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We report the analysis of magnetic susceptibility χ(T ) of Sr2IrO4 single crystal in the param-
agnetic phase. We formulate the theoretical susceptibility based on isotropic Heisenberg antiferro-
magnetism incorporating the Dzyaloshinsky-Moriya interaction exactly, and include the interlayer
couplings in a mean-field approximation. χ(T ) above TN was found to be well described by the
model, indicating the predominant Heisenberg exchange consistent with the microscopic theory.
The analysis points to a competition of nearest and next-nearest neighbor interlayer couplings,
which results in the up-up-down-down configuration of the in-plane canting moments identified by
the diffraction experiments.

PACS numbers: 75.30.-m, 75.30.Cr, 75.30.Et

I. INTRODUCTION

Complex iridium oxides recently emerged as a novel
playground for correlated electron physics where strong
spin-orbit coupling of 5d Ir, comparable to its modest
Coulomb U , plays a critical role to produce unprece-
dented electronic phases. A notable example is the spin-
orbital Mott state with local Jeff = 1/2 wave function
produced by the interplay between spin-orbit coupling
and Coulomb U . The Jeff = 1/2 wave function consists of
equally weighted superposition of three t2g orbitals with
imaginary components, |Jeff = ±1/2 >= 1√

3
{|dxy,±σ >

±|dyz,∓σ > +i|dzx,∓σ >} where σ denotes the spin
state [1]. The Jeff = 1/2 Mott state was first identified
in the K2NiF4-type layered perovskite Sr2IrO4 [2]. In
spin-orbital Mott insulators, the magnetic coupling be-
tween Jeff = 1/2 pseudo-spins is mediated by their direct
overlap or superexchange interaction via anions, and is
therefore critically affected by the unique form of Jeff =
1/2 wave function.

The magnetic coupling between Jeff = 1/2 pseudo-
spins was studied theoretically in Ref. [3], and the low
energy Hamiltonian was constructed. In the case of 90◦

bond of Ir-O-Ir, where the IrO6 octahedra share their
edges, the destructive interference manifests itself in the
two superexchange paths of Ir-O2-Ir plaquette owing to
the imaginary components of Jeff = 1/2 state. As a
consequence, the magnetic exchange takes the form of
an anisotropic bond-dependent interaction. Such bond-
dependent coupling gives rise to strong frustration when
iridium ions are placed on a tri-coordinated motif like
honeycomb lattice, invoking a possible route for Kitaev
spin liquid [4]. In contrast, for 180◦ bond of Ir-O-Ir, rel-
evant to Sr2IrO4, the magnetic coupling is proposed to
comprise isotropic Heisenberg exchange and pseudodipo-
lar interaction stemming from Hund’s coupling. The

emergence of isotropic Heisenberg coupling, rooted in the
isotropic Jeff = 1/2 wave function, is rather unexpected
since spin-orbit coupling is generally considered to pro-
duce magnetic anisotropy.

The presence of Heisenberg coupling was indeed found
experimentally in Sr2IrO4. Sr2IrO4 undergoes a mag-
netic transition around TN ∼ 240 K [5]. A resonant x-
ray diffuse scattering showed that the two-dimensional
(2D) magnetic correlation survives in the IrO2 planes
above TN [6], and the temperature dependence of cor-
relation length obeys the relation theoretically proposed
for the 2D S = 1/2 isotropic Heisenberg antiferromag-
netism (IHAF) on a square lattice [7]. The nearly gapless
magnon dispersion observed by resonant inelastic x-ray
scattering (RIXS) is consistent with those expected for
IHAF [8]. The 2D IHAF of Sr2IrO4 is reminiscent of the
isostructural compound La2CuO4, a parent Mott insu-
lator of high-Tc superconductor with 2D S = 1/2 IHAF
[9, 10]. The similarity of two compounds led the theoret-
ical prediction of possible superconductivity in Sr2IrO4

upon doping [11–13] and the observation of Fermi arcs
and d-wave gap on the doped surface of Sr2IrO4 [14–16].

Despite the strong 2D character of Heisenberg ex-
change, Sr2IrO4 orders antiferromagnetically likely due
to a small but finite interlayer coupling, which is also
the case of La2CuO4. The magnetic structure of Sr2IrO4

was revealed by resonant x-ray magnetic scattering [2] as
illustrated in Fig. 1. Below TN, the Jeff = 1/2 pseudo-
spins lying in the basal planes form a Néel order. Since
the crystal structure of Sr2IrO4 has the staggered rota-
tions of IrO6 octahedra about the c-axis (∼ 11◦) [17],
Dzyaloshinsky-Moriya (DM) interaction with D parallel
to the c-axis is present [3], leading to canting of pseudo-
spins and the appearance of small in-plane moment. The
in-plane canting moments are cancelled out at zero field
by forming the up-up-down-down (uudd) stacking config-
uration along the c-axis [Fig. 1(a)], while at a field above
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µ0Hc ∼ 0.2 T the in-plane moments align and produce
weak-ferromagnetism with a moment M of ∼ 0.075µB/Ir
[2]. This magnetic structure of Sr2IrO4 resembles with
that of La2CuO4. In La2CuO4, S = 1/2 spins order an-
tiferromagnetically, and the buckling distortion of CuO6

produces in-plane canting moments normal to the CuO2

planes through DM interaction, which stack antiferro-
magnetically along the c-axis.

The uudd configuration of canting moments in Sr2IrO4

at a glance would suggest the presence of two different in-
terlayer couplings between the neighboring IrO2 planes.
Considering the crystal structure, however, the interlayer
couplings between the adjacent planes are all equivalent.
In order to account for the uudd configuration, the in-
terlayer couplings beyond the nearest neighbors must be
taken into account.

Thio et al. formulated the magnetic susceptibility
χ(T ) of La2CuO4 by a mean-field approximation with the
DM interaction and the interlayer coupling [18, 19], which
well reproduced the experimental data, and confirmed
the predominant 2D Heisenberg exchange in the CuO2

planes. Sr2IrO4 inherits stronger DM interaction due to
spin-orbit coupling of Ir, as evidenced by the much larger
canting moment compared with that of La2CuO4 (M
∼ 2×10−3µB/Cu) [18]. Unlike La2CuO4, the strength of
DM interaction in Sr2IrO4 is solely determined by lattice
distortions, the staggered rotations of octahedra [3]. As a
critical test for the 2D IHAF, similar mean-field analysis
on Sr2IrO4 is desired.

In this paper, we present the analysis of χ(T ) of
Sr2IrO4 in the paramagnetic phase above TN. We for-
mulated the theoretical magnetic susceptibility based on
the Heisenberg model incorporating DM interaction and
introduced the interlayer couplings within a mean-field
approximation. The experimental data were fitted by
the theoretical susceptibility, and the analysis indicates
that χ(T ) is fully consistent with the predominance of
isotropic Heisenberg exchange. The parameters obtained
by the fit point to a competing nature of nearest and
next-nearest interlayer couplings.

II. EXPERIMENTAL

Single crystals of Sr2IrO4 were grown by using SrCl2
flux [2]. Magnetization data were collected by a com-
mercial magnetometer (Quantum Design, MPMS). In or-
der to obtain sizable magnetization signal at low fields,
∼20 thin plate-like single crystals (∼2 mm × 2 mm ×
0.05 mm) were piled up to form a block-shaped sample
(∼18 mg). The background contribution from the sample
holder was measured independently, and was subtracted
from the raw magnetization data.
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FIG. 1. Crystal and magnetic structures of Sr2IrO4 (a) at
zero magnetic field, and (b) above metamagnetic critical field
µ0Hc ∼ 0.15 T. Yellow, blue and black spheres represent Sr,
Ir and O atoms, respectively [41]. Red and white arrows on
Ir atoms depict the directions of Jeff = 1/2 isospin moments,
and blue arrows show the directions of net in-plane canting
moments.

III. RESULTS

The temperature dependent magnetic susceptibility,
measured at a low field of 0.1 T, is shown in Fig. 2. A
large anisotropy between the in-plane (χab ≡ Mab/H)
and the out-of-plane (χc ≡ Mc/H) susceptibilities is
clearly seen [20]. Only χab displays a pronounced tem-
perature dependence roughly below room temperature,
while χc remains almost constant over the whole temper-
ature range measured. The observed anisotropy should
be attributed to the in-plane canting moments produced
by DM interaction with D // the c-axis.
In the in-plane susceptibility χab, a peak is observed

around 200 K which is lower than TN ∼ 230 K deter-
mined by a magnetic x-ray diffraction measurement [6].
TN appears to be reflected as the peak temperature in
the temperature derivative of susceptibility, namely the
temperature with the steepest slope in rapidly increas-
ing susceptibility on cooling to the peak at 200 K (see
the lower inset of Fig. 2). In contrast to the previous
data measured at a relatively high field of 0.5 T [5], χab

shows a clear decrease with cooling below 200 K. This
is consistent with the uudd stacking of canting moments
in the ground state [2], where the net moments are zero.
The bifurcation between the zero-field cooling (ZFC) and
field-cooling (FC) data, seen well below TN, likely rep-
resents the uncompensated canting moments due to the
pinning to crystalline defects such as stacking faults along
the c-axis. We believe that the competition of very weak
nearest and next-nearest interlayer couplings, as will be
discussed below, is one of the origins for such pronounced
pinning effect.
In the isothermal magnetization curve at 5 K well be-

low TN, shown in Fig. 3, a metamagnetic transition from
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FIG. 2. Temperature dependence of in-plane (χab) and out-
of-plane (χc) magnetic susceptibilities of Sr2IrO4 measured
at 0.1 T. ZFC and FC denote the zero-field-cooling and field-
cooling curves for χab, respectively. The lower inset shows the
temperature derivative of in-plane susceptibility which shows
a peak at ∼230 K, and the upper one displays the magnified
view of high-temperature region.

an antiferromagnetic ground state to a weak ferromag-
netic state can be seen [5]. A sudden increase of the
in-plane magnetization at around µ0Hc ∼ 0.15 T was ob-
served, which corresponds to the flipping of net in-plane
moments as illustrated in Fig. 1. The reduced slope at
the zero field limit mirrors the suppressed in-plane sus-
ceptibility below 200 K in the temperature dependent
susceptibility. Measuring the magnetization above µ0Hc

gives rise to a weakly ferromagnetic behavior as reported
previously [5]. The magnitude of weak ferromagnetic mo-
ments is ∼ 0.068 µB/Ir, slightly smaller than a reported
value of ∼ 0.075 µB/Ir [2]. (100) orientation of moment

(in the
√

2a×
√

2a unit cell where a is the nearest Ir-Ir
distance) is known to be realized in the ordered state un-
der zero filed [21]. However, any appreciable anisotropy
in the magnetization curve was not detected between the
(100) and (110) directions as shown in Fig. 3. The in-
plane anisotropy should be finite but extremely small.
We do not observe any trace of metamagnetism along the
c-axis, consistent with the canting moments only within
the ab-planes by D // the c-axis [22]. Since the meta-
magnetism is associated with a change in the magnetic
interlayer sequence along the c-axis, we can estimate the
effective interlayer coupling energy as the product of the
metamagnetic moment ∆Mab and the critical magnetic
field Hc as ∆Mab · µ0Hc ∼ 0.06 µB × 0.15 T ∼ 0.7 µeV.
There is a hysteresis in the magnetization at a low field
region, which shows up as the bifurcation in the temper-
ature dependent susceptibility and should be extrinsic.

With increasing temperature above TN, χab decreases
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FIG. 3. Isothermal magnetization curves of Sr2IrO4 registered
at 5 K.

and appears to crossover to almost temperature indepen-
dent behavior. The magnitude of χab in the high temper-
ature limit is comparable to χc as seen in the upper inset
of Fig. 2, implying that the isospin system is isotropic
in the paramagnetic phase. We will analyze this region
in detail as a weakly coupled 2D Heisenberg system with
DM interaction.

IV. DISCUSSION

A. Fitting of χ(T ) based on 2D IHAF model.

The interlayer coupling energy is orders of magnitude
smaller than that of the in-plane coupling characterized
by the in-plane antiferromagnetic coupling Jab ∼ 0.1 eV
[6, 23]. This should give rise to strong 2D magnetic fluc-
tuations over a wide temperature range up to ∼ Jab/kB
well above the three-dimensional ordering temperature
TN. The Heisenberg character of 2D fluctuations was
captured as the temperature dependence of magnetic cor-
relation length above TN measured by a resonant x-ray
diffuse scattering [6]. As described in the introduction,
the magnetism of Jeff = 1/2 pseudo-spins is in striking
parallel with the case for 2D S = 1/2 Heisenberg an-
tiferromagnet La2CuO4. The two-dimensional magnetic
correlations (Jab ∼ 0.135 eV [19]) first develop on cool-
ing, and the finite interlayer coupling (∼ 1 µeV) triggers
the three-dimensional magnetic ordering at TN [10, 18].
In accord with the close analogy of Jeff = 1/2 mag-

netism of Sr2IrO4 with 2D S = 1/2 IHAF in La2CuO4,
we emphasize here that the temperature dependent mag-
netic susceptibility χ(T ) of La2CuO4 is surprisingly sim-
ilar to that of Sr2IrO4. The out-of-plane susceptibility
χc of La2CuO4 displays a sharp peak at TN while the in-
plane susceptibility χab(T ) shows only a very weak tem-
perature dependence [18, 24]. A clear signature of meta-
magnetism was observed below TN in the out-of-plane
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magnetization curve, evidencing the presence of canting
moments [18, 19, 24].
In La2CuO4, the steep increase of χc(T ) right above

TN is attributed to the canting moment produced by DM
interaction in the presence of developed 2D magnetic cor-
relations. The theoretical magnetic susceptibility formu-
lated by Thio et al., which is based on 2D IHAF incor-
porating DM interaction and interplayer coupling, well
described χ(T ) of La2CuO4 [18, 19]. In the following, we
attempt to describe χ(T ) of Sr2IrO4 in the same frame-
work.
In order to formulate χ(T ) of Sr2IrO4, two major dif-

ferences from La2CuO4 must be taken into account. (i) In
Sr2IrO4, the rotation of IrO6 octahedra about the c-axis
gives rise to the DM vector parallel to the c-axis, whereas
the buckling of CuO6 along (010) (in the

√
2a×

√
2a unit

cell) yields the DM vector lying in the CuO2 plane. This
results in the direction of the canting moments parallel
to the IrO2 plane in Sr2IrO4, while that is perpendicu-
lar to the CuO2 plane in La2CuO4. (ii) The interlayer
coupling is dominated by nearest neighbor antiferromag-
netic interaction in La2CuO4. For Sr2IrO4, the interlayer
couplings beyond the nearest neighboring planes must be
considered to allow for the uudd configuration of canting
moments. With these differences in mind, we construct
the theoretical magnetic susceptibility of Sr2IrO4 in the
paramagnetic phase.
To derive the theoretical magnetic susceptibility, we

introduce the local axes for A and B magnetic sublat-
tices. They are obtained by a staggered rotation of spin-
axis about z-axis (i.e. the crystallographic c-axis) with
angles of ±φ, as sketched in the inset of Fig. 4. In the ro-
tated axis frame, the intralayer magnetic coupling can be
mapped onto IHAF, if we ignore the Hund’s coupling, as
discussed in Ref. [3]. By introducing the interlayer cou-
plings in a mean-field approximation, the in-plane sus-
ceptibility of 3D coupled layers is expressed as follows
in terms of its out-of-plane component χc and staggered
susceptibility of 2D IHAF χ† given in units of inverse
energy. We find (see Appendix),

χab = cos2 φχc +
sin2 φ(gabµB)

2χ†

1− Jcχ† (4.1)

where µB and gab denote respectively Bohr magnetron
and the in-plane g-factor of Jeff = 1/2 isospin, which is 2
in the cubic limit [1]. For the interlayer couplings, we first
consider a single parameter Jc which represents an effec-
tive exchange field coming from all interlayer exchange
couplings.
We analyze the experimental in-plane susceptibility in

the paramagnetic phase shown in Fig. 4 based on Eq.
(4.1). The out-of-plane susceptibility χc is independent
of temperature in the range shown in Fig. 4, and esti-
mated to be 3.1 × 10−4 emu/mol [25]. Makivic and Ding
studied the S = 1/2 2D Heisenberg model on a square lat-
tice by quantum Monte Carlo simulation, and obtained
the following relation for staggered susceptibility χ†,
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FIG. 4. Magnetic susceptibilities of Sr2IrO4 in the high-
temperature paramagnetic phase. Red and blue dots show
the experimental in-plane (χab) and out-of-plane (χc) suscep-
tibilities, and the black solid line delineates the fitting line
for χab based on Eq. (4). The inset depicts the local spin
frame (x̃, ỹ) rotated by the angle of ±φ from the laboratory
frame of (x, y). A and B represent the two antiferromagnetic
sublattices.

χ† = 1.65(ξ/a)2(kBT/J
2
ab) (4.2)

where ξ is the two-dimensional magnetic correlation
length and a is the nearest Ir-Ir distance [26]. ξ is ex-
pressed as,

ξ = 0.276aexp(1.25Jab/T ) (4.3)

which well explained the experimental data obtained by
resonant x-ray diffuse scattering and yielded Jab as 0.1
± 0.01 eV [6]. We note that χ† estimated from Eq. (4.2)
agrees well with the one obtained by a large scale quan-
tum Monte Carlo method [27].
Throughout the analysis, we employed the following

assumptions so as to obtain a reliable fit. (i) Since φ
is at most ∼ 11◦, which is the angle of IrO6 rotations
about the c-axis, cos2φ should be 0.97 < cos2φ < 1,
namely very close to 1. We thus omitted the prefactor
of cos2φ for the out-of-plane susceptibility χc. We con-
firmed that the presence or absence of this factor did not
alter the final results [28]. (ii) Since gab and φ cannot be
determined independently, we treated gabsinφ as a single
parameter. By taking Jc and gabsinφ as variant parame-
ters and fixing Jab at 0.10 eV, we fitted the experimental
in-plane susceptibility in the temperature range between
240 K and 350 K [28].
The result of fit is shown as the black solid line in

Fig. 4. Eq. (4.1) reasonably reproduces the experi-
mental result, indicating the predominance of IHAF in
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Sr2IrO4. This also implies that the influence of pseu-
dodipolar interaction induced by Hund’s coupling is not
appreciable in the high temperature paramagnetic phase
of Sr2IrO4 [29]. The observed strong temperature de-
pendent upturn of in-plane susceptibility is solely due
to anisotropic DM interaction induced linear coupling of
uniform and staggered (critical) components of χab, while
Hund’s coupling induced easy-plane anisotropy, not con-
sidered here, would merely induce small constant shift of
χab within the temperature range discussed here. The
obtained parameters are gabsinφ = 0.0376 ± 0.0002 and
Jc = 15.86 ± 0.07µeV. We note that a steep increase of
χab right above TN by DM interaction benefits in obtain-
ing a reliable fit. This contrasts with a sister compound
Ba2IrO4 where DM interaction is absent and its magnetic
susceptibility shows no visible anomaly at TN [30].

The obtained gabsinφ ∼ 0.038 is small compared with
the one estimated from the weak ferromagnetic mo-
ment in the ordered state at low temperatures, M =
gabµBSsinφ ∼ 0.068 µB. For S = 1/2, the gabsinφ ∼
0.13, a factor of 3 larger than the fitting result. The
isospin moments of Sr2IrO4 are known to rigidly follow
the IrO6 rotations [31] by DM interaction with strong
spin-orbit coupling. Since the change of IrO6 rotation
angle is less than 1◦ between room temperature and 10
K [32], we cannot ascribe the difference to the change of
isospin canting angle by temperature. The possible origin
of this discrepancy is the reduced magnitude of isospin
moments at high temperatures. Due to the smallness of
charge gap of ∼ 0.5 eV [1], charge excitation is substan-
tial at high temperatures which may renormalize the size
of effective local moment. Such renormalization might
be a characteristic feature of weak Mott insulators with
a small charge gap.

B. Up-up-down-down stacking configuration of

in-plane canting moments.

The fitting result shows an effective antiferromagnetic
interlayer coupling Jc > 0. If only the nearest plane in-
terlayer coupling is considered, this cannot lead to the
uudd interlayer sequence of in-plane moments, and the
interlayer couplings beyond nearest planes must be taken
into account. The presence of sizable further neighbor in-
terlayer couplings should be reasonable in the sence that
Sr2IrO4 is regarded as a weak Mott insulator marginally
formed by modest Coulomb U of 5d electrons. Since
the interlayer couplings beyond the next-nearest neigh-
boring planes are supposed to be negligibly small, we
consider the interlayer couplings from the nearest and
next-nearest planes.

We construct a minimal model that includes the
isotropic couplings between iridium ions in nearest (J ′

1c

and J ′′
1c within the same and different sublattices, respec-

tively) and next-nearest (J2c) planes (see Fig. 5). It takes
the following form:

J

1c

1cJ’’2c

J’

A
B

A

AA

B
A

B B

BB
A

B
A

FIG. 5. Interlayer couplings in nearest (J ′

1c and J ′′

1c) and
next-nearest (J2c) planes. The iridium sublattice formed by
anticlockwise (clockwise) rotated octahedra is labeled by A

(B).

Hc =
∑

n

J ′
1c

(

~SA,n · ~SA,n+1 + ~SB,n · ~SB,n+1

)

(4.4)

+
∑

n

J ′′
1c

(

~SA,n · ~SB,n+1 + ~SB,n · ~SA,n+1

)

+
∑

n

J2c
(

~SA,n · ~SB,n+2 + ~SB,n · ~SA,n+2

)

,

where ~SA(B),n denotes spins of A(B) sublattice of nth-
layer in the laboratory frame. The fact that there is no
visible anisotropy in the measured in-plane magnetiza-
tions justifies to drop out symmetry allowed anisotropy
terms. By introducing the planar unit vector ~mn for
the staggered moment of nth-layer, which corresponds

to ( ~̃SA,n − ~̃SB,n)/2S where ~̃SA(B),n denotes spins in the
local (rotated) frame, we arrive to the following classical
energy (in unit of 1/S2) of coupled layers,

E =
∑

n

{−j1c~mn · ~mn+1 + j2c ~mn · ~mn+2

−b(~mn · ~mn+1)
2} , (4.5)

where j1c = 2(J ′′
1c cos 2φ− J ′

1c) and j2c = −J2c cos 2φ are
effective exchange couplings between nearest and next-
nearest neighbor planes, respectively [33, 34]. In addi-
tion to the classical energy, we also include effective bi-
quadratic coupling b driven by quantum fluctuations [35].
In order to allow for the uudd configuration, we assume
ferromagnetic (antiferromagnetic) nearest (next-nearest)
interlayer couplings between ~mn, respectively [34].
The effective interlayer coupling Jc, entering in Eq.

(4.1), is expressed as Jc = 2(j1c − j2c). From the fit
value of Jc ∼ 15.9 µeV and the change of exchange en-
ergy at the the field induced metamagnetic transition
(2j1c − j2c)S

2 = ∆Mab · µ0Hc ∼ 0.7 µeV, we obtain
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j1c and j2c as 18.8 µeV and 10.8 µeV, respectively. The
result points to a competition of nearest and next-nearest
interlayer couplings with a comparable magnitude, which
originates from the following facts; (i) j1c is geometrically
frustrated, that is, J ′

1c and J ′′
1c compete each other and

j1c is marginally yielded by the uncompensated out-of-
plane exchanges due to the rotational distortion of IrO6

ochtahedra. (ii) The cubic character of Jeff = 1/2 wave
function, in contrast to the outermost Cu dx2−y2 orbital
of La2CuO4 extended in the basal plane, gives rise to
sizable J2c.

The result accounts for the uudd configuration of in-
plane moments observed by the diffraction experiments
[2, 21]. The uudd configuration is stabilized in the fol-
lowing parameter range of the present model [Eq. (4.5)]
[36],

2j2c > j1c > 0 and b >
j21c

4(2j2c − b)
> 0. (4.6)

j1c and j2c obtained as above satisfy the former rela-
tion. The latter relation calls for b > 5.5 µeV, which is
three orders of magnitude larger than the value reported
for La2CuO4 (b ∼ 2×10−9 eV) [35]. Since b is in propor-
tion to J2

outS/Jab, where Jout is the isotropic exchange
between nearest neighbors in the adjacent planes (Jout ∼
J ′
1c or J ′′

1c), this suggests the larger interlayer coupling
Jout and thus larger interlayer hopping t⊥ in Sr2IrO4.
In a crude estimation [37], we obtain t⊥(Sr2IrO4) ∼ 5
t⊥(La2CuO4). The larger t⊥ of Sr2IrO4 is consistent
with the smaller anisotropy of resistivity ρc/ρa of Sr2IrO4

than that of La2CuO4 [11], again attributed to the weak
Mott character and the cubic shape of Jeff = 1/2 wave
function. The uudd configuration of in-plane moments in
Sr2IrO4 is therefore stabilized by the following factors; (i)
geometrically frustrated nature of nearest neighbour in-
terlayer couplings which suppresses j1c, (ii) isotropic and
extended character of Jeff = 1/2 wave function giving rise
to sizable j2c and b.

V. CONCLUSION

We analyzed the magnetic susceptibility of spin-orbital
Mott insulator Sr2IrO4 in the paramagnetic phase. The
analysis evidences the predominance of isotropic Heisen-
berg exchange between the Jeff = 1/2 pseudo-spins, fur-
ther reinforcing the similarity with La2CuO4. The result
of fit points to the competing interlayer couplings be-
tween the nearest and next-nearest IrO2 planes. The
competing nature of interlayer couplings and the re-
sultant complex stacking pattern of Jeff = 1/2 isospin
moments might give a clue for further unsettled issues
of Sr2IrO4 such as high-pressure suppression of weak-
ferromagnetic moments [38] and the second magnetic
transition below TN argued from the local probes [39].
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APPENDIX

In this Appendix, we derive the in-plane susceptibility
of 3D coupled layer system in terms of uniform and stag-
gered susceptibilities of 2D IHAF. The exchange interac-
tions for an intralayer bond of nearest-neighbor iridium
ions can be written as:

Hij = J ~Si · ~Sj + JzS
z
i S

z
j −D

(

Sx
i S

y
j − Sy

i S
x
j

)

, (A1)

they include isotropic antiferromagnetic (AF) coupling
(J), as well as symmetric (Jz) and antisymmetric (D)
Dzyaloshinsky-Moriya (DM) exchange anisotropies [3].
The dominant contributions (ignoring Hund’s exchange
induced corrections) to the coupling constants in Eq. A1
can be parameterized as J = Jab cos 2φ, Jz = 2Jab sin

2 φ,
and D = Jab sin 2φ, where Jab =

√
J2 +D2 defines over-

all energy scale of intralayer exchange and tan 2φ = D/J .
Following Ref. [3], we introduce the local quantization
axes for spins on A and B sublattices obtained by a stag-
gered rotation of the spin frame around z-axis by an angle
±φ [see inset in Fig. 4 of the main text]. We further de-

note by S̃γ
i (γ = x, y, z) the Cartesian components of

spins in a local rotated frame. They are related to the
laboratory frame by the following transformations:

Sx
i = cosφS̃x

i − exp(ıQRi) sinφS̃
y
i , (A2)

Sy
i = cosφS̃y

i + exp(ıQRi) sinφS̃
x
i , Sz

i = S̃z
i .

Here Q = (π, π) and exp(ıQRi) = +(−)1 for i belong-
ing to A (B) sublattice. With this transformation, the
anisotropic Hamiltonian Eq. A1, with the above parame-
terization of coupling constants, is mapped in the rotated
frame to the isotropic Heisenberg AF (IHAF)

H̃ij = Jab
~̃Si · ~̃Sj . (A3)

Thus in the rotated frame spins form collinear Néel
order. The Hund’s coupling induced anisotropy selects
in-plane AF order (see Ref. [3]), and corresponding spin
pattern in the laboratory frame is given by canted AF
structure with canting angle φ [see inset in Fig. 4 of the
main text].
Based on the above derived mapping, we relate the

magnetic susceptibilities of the system described by
anisotropic Hamiltonian Eq. A1 to that of isotropic IHAF
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Eq. A3. To this end, we first rewrite the transformation
Eq. A2 in the momentum representation

Sx
q = cosφS̃x

q − sinφS̃y
q+Q , (A4)

Sy
q = cosφS̃y

q + sinφS̃x
q+Q , Sz

q = S̃z
q ,

we then express the in-plane and out-of-plane (along the
c-axis) components of uniform static magnetic suscepti-
bility of a single plane, χab and χc respectively, modeled
by Eq. A1 in terms of uniform χ0 = χ(q = 0) and stag-
gered χ† = χ(q = Q) static susceptibilities of 2D IHAF:

χab = cos2 φχ0 + sin2 φχ† , χc = χ0 . (A5)

It is straightforward to generalize Eq. A5 to a 3D sys-
tem of coupled layers, such as Sr2IrO4 of interest here,
we find

χab = cos2 φχ0 + sin2 φχ†
+ , χc = χ0 , (A6)

where χ†
+ now stands for the susceptibility of coupled

layers in response to the applied field modulated in such
a way that each A sublattice of different layers influence
the same field that is opposite to the one influenced by B

sublattices. We next relate χ†
+ to χ† (staggered suscep-

tibility of 2D IHAF) within the random phase approxi-
mation (RPA) [see e.g. Ref. [40]] for the weak interlayer
couplings. We find

χ†
+ =

χ†

1− Jcχ† , (A7)

χab = cos2 φχc +
sin2 φ(gabµB)

2χ†

1− Jcχ†

where Jc is an effective exchange field from neighboring

layers, and χ†
+ and χ† are given in units of inverse energy.

Note that biquadratic coupling b does not contribute to
a linear susceptibility of paramagnetic state.
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