγS

πβ

∑
σσ′

wσ′

(
Q(+)

r0σσ′
χS †r0σσ′

+ h.c.
)
,

D−χ =
γS γT

πβ

∑
σσ′

wσ

(
Q(−)

r0σσ′
χS †r0σσ′

+ h.c.
)
.

(47)
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The superoperator (46) of the master equation has Lindblad
form when Arσσ′ ∼ S rσσ′ . As shown in Appendix G, this hap-
pens in the following cases: (i) infinite temperature β → ∞,
(ii) infinite voltage |V | → ∞, (iii) single atom in the parallel
magnetic field B ‖ P. The obtained superoperator does not
couple the diagonal and off-diagonal elements of the density
matrix in the case of a single atom and

[
HA, S z

]
= 0. We thus

always get the equivalent results with the method of rate equa-
tions for single atoms in the parallel geometry, as shown in the
next section.

IV. RESULTS

In this section we provide two examples using the equa-
tions derived above: (i) a single spin in the presence of a spin-
polarized tip, and (ii) a spin chain. In addition to the transport
properties and observables of the atomic subsystem, we also
compute the von Neumann entropy S = −tr (ρ ln ρ) that char-
acterizes the degree of purity of the atomic state.

A. Single atom with S = 1/2

The simplest example of a magnetic structure is an atom
with spin S = 1/2 for which the density matrix can be ex-
pressed through the average spin projections as ρ = 1

2 + 〈S〉.τ.
In this case the anisotropy terms in the Hamiltonian may be
discarded as they only yield to a constant energy contribu-
tion. The Hamiltonian is thus reduced to the contribution of
the external magnetic field B yielding a Zeeman energy gap
∆ = gµB |B| between two energy levels of the atom.

For V = 0 relaxation processes due to interaction with the
electronic leads bring the atom to a thermal state ρ ∝ e−βHA .
At low temperatures β > ∆−1 the atomic spin is fully polar-
ized along the magnetic field. A finite applied voltage V , 0
causes current to ensue through the atom, inducing spin ex-
citations and changing the atomic steady state. The inelas-
tic contribution to the current results from a spin flip process
| ↑〉 → | ↓〉 driven by tunneling electrons.

In the following we choose the parameters g = 2, B = 5
T, γT = γS = 0.8, (βkB)−1 = 1 K and vary the value of
the polarization p = 0, 0.5, 1. These are typical experimental
parameters2,35 within the applicability domain of our method.

We investigate the steady state of the atom, the differen-
tial conductance dI/dV and the differential shot noise dS/dV .
In order to identify the contribution due to coherences, we
compare our results, obtained with master equation (ME),
with those obtained using rate equations (REs). As explained
above, the ME method deals with the full density matrix and
thus accounts for coherence effects, in contrast to REs that
operate with the diagonal elements of ρ. However, the master
equation cannot be used to study non-perturbative phenom-
ena, such as Kondo correlations, unless the lead-atom cou-
pling is treated beyond the second order. We consider two
different geometries where the applied field is either parallel
or perpendicular to the polarization vector of the tip.
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Figure 2. Steady state characteristics for a single spin S = 1/2 in a
perpendicular geometry (B along z axis, P along x axis) for different
values of the polarization parameter p and for g = 2, B = 5 T, γT =

γS = 0.8, (βkB)−1 = 1 K. The quantities presented as functions of
voltage are (a) differential conductance, (b) differential shot noise,
(c) average spin component 〈S x〉, (d) average spin component 〈S y〉,
(e) average spin component 〈S z〉, (f) entropy. In this geometry RE
and ME approaches are not equivalent for p , 0, as the coherences
determined by 〈S x〉 and 〈S y〉 do not vanish and give contribution to
the results. While ME gives different dI/dV and dS/dV curves for
different p, the results obtained with REs are independent of p and
coincides with the ME results for p = 0.

In the parallel geometry, when both B and P are along z
axis, ME and REs yield equivalent spectra for any polariza-
tion parameter. Indeed, since 〈S x〉 = 〈S y〉 = 0, off-diagonal
elements of the density matrix vanish and coherences do not
affect the average current and the shot noise. The curves for
the steady state observables are given in Appendix H and re-
produce already known resutls13,18.

The calculated spectra in the perpendicular geometry, when
B is along z axis and P is along x axis, are shown in Fig. 2.
In this case the RE approach gives the same result for any
p. This is due to the fact that a change in the polarization
parameter does not affect the spin population of electrons in
the tip measured in a perpendicular direction. Therefore, if
coherences are ignored, a polarization perpendicular to the
magnetic field applied to the spin should not affect the cur-
rent. On the contrary, if coherences are taken into account,
the mismatch between the polarization of the electrons and
the direction of the atomic spin reduces both the average cur-
rent and the shot noise. This decrease depends on the po-
larization parameter, reaching a maximum for p = 1 (fully
polarized tip) and vanishing for p = 0 (unpolarized tip). The
clear difference between curves calculated with REs and ME
evidences that in this geometry it is essential to take into ac-
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Figure 3. Dependence of (a) average current and (b) shot noise on
the coupling strength for a single spin S = 1/2 in a perpendicular
geometry (B along z axis, P along x axis). dI/dV and dS/dV curves
are computed with REs and ME for different values of γT = γS = γ
and for g = 2, B = 5 T, (βkB)−1 = 2 K, p = 1. In the limit of weak
coupling dI/dV and dS/dV curves obtained with ME coincide with
the results obtained with REs.

count effects of coherences to correctly describe the average
current and the shot noise. In other words, interference effects
within the atomic subsystem substantially modify its conduc-
tance properties. It is worth noting that, although the spin is
polarized in the z direction and the magnetic field is in the x
direction, all three components of the spin acquire a non-zero
mean value. This effect is a direct result of a spin transfer
torque50. It has been studied theoretically in quantum dots
coupled to magnetic leads in non-collinear arrangements51–54.
For larger voltages we observe that the entropy is suppressed
as the polarization degree of the tip is increased.

To analyze the dependence of the inelastic current on the
coupling strength, in Fig. 3 we compare dI/dV and dS/dV
curves scaled by γ−2 factor for different values of γ = γS =

γT . As expected, for a vanishing coupling both RE and ME
methods yield the same results since the relative contribution
of coherences to dI/dV and dS/dV vanishes. To emphasize
this contribution to the spectra and make it more pronounced,
we use the values of γ at the limit of validity of the Born ap-
proximation.

B. Single atom with S = 5/2

Atoms used in spin polarized STM experiments typically
have spins higher than S = 1/2. Therefore we now analize
the case of a Mn atom with spin S = 5/2. Here, even in
the absence of external magnetic field, the energy levels can
be split by the anisotropy terms. For D < 0 the states with
S z = +5/2 and S z = −5/2 are separated by the energy barrier
and may be used for quantum information storage55. In the
following we set D = −0.04 meV, E = 0, g = 2, B = 0 T,
γS = γT = 0.6 and (βkB)−1 = 0.5 K, taken from Refs.2,35. We
do not consider the case E , 0 separately, as the correspond-
ing results are not qualitatively different from the ones pre-
sented below for the perpendicular geometry. The transport
through nanomagnets has been previously studied in a num-
ber of papers56–60. Here, we focus on the difference between
the results of the ME method that takes into account coher-
ences and the ones obtained within the previous approaches
based on the rate equations.
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Figure 4. Steady state characteristics for a single spin S = 5/2 in
a perpendicular geometry (z is the easy axis of the crystal and P is
along x axis) for different values of the polarization parameter p and
for D = −0.04 meV, γT = γS = 0.6, (βkB)−1 = 0.5 K. The quanti-
ties presented as functions of voltage are (a) differential conductance,
(b) differential shot noise, (c) average spin component 〈S x〉, (d) en-
tropy. In this geometry RE and ME approaches are not equivalent for
p , 0, as the coherences determined by 〈S x〉 do not vanish and give
contribution to the results. Other components of the spin vanish, i.e.
〈S y〉 = 〈S z〉 = 0. While ME gives different dI/dV and dS/dV curves
for different p, the results obtained with REs are independent of p
and coincides with the ME results for p = 0.

In the parallel geometry, with both B and P along z axis, the
ME and RE approaches give the same results, similarly to the
single atom with spin S = 1/2. The spectra of the steady state
observables are shown in Appendix H and coincide with ones
presented in Refs.13,18.

The spectra of the steady state current in the perpendicular
geometry, when z is the easy axis and P is along x axis, are
shown in Fig. 4. In this case the RE approach gives slightly
different curves for different p, in contrast to the single atom
with spin S = 1/2. However, we do not show this difference
as it is small compared to the contribution due to coherences
that grows with the polarization parameter. The switching of
the atom to the state whose magnetization is collinear with the
tip polarization requires higher voltages than for the parallel
geometry. That is explained by the change in the atomic spec-
trum due to the magnetic field produced by the polarized cur-
rent. The switching occurs for the polarized tip with p , 0 and
is accompanied by the decrease in the entropy as the voltage
goes up. For the unpolarized tip p = 0, there is no switching
and the entropy monotonically increases with the voltage.

C. Spin-1/2 chain

The manipulation capabilities of STM can be used to as-
semble chains of magnetic atoms on the substrate. Compared
to the case of single atoms, the conductivity profile of an atom
in the chain is modified by the inter-atomic coupling. Here we
study the effect of coherences in the inelastic current when the
tip drives a current through one of the atoms of a linear chain
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Figure 5. Steady state characteristics for a chain of 4 spins S = 1/2 in
zero magnetic field for different values of the polarization parameter
p and for (βkB)−1 = 1 K, γT = γS = 0.8, J = 0.3 meV. The quantities
presented as functions of voltage are (a) differential conductance, (b)
differential shot noise, (c) average spin component 〈S z〉, (d) entropy.
Other components of the spin vanish, i.e. 〈S x〉 = 〈S y〉 = 0.

of 4 atoms. We consider the chain in the external magnetic
field B and study three geometries of the setup: (i) B = 0, (ii)
B , 0, B ⊥ P, (iii) B , 0, B ‖ P. The results calculated with
the ME and RE methods are shown in Fig. 6 and 7 for the
same parameters as in Sec. IV A and for the case when the tip
is coupled to one of the central atoms r = 2.

The spectra of the steady state current through the chain in
zero magnetic field is presented in Fig. 5. In this case the en-
ergy scale is set by the coupling constant J = 0.3 meV. Due to
the antiferromagnetic coupling, the ground state of the chain
has the total spin S tot = 0. The difference between ME and RE
approaches increases with p for dI/dV curve and has the same
order for all p for dS/dV curve. Driving the polarized current
through the chain results in the switching to the collinearly
polarized state, i.e. the state with the ferromagnetic order of
spins. The switching is accompanied by the decrease in the
entropy as the voltage goes up.

In the case of parallel geometry, with both B and P along
z axis, two approaches give different results for any polariza-
tion parameter, including unpolarized tip with p = 0, i.e. the
coherences contribute to the current. That is in contrast to the
case of a single spin, see Fig. 8, where coherences vanish.
The contribution of coherences is particularly noticeable in
the shot noise which gets suppressed. We explain this by the
fact that the coupling drives individual atoms into a coherent
superposition of states. The entropy is smaller compared to
the case of zero magnetic field.

In the case of perpendicular geometry, with B along z axis
and P along x axis, the results obtained within two approaches
are not equivalent for any polarization parameter, including
p = 0, differently from the case of a single atom, where the
ME and RE results coincide for the unpolarized tip. The dif-
ference between methods is especially remarkable for the shot
noise calculations. Note also that, similarly to the case of a
single atom, see Fig. 7, the RE approach yields the same re-
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Figure 6. Steady state characteristics for a chain of 4 spins S = 1/2
in a parallel geometry (both B and P along z axis) for different values
of the polarization parameter p and for g = 2, B = 5 T, (βkB)−1 = 1 K,
γT = γS = 0.8, J = 0.3 meV. The quantities presented as functions
of voltage are (a) differential conductance, (b) differential shot noise,
(c) average spin component 〈S z〉, (d) entropy. Other components of
the spin vanish, i.e. 〈S y〉 = 〈S z〉 = 0.

sult for different tip polarizations.

V. CONCLUSION

A master equation of the Redfield type describing the dy-
namics of the density matrix of an atomic spin structure was
derived in the limit of a small lead-atom coupling and a short
lead memory time, as compared with the energy and time
scales of the isolated atomic spin system. Its generalization
to charge specific density matrices allows for the description
of transport quantities such as the current and the shot noise,
in addition to the observables of the atomic subsystem.

Unlike approaches based on rate equations, this description
accounts for the dynamics of coherences, i.e. the off-diagonal
elements of the density matrix. It is suitable to describe the
moderate lead-atom coupling regime where coherences can-
not be disregarded. This approach is however unable to cap-
ture non-perturbative phenomena in the lead-atom coupling
such as Kondo effect and may yield to unphysical results for
large coupling.

The simplest example where coherence effects are impor-
tant is a setup made of a single atom with spin S = 1/2 pre-
cessing under an applied magnetic field in the presence of a
spin polarized tip. If the polarization of the applied field and
of the tip are parallel, the rate equations yield the same results
as our method. In fact, in this case the process can essentially
be described in a classical way. However, our results show
that if the tip polarization and the applied field are perpen-
dicular, superposition effects are important and we find strong
corrections to the rate equation results within the range of ap-
plicability of our approach. Atoms with higher total spin, em-
ployed in the engineered nanomagnets, yield to qualitatively
similar results that can be monitored by measuring the average
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Figure 7. Steady state characteristics for a chain of 4 spins S =

1/2 in a perpendicular geometry (B along z axis, P along x axis) for
different values of the polarization parameter p and for g = 2, B = 5
T, (βkB)−1 = 1 K, γT = γS = 0.8, J = 0.3 meV. The quantities
presented as functions of voltage are (a) differential conductance, (b)
differential shot noise, (c) average spin component 〈S x〉, (d) average
spin component 〈S y〉, (e) average spin component 〈S z〉, (f) entropy.

current or the shot noise. For more complex systems, such as
spin chains, our results show that coherences contribute to the
average current already at zero tip polarization.

Although the present work only analyzes the steady state
properties, coherence effects are crucial to describe the real
time dynamics. The present approach is therefore suitable
to be applied to model the high-frequency magnetization dy-
namics observed in recent experiments61,62. Calculation of
the time dynamics will also allow to make a comparison with
numerically exact schemes such as the density matrix renor-
malization group63 and the quantum Monte Carlo method64.
It is also worth to compare our results with the recently pre-
sented kinetic equation approach65,66. To summarize, the ap-
proach developed in this article provides a further step for the
full quantum mechanical description of atomic spin devices
and can therefore be used to explore new quantum coherent
regimes that are of crucial importance if these systems are to
be used for quantum information processing.
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Appendix A: Derivation of master equation

In this appendix we explain some intermediate steps of the
master equation derivation presented in Sec. III B.

Derivation of Eq. (10). To obtain the equations of motion
for CSDMs, we take the time derivative of Eq. (9) and use the
von Neumann equation for the full density matrix

∂tρn + itrR
(
Pn

[
H, ρtot

])
= 0. (A1)

We substitute H = HA + HR + HI and use the commutativity
of Pn with HA and HR (these parts of the Hamiltonian do not
generate the flow of particles between the leads) to show that

trR
(
Pn

[
HA, ρtot

])
=

[
HA, ρn

]
, trR

(
Pn

[
HR, ρtot

])
= 0. (A2)

Eq. 10 then follows from Eq. A1.
Derivation of Eq. (11). The substitution of HI =∑
ηη′

√
JηJη′

∑
αα′ Tαα′c

†
αcα′ into the right hand side of the

equation of motion for CSDMs (10) gives

− i
∑
ηη′

√
JηJη′

∑
αα′

trR

(
Pn

[
Tαα′c†αcα′ , ρtot

])
=

=
∑
ηη′

√
JηJη′

∑
αα′

(
−iTαα′ trR

(
c†αcα′ρtotPn

)
+ h.c.

)
.

(A3)

We use the definition (12) to get

− itrR

(
c†αcα′ρtotPn

)
= C(n)

αα′ − i fαδαα′ρn (A4)

and substitute this relation into Eq. (A3). After rearrangement
of terms, one obtains Eq. (11).

Appendix B: Operators C(n)
αα′

This appendix contains the derivations of exact and approx-
imate equations of motion (EOMs) for the auxiliary operators
C(n)
αα′ and the solution of the approximate EOMs.
Derivation of Eq. (13). To obtain the exact EOM for C(n)

αα′ ,
we take the time derivative of the definition (12) and use the
von Neumann equation for the full density matrix

∂tC
(n)
αα′ = −trR

((
c†αcα′ − fαδαα′

) [
H, ρtot

]
Pn

)
. (B1)

With H = HA + HR + HI one gets

∂tC
(n)
αα′ + trR

((
c†αcα′ − fαδαα′

) [
HA, ρtot

]
Pn

)
+

+ trR

((
c†αcα′ − fαδαα′

) [
HR, ρtot

]
Pn

)
=

= −trR

((
c†αcα′ − fαδαα′

) [
HI , ρtot

]
Pn

)
.

(B2)

For the second term in the left hand side of this equation

trR

((
c†αcα′ − fαδαα′

) [
HA, ρtot

]
Pn

)
=

=
[
HA, trR

((
c†αcα′ − fαδαα′

)
ρtotPn

)]
= i

[
HA,C

(n)
αα′

]
.

(B3)
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For the third term we substitute HR and get

trR

((
c†αcα′ − fαδαα′

) [
HR, ρtot

]
Pn

)
=

= trR

([
c†αcα′ ,HR

]
ρtotPn

)
=

=
∑
β

εβtrR

([
c†αcα′ , c

†

βcβ
]
ρtotPn

)
=

= − (εα − εα′ ) trR

(
c†αcα′ρtotPn

)
=

= −i (εα − εα′ ) C(n)
αα′ ,

(B4)

where the relations
[
c†αcα′ , c

†

βcβ
]

= δα′βc
†
αcβ − δαβc

†

βcα′ and
(εα − εα′ ) δαα′ = 0 have been used. The substitution of Eqs.
(B3) and (B4) into Eq. (B2) gives Eq. (13).

Derivation of Eq. (14). Substituting HI into the right hand
side of Eq. (13) gives

− trR

((
c†αcα′ − fαδαα′

) [
HI , ρtot

]
Pn

)
=

∑
µµ′

√
JµJµ′×

×
∑
ββ′

(
trR

((
c†αcα′ − fαδαα′

)
ρtotc

†

βcβ′Pn

)
Tββ′−

−Tββ′ trR

((
c†αcα′ − fαδαα′

)
c†βcβ′ρtotPn

))
=

=
∑
µµ′

√
JµJµ′

∑
ββ′

(
trR

(
c†βcβ′

(
c†αcα′ − fαδαα′

)
×

×Pn−nαα′ρtotPn+nββ′

)
Tββ′ − Tββ′ trR

((
c†αcα′ − fαδαα′

)
×

×c†βcβ′Pn−nαα′−nββ′ρtotPn

))
,

(B5)

where nαα′ = ±1, 0 is the number of electrons transferred
from the tip to the substrate by c†αcα′ operator. We have
used the identity Pn = P2

n and the commutation relation
Pnc†αcα′ = c†αcα′Pn−nαα′ . As explained in the main text, we
neglect components PmρtotPn of the full density matrix with
m , n and assume separability PnρtotPn ≈ ρn ⊗ ρR to approx-
imate

− trR

((
c†αcα′ − fαδαα′

) [
HI , ρtot

]
Pn

)
≈

∑
µµ′

√
JµJµ′×

×
∑
ββ′

δnαα′ ,−nββ′

(〈
c†βcβ′

(
c†αcα′ − fαδαα′

)〉
× ρn−nαα′Tββ′−

−
〈(

c†αcα′ − fαδαα′
)

c†βcβ′
〉

Tββ′ρn

)
=

√
JηJη′×

×
(
(1 − fα) fα′ρn−nαα′Tα′α − fα (1 − fα′ ) Tα′αρn

)
,

(B6)

where 〈·〉 = trR (·ρR), and we have used the relations〈(
c†αcα′ − fαδαα′

)
c†βcβ′

〉
= fα (1 − fα′ ) δαβ′δα′β,〈

c†βcβ′
(
c†αcα′ − fαδαα′

)〉
= (1 − fα) fα′δαβ′δα′β.

(B7)

We note that Tα′α = T †αα′ and obtain Eq. (14).
Derivation of Eq. (15). To solve Eq. (14), we use the

substitution

C(n)
αα′ = e−iHAtC̃(n)

αα′e
iHAtei(εα−εα′ )t. (B8)

One may show that C̃(n)
αα′ satisfies the equation

∂tC̃
(n)
αα′ =

√
JηJη′eiHAt

(
(1 − fα) fα′ρn−nαα′T

†

αα′−

− fα (1 − fα′ ) T †αα′ρn

)
e−iHAte−i(εα−εα′ )t

(B9)

with the initial condition

C̃(n)
αα′ (0) = C(n)

αα′ (0) =

= −itrR

((
c†αcα′ − fαδαα′

)
ρtot(0)Pn

)
=

= −itrR

((
c†αcα′ − fαδαα′

)
Pn−nαα′ρtot(0)Pn

)
=

= −iδn,0δnαα′ ,0ρ(0)
〈
c†αcα′ − fαδαα′

〉
= 0.

(B10)

We have used the relation ρtot(0) = ρ(0) ⊗ ρR and the fact that
no electrons are transferred at t = 0. The solution of Eq. (B9)
is then

C̃(n)
αα′ =

√
JηJη′

t∫
0

eiHAt′
(
(1 − fα) fα′ρn−nαα′ (t

′)T †αα′−

− fα (1 − fα′ ) T †αα′ρn(t′)
)

e−iHAt′e−i(εα−εα′ )t′dt′.

(B11)

Rotating back to C(n)
αα′ and introducing τ = t−t′ gives Eq. (15).

Appendix C: Equation of motion (20)

In this appendix we derive the equation of motion for
charge specific density matrices (20). It is obtained by sub-
stituting Eq. (17) into Eq. (14) that results in

∂tρn + i

HA +
∑
ηα

Jη fαTαα, ρn

 =
∑
ηη′

JηJη′×

×
∑
αα′

(
(1 − fα) fα′Tαα′ρn−nαα′T

†

αα′−

− fα(1 − fα′ )Tαα′T
†

αα′ρn + h.c.
)
.

(C1)

The right hand side of this equation depends on ρn, ρn−1 and
ρn+1. We split it into two parts F1 + F2, where the first one
only depends on ρn as follows

F1 =
∑
ηη′

JηJη′
∑
αα′

(
(1 − fα) fα′Tαα′ρnT

†

αα′−

− fα(1 − fα′ )Tαα′T
†

αα′ρn + h.c.
)
,

(C2)

and the second one is given by

F2 =
∑
ηη′

JηJη′
∑
αα′

(1 − fα) fα′×

×
(
Tαα′

(
ρn−nαα′ − ρn

)
T
†

αα′ + h.c.
)
.

(C3)
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We transform Eq. (C2) as

F1 =
∑
ηη′

JηJη′
∑
αα′

(1 − fα) fα′×

×
(
Tαα′ρnT †αα′ − T †αα′Tαα′ρn + h.c.

)
=

=
∑
ηη′

JηJη′
∑
αα′

(1 − fα) fα′
(
Tαα′ρnT †αα′−

−
1
2

{
T †αα′Tαα′ , ρn

}
+ h.c.

)
− i

∑
ηη′

JηJη′×

×
∑
αα′

(1 − fα) fα′
[

1
2i

(
T †αα′Tαα′ − T

†

αα′Tαα′
)
, ρn

]
.

(C4)

One may easily check that

F1 − i

HA +
∑
ηα

Jη fαTαα, ρn

 = Lρn (C5)

with the superoperatorL defined in Eq. (22), thus the equation
of motion (C1) becomes

∂tρn = Lρn + F2. (C6)

The expression (C3) only contains terms with nαα′ , 0 when
either η = T , η′ = S or η = S , η′ = T . We thus obtain

F2 = JT JS

∑
st

(1 − fs) ft
(
Tst (ρn−1 − ρn)T †st + h.c.

)
+

+ JT JS

∑
st

(1 − ft) fs

(
Tts (ρn+1 − ρn)T †ts + h.c.

)
,

(C7)

where indices t and s enumerate the electronic states in the
tip and the substrate correspondingly, and nst = 1, nts = −1
are used. With definitions (21), (25) and (26) the last relation
simplifies to

F2 = D+ (ρn−1 − ρn) +D− (ρn+1 − ρn) =

= −Jρ′n +Dρ′′n ,
(C8)

and Eq. (20) is recovered from Eq. C6.

Appendix D: Wide band approximation

This appendix contains the derivation of Eq. (27). We de-
note the required sum as Σλλ′ and calculate its matrix elements
in the eigenbasis

〈m |Σλλ′ | n〉 =
∑
kk′

(1 − fα) fα′ 〈m |Tαα′ | n〉 . (D1)

Within the wide band approximation the sums over momenta
translate to integrals according to the rule

∑
kk′
→ %λ%λ′VλVλ′

W"
−W

dεdε′. (D2)

Substituting Eq. (19) into Eq. (D1), we thus obtain

〈m |Σλλ′ | n〉 = %λ%λ′VλVλ′ 〈m |Tλλ′ | n〉

π
W"
−W

dεdε′×

× (1 − fλ (ε)) fλ′
(
ε′

)
δ
(
ε − ε′ + Em − En

)
−

−iP

W"
−W

(1 − fλ (ε)) fλ′ (ε′)
ε − ε′ + Em − En

dεdε′

 .
(D3)

Performing integration with equilibrium distribution functions
fλ (ε) =

(
exp (β (ε − µλ)) + 1

)−1 in large W limit results in

〈m |Σλλ′ | n〉 = %λ%λ′VλVλ′ 〈m |Tλλ′ | n〉 ×

×

(
π

β
g (β (µλ − µλ′ + Em − En)) − iW ln 4+

+i (µλ − µλ′ + Em − En) ln
2βW
π

)
.

(D4)

Finally, we use (Em − En) 〈m |Tλλ′ | n〉 = 〈m |[HA,Tλλ′ ]| n〉 and
recover Σλλ′ from its matrix elements to obtain Eq. (27).

Appendix E: Inversion of L

This appendix explains the inversion procedure for the su-
peroperator L that has to be performed to calculate the shot
noise according to Eq. (7). Let us consider a diagonalizable
superoperator L with a unique stationary state. We denote by
λα the eigenvalues of L corresponding to the right and left
eigenvectors χα and χ̃α respectively, such that Lχα = λαχα
and L†χ̃†α = λ̄αχ̃

†
α. It is useful to use a bra-ket like notation

for which the preceding relations translate to

L |χα) = λα |χα) ,
(χ̃α| L = (χ̃α| λα.

(E1)

The eigenvectors can be chosen to respect the normalization
condition

(χ̃α|χα′ ) = δαα′ , (E2)

where the inner product is defined by

(χ̃α|χα′ ) =
∑
mn

〈n| χ̃α |m〉 〈m| χα′ |n〉 . (E3)

It follows from the fact that L is diagonalizable that its eigen-
vectors form a complete basis

(a|b) =
∑
α

(a|χα) (χ̃α|b) (E4)

for generic matrices a and b. In this basis we also have

f (L) =
∑
α

|χα) f (λα) (χ̃α| . (E5)

for an arbitrary function f .
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The steady state ρ∞ = χ0 is the right eigenstate with zero
eigenvalue. On the other hand, since L is trace preserving, it
has a left eigenvalue χ̃0 such that 〈n| χ̃0 |m〉 = δnm. Note that
(χ̃0|a) = Tr (a). Using this notation, Eq. (38) can be written as

L
∣∣∣ρ(1)
∞

)
= (1 − |χ0) (χ̃0|)J |χ0) (E6)

and thus, as the right hand side has no component correspond-
ing to the zero eigenspace of L, the operator can be inverted
as in Eq. (39).

Appendix F: Formulas for EASD

In this appendix we derive Eqs. (43), (46), (47) that deter-
mine dynamics of EASDs, as explained in Sec. III A, and are
used in the calculations in Sec. IV. The structure of Eq. (40)
implies that the substitution of operators Tλλ′ into Eqs. (29),
(30), (32) should be made according to the rules

Tλλ′ → S rσσ′ ,∑
λλ′

→
∑
rσσ′

∑
ηη′

(
δrr0 +

(
1 − δrr0

)
δηS δη′S

)
. (F1)

Derivation of Eq. (43). Let us evaluate four parts of the
Hamiltonian shift (29) separately. For the first part

∆1HA =
W
π

∑
λ

γλTλλ =
W
π

∑
ηrσ

(
δrr0 +

(
1 − δrr0

)
δηS

)
×

× γησS rσσ =
W
π

∑
σ

γTσS r0σσ +
∑
rσ

γSσS rσσ

 , (F2)

where we have summed over η = T, S . We note that γSσ = γS
and γTσ = wσγT due to the spin dependent density of states.
Using Eq. (41), we obtain

∆1HA =
W
π
γT

(
w↑ − w↓

)
S r0z =

W
π

pγT S r0z. (F3)

To calculate the second part of ∆HA, we present it in the form

∆2HA =
1
πβ

1
2i

(
G −G†

)
,

G =
∑
λλ′

γλγλ′T
†

λλ′T
′
λλ′ .

(F4)

With the summation rules (F1) we get

G =
∑
rσσ′

S †rσσ′Arσσ′ ,

Arσσ′ =
∑
ηη′

(
δrr0 +

(
1 − δrr0

)
δηS δη′S

)
γησγη′σ′Q

ηη′

rσσ′ .
(F5)

where the auxiliary operators Qηη′

rσσ′ are defined through their
matrix elements as〈

m
∣∣∣∣Qηη′

rσσ′

∣∣∣∣ n〉 =

= g
(
β
(
µη − µη′ + Em − En

))
〈m |S rσσ′ | n〉 .

(F6)

When r, σ and σ′ are fixed, this expression gives one of the
three operators defined in Eq. (42): (i) Q(0)

rσσ′ for η = η′, (ii)
Q(+)

rσσ′ for η = S and η′ = T , (iii) Q(−)
rσσ′ for η = T and η′ = S .

Summation over η, η′ in Eq. (F5) gives

Arσσ′ =
(
γSσγSσ′ + δrr0γTσγTσ′

)
Q(0)

rσσ′+

+ δrr0

(
γSσγTσ′Q

(+)
rσσ′ + γTσγSσ′Q

(−)
rσσ′

)
,

(F7)

from which one may recover Eq. (45). For the third and fourth
parts of ∆HA we get

∆3HA = −
W ln 4
π2 K,

∆4HA =
1

2π2 ln
2βW
π

[HA,K] ,

K =
∑
λλ′

γλγλ′T
†

λλ′Tλλ′ .

(F8)

Evaluating the operator K gives

K =
∑
rσσ′

S †rσσ′S rσσ′
∑
ηη′

γησγη′σ′
(
δrr0 +

(
1 − δrr0

)
×

×δηS δη′S
)

= γ2
S

∑
rσσ′

S †rσσ′S rσσ′ + γ2
T

∑
σσ′

wσwσ′×

× S †r0σσ′
S r0σσ′ + γS γT

∑
σσ′

(wσ + wσ′ ) S †r0σσ′
S r0σσ′ =

= 2

γ2
S

∑
r

S2
r + 2γS γT S2

r0
+

+γ2
T

((
1 − p2

)
S2

r0
+ 2p2S 2

r0z

))
,

(F9)

where we used the relation
∑
σσ′ S †rσσ′S rσσ′ = 2S2

r . Summing
Eqs. (F3), (F4) and (F8) and using

[
HA,S2

r

]
= 0, one may

recover the Hamiltonian shift (43).
Derivation of Eq. (46). Let us evaluate the non-

Liouvillian part of Eq. (46). Similarly to the derivation of
the expression for G in Eq. (F5), one may show that∑

λλ′

γλγλ′T ′λλ′χT †λλ′ =
∑
rσσ′

Arσσ′χS †rσσ′ . (F10)

That leads us to Eq. (46).
Derivation of Eq. (47). Finally, we evaluate the expres-

sions (32). Since the tunneling between the tip and the sub-
strate only happens through the atom at r0, we have the substi-
tution rules

∑
λS λT
→

∑
σσ′ and TλS λT ,TλTλS → S r0σσ′ . More-

over, we obtain T ′λS λT
= Q(+)

r0σσ′
and T ′λTλS

= Q(−)
r0σσ′

. Thus

D+χ =
1
πβ

∑
σσ′

γSσγTσ′
(
Q(+)

r0σσ′
χS †r0σσ′

+ h.c.
)
,

D−χ =
1
πβ

∑
σσ′

γTσγSσ′
(
Q(−)

r0σσ′
χS †r0σσ′

+ h.c.
)
,

(F11)

that is equivalent to Eq. (47).
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Appendix G: Lindblad analysis

In this appendix we identify several cases when the super-
operator (46) of the master equation (33) has Lindblad form.
For this we compare the operators Arσσ′ and S rσσ′ whose ma-
trix elements are related to each other by

〈m |Arσσ′ | n〉 = gmn
rσσ′ 〈m |S rσσ′ | n〉 ,

gmn
rσσ′ = δrr0γS γT (wσg (β (Em − En + eV)) +

+wσ′g (β (Em − En − eV))) +
(
γ2

S + δrr0γ
2
T wσwσ′

)
×

× g (β (Em − En)) .

(G1)

The required proportionality relation Arσσ′ ∼ S rσσ′ is fulfilled
when factors gmn

rσσ′ do not depend on the states |m〉 and |n〉
for all non-vanishing matrix elements 〈m |S rσσ′ | n〉. Below we
consider the situations when this happens.

Infinite temperature. In this case β → 0 and g(x) → 1
for all arguments of the function that occur in Eq. (G1), so
that g-factors do not depend on m and n. We thus get Arσσ′ =

arσσ′S rσσ′ with

arσσ′ = γ2
S + δrr0

(
γS γT (wσ + wσ′ ) + γ2

T wσwσ′

)
. (G2)

The superoperator (46) simplifies to

Lχ = −i
[
H′A, χ

]
+

2
πβ

∑
rσσ′

arσσ′×

×

(
S rσσ′χS †rσσ′ −

1
2

{
S †rσσ′S rσσ′ , χ

})
.

(G3)

It has Lindblad form with positive coefficients (G2).
Infinite voltage. In this case some g-factors become much

larger than others, and we only take them into account. For
large positive voltage V > 0 we approximate

g(β(Em − En − xeV)) ≈

 0, x = −1, 0,
βeV, x = +1,

(G4)

that leads to Q(+)
rσσ′ = Q(0)

rσσ′ = 0 and Q(−)
rσσ′ = βeVS rσσ′ . One

thus gets Arσσ′ = δrr0γS γT wσ′βeVS rσσ′ and

Lχ = −i
[
H′A, χ

]
+

2
π

eVγS γT

∑
σσ′

wσ′×

×

(
S r0σσ′χS †r0σσ′

−
1
2

{
S †r0σσ′

S r0σσ′ , χ
})
.

(G5)

This superoperator has Lindblad form with positive coeffi-
cients. Analogously, for large negative voltage V < 0

Lχ = −i
[
H′A, χ

]
+

2
π

e |V | γS γT

∑
σσ′

wσ×

×

(
S r0σσ′χS †r0σσ′

−
1
2

{
S †r0σσ′

S r0σσ′ , χ
})
.

(G6)

Single atom in parallel magnetic field. We consider the
situation when there is no crystal anisotropy, and the spec-
trum of the atom is equidistant. In case of the parallel exter-
nal magnetic field B ‖ P, all non-vanishing matrix elements
of any operator S σσ′ have the same Em − En. In particular,
(i) ±S z requires m = n, so Em − En = 0, (ii) S + requires
m = n + 1, so Em − En = ∆, (iii) S − requires m = n − 1,
so Em − En = −∆. This leads to the proportionality relation
Aσσ′ = aσσ′S σσ′ with positive coefficients

aσσ = γS γT wσ (g (βeV) + g (−βeV)) +

+ γ2
S + γ2

T w2
σ, σ =↑, ↓,

a↑↓ =
(
γ2

S + γ2
T w↑w↓

)
g (−β∆) +

+ γS γT
(
w↑g (β (−∆ + eV)) + w↓g (β (−∆ − eV))

)
,

a↓↑ =
(
γ2

S + γ2
T w↓w↑

)
g (β∆) +

+ γS γT
(
w↓g (β (∆ + eV)) + w↑g (β (∆ − eV))

)
,

(G7)

so that the Lindblad form of the superoperator is recovered

Lχ = −i
[
H′A, χ

]
+

2
πβ

∑
σσ′

aσσ′×

×

(
S σσ′χS †σσ′ −

1
2

{
S †σσ′S σσ′ , χ

})
.

(G8)

Appendix H: Parallel geometry

This appendix presents the results obtained for the steady
state characteristics of single atoms with spin S = 1/2 and
S = 5/2 in the case when the applied magnetic field B is
parallel to the tip polarization P (both vectors are along z axis).
The plots presented below are the same for both ME and REs
methods.

Single spin S = 1/2. The spectra of the steady state ob-
servables for a single spin S = 1/2 are shown in Fig. 8.
Jumps in the differential conductance arise at eV = ±gµB |B|,
as above this energy the inelastic conducting channel, that in-
volves the spin-flip process, is energetically accessible. As the
polarization increases, the tip density of states becomes more
and more spin asymmetric and processes that consist of tun-
neling a minority spin from or to the tip are suppressed. In the
limit of a fully polarized tip with p = 1, the inelastic spin-flip
channel only arises between majority spins in the tip, which
explains the asymmetry of the dI/dV curve. We note that for
substantially large values of voltage |eV | > W the current must
saturate and the differential conductance must approach zero.
However, this saturation effect cannot be seen in the presented
results, since we consider the voltage range |eV | � W in the
derivations above. The entanglement von Neumann entropy
generically varies with the voltage but also depends on the tip
polarization. For unpolarized tip it increases with the voltage
amplitude, while a fully polarized tip decreases the entropy by
driving the atom into a pure spin-polarized state.

Single spin S = 5/2. The spectra of the steady state ob-
servables for a single spin S = 5/2 are presented in Fig. 9. In
this case the anisotropy is set by the crystal field yielding the
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Figure 8. Steady state characteristics for a single spin S = 1/2
in a parallel geometry (both B and P along z axis) for different
values of the polarization parameter p and for g = 2, B = 5 T,
γT = γS = 0.8, (βkB)−1 = 1 K. The quantities presented as func-
tions of voltage are (a) differential conductance, (b) differential shot
noise, (c) average spin component 〈S z〉, (d) entropy. In this geometry
ME and RE approaches are equivalent, as the coherences vanish due
to 〈S x〉 = 〈S y〉 = 0.
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Figure 9. Steady state characterization for a single spin S = 5/2 in a
parallel geometry (P along the easy axis z of the crystal) for different
values of the polarization parameter p and for D = −0.04 meV, γT =

γS = 0.6, (βkB)−1 = 0.5 K. The quantities presented as functions of
voltage are (a) differential conductance, (b) differential shot noise,
(c) average spin component 〈S z〉, (d) entropy. Other components of
the spin vanish, i.e. 〈S x〉 = 〈S y〉 = 0. As in the case of spin S = 1/2,
ME and RE approaches are equivalent in this geometry.

energy levels of the atom to lie on a down-turned parabola.
As a result, one can see the characteristic switching between
two degenerate ground states S z = 5/2 and S z = −5/2.
This switching occurs via transitions to high-energy magnetic
states with S z between these extreme values. The required
excitation energy is provided by the tunneling electrons that
drive the atom to either S z = 5/2 or S z = −5/2 state depend-
ing on the polarity of the current. This switching is observed
in the voltage dependence of the average spin projection 〈S z〉

and the entropy. For the unpolarized tip with p = 0, there

is no switching and the entropy monotonically increases with
the voltage. For the polarized tip with p , 0, the region of
the voltage where the switching occurs is characterized by the
entropy decrease.
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