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A number of experiments on the hyperkagome iridate, Na4Ir3O8, suggest existence of a gapless
quantum spin liquid state at low temperature. Circumventing the slave particle approach com-
monly used in theoretical analyses of frustrated magnets, we provide a more intuitive, albeit more
phenomenological, construction of a quantum spin liquid state for the hyperkagome Heisenberg
model. An effective monomer-dimer model on the hyperkagome lattice is proposed a la Hao and
Tchernyshyov’s approach cultivated from the Husimi cactus model. Employing an arrow represen-
tation for the monomer-dimer model, we obtain a compact U(1) gauge theory with a finite density
of fermionic spinons on the hyperoctagon lattice. The resulting theory and its mean field treatment
are consistent with previous slave-particle construction of a quantum spin liquid state on the hy-
perkagome lattice. Our results offer novel insights into the emergence of spinon Fermi surfaces and
useful predictions for future experiments.

I. INTRODUCTION

Hyperkagome iridate, Na4Ir3O8, is a rare candi-
date material for three-dimensional quantum spin liq-
uid phase, a quantum paramagnet without spontaneous
symmetry breaking1,2. Here the pseudospin S = 1/2
local moments reside on hyperkagome lattice, a three-
dimensional network of corner-sharing triangles (Fig. 1a).
While it is an insulator, the specific heat coefficient
γ = C/T and uniform susceptibility χ show the behavior
that would be typical for a metal, i.e. both remain finite
down to the lowest experimentally accessible tempera-
ture. This peculiar phenomenology could be explained if
the ground state of the material is a quantum spin liq-
uid hosting fermionic excitations known as spinons. Each
spinon carries S = 1/2 but no electric charge. The finite
γ and χ at zero temperature is attributed to the Fermi
surfaces of spinons3,4. The existence of spinon Fermi sur-
faces is also consistent with recent thermal conductivity
and Knight shift measurements5–7.

On the theory front, it has been argued that the hy-
perkagome Heisenberg antiferromagnet (HKHAF) is a
good first approximation to Na4Ir3O8

3,4,8–10. The model
Hamiltonian is given by,

H = J
∑
〈ij〉

Si · Sj , (1)

where Si is the S = 1/2 pseudospin operator on site i of
the hyperkagome lattice. The summation runs over all
nearest-neighbor pairs. J > 0 is the exchange constant
between nearest-neighbor pseudospins.

There have been several theoretical attempts to ex-
plicitly construct a candidate spin liquid ground state
for Eq. (1). Most of these constructions are based on the
slave-particle or parton approach3,4,9. In this approach,
the physical spin is represented as a bilinear combination
of the partons, which can be either fermions or bosons.
Among these constructions, the one based on fermionic

partons seems to be more satisfactory. A Monte Carlo
study on the variational wave functions of fermionic par-
tons found that a quantum spin liquid state with spinon
Fermi surfaces and fluctuating U(1) gauge field has the
lowest energy3. In particular, the prediction of spinon
Fermi surfaces lends support to the aforementioned in-
terpretation of the Na4Ir3O8 phenomenology. While the
parton construction looks quite successful in capturing
the spin liquid ground state of Eq. (1), a number of ques-
tions remain unanswered in this line of approach. For
instance, why is the fermionic spinons, rather than the
bosonic counterpart, emerge at low energy? What phys-
ical picture is behind the emergence of the spinon Fermi
surfaces and the gauge fields?

In this work, we provide an alternative, and more in-
tuitive, construction of the quantum spin liquid state for
Eq. (1). Our approach is motivated by insights advo-
cated by Hao and Tchernyshyov in their studies of the
Husimi cactus and the two-dimensional kagome Heisen-
berg antiferromagnet11,12. The basic idea is to use the
low energy degrees of freedom of the antiferromagnetic
Heisenberg model on Husimi cactus lattice13, which is a
tree analog of the kagome and hyperkagome lattices, as
the building blocks for the effective theory of HKHAF.

In the Husimi cactus model, the ground states are sin-
glet coverings, where every triangle is occupied by ex-
actly one singlet formed by nearest-neighbor spins. The
low energy S = 1/2 excitations are created from such a
vacuum. As we shall see later in the main text, start-
ing from a defect triangle, which is not occupied by a
singlet, a pair of spinons with Sz = 1/2 and -1/2 can
be created by local exchange interactions. The motion
of these spinon excitations occurs with successive flip-
ping of a string of nearby singlets across the lattice. In
Husimi cactus model, these spinons are shown to pos-
sess fermionic statistics. Thus, the low energy degrees of
freedom of the Husimi cactus model consists of nearest-
neighbor singlets and fermionic spinons.

Given that the Husimi cactus and the hyperkagome
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lattice share the same local structure, we expect that
the low-energy degrees of freedom of HKHAF are also
nearest-neighbor singlets and fermionic spinons. This
observation leads to a monomer(spinon)-dimer(singlet)
model on the hyperkagome lattice (Fig. 1c). It can be
shown that there are not enough dimers to cover every
triangle on the hyperkagome lattice and a quarter of tri-
angles remain as defect triangles. As a pair of spinons
can be generated from each defect triangle, the number
of monomers per triangle for each spin projection in the
monomer-dimer model should be f = 1/4.

It is convenient to map the dimer coverings on the
hyperkagome lattice to patterns of arrows connecting
the centers of triangles. The triangle centers of the hy-
perkagome lattice form the so-called hyperoctagon lat-
tice14. Hence, the arrows reside on the links of the hy-
peroctagon lattice. The spinons are mapped to point
defects residing on the hyperoctagon sites (Fig. 1b,d).
The density of these fermionic defects is again 1/4. We
then show that the resulting model is a compact lattice
U(1) gauge theory, where the fermionic defects or spinons
carry the gauge-charge 1. The mean field band structure
of spinons at a quarter filling produces multiple Fermi
surfaces with one hole-like and two particle-like pockets,
which is consistent with spinon band structure obtained
in the previous slave-fermion mean field theory3,4. Hence
the monomer-dimer model and its arrow representation
provide a intuitive picture that bridges the microscopic
model and the spin liquid mean field theory. Utilizing
this picture, we have also computed the spin structure
factor that can be measured in scattering experiments
and pointed out various salient features that arise from
the spinon Fermi surfaces.

The rest of the paper is organized as follows. In Sec-
tion II, we construct the phenomenological lattice U(1)
gauge theory for the HKHAF. In Section III, we study
the U(1) gauge theory at the mean field level and find
that the model provides a natural access to both U(1)
and Z2 quantum spin liquid ground state. As a simple
application of our theory, we also compute the dynami-
cal spin structure factor in the U(1) spin liquid state of
the HKHAF. In Section IV, we discuss potentially inter-
esting directions to explore in relation to experiments on
hyperkagome spin liquid materials such as Na4Ir3O8.

II. MODEL

In this section, we construct the phenomenological lat-
tice gauge theory for HKHAF. We follow the previous
construction for the kagome Heisenberg antiferromagnet
in Ref. [12]. For the sake of being self-contained, in
Sec. II A, we briefly review the results about the S = 1/2
antiferromagnetic Heisenberg model on Husimi cactus.
Based on these results, we motivate a monomer-dimer
model in hyperkagome lattice in Sec. II B. In Sec. II C, by
using the arrow representation12,13, we map the Hilbert
space of the hyperkagome monomer-dimer model to ar-

FIG. 1. (Color online). (a) Hyperkagome lattice. Two sets
of interpenetrating triangles are colored in blue and green.
Grey box shows a unit cell. (b) Hyperoctagon lattice. A and
B sub-lattice sites are colored in blue and green, respectively.
Grey box shows a unit cell. The midpoints of hyperoctagon
links form a hyperkagome lattice. Arrows show three d vec-
tors that point from a hyperoctagon site to its three nearest-
neighbors, which shall be used in calculating the dynamical
spin structure factor in Sec. III B. (c) The monomer-dimer
model. Blue ellipsoids represent dimers, i.e. the spin sin-
glets formed by nearest-neighbor spins. Red spheres represent
spinons or fermionic monomers. Arrows indicate the spin ori-
entation of spinons. A defect triangle is colored in magenta.
(d) Arrow configuration on hyperoctagon lattice, which corre-
sponds to the monomer-dimer state presented in (c). Note an
empty triangle is regarded as a pair of spinons with opposite
spins.

row configurations on the links of the hyperoctagon lat-
tice, which is the key step toward the lattice gauge the-
ory. Finally, we write down the phenomenological lattice
gauge theory Hamiltonian in Sec. II D.

A. Husimi cactus model

In this section, we briefly review the results of the an-
tiferromagnetic Heisenberg model on Husimi cactus11,13.
These results later will be used to motivate the hyperk-
agome monomer-dimer model.

The Husimi cactus is a tree network of corner-sharing
triangles (Fig. 2a). The antiferromagnetic Heisenberg
model Hamiltonian is given by,

HHusimi = J
∑
〈ij〉

Si · Sj =
J

2

∑
4

S2
4 + const. (2)

Here, Si is the S = 1/2 spin operator on cactus site i.
The exchange constant J > 0. The first summation is
over all nearest neighbor pairs in the cactus, whereas the
second summation is over all triangles. The total spin in



3

FIG. 2. (Color online). (a) A ground state of the Husimi
cactus model. Each ellipse represents a singlet. (b) Breaking
up a singlet in the ground state shown in (a) results in two
unpaired spins. (red solid arrows). (c) One of the two spins
in (b) may hop away by permuting singlets along a path. In
the present case, the Sz = 1/2 spin (up arrow) moves away,
which is identified as a spinon. Empty ellipses show the sin-
glet covering pattern in (b) to highlight the spinon propaga-
tion path. Red open up arrow marks the initial position of
the Sz = 1/2 spin. The other spin (down arrow), however, is
immobile, which is identified as an anti-spinon (d)(e) A defect
triangle (magenta shaded triangle) that is neither covered by
a singlet nor occupied by spinons breaks up into a pair of
spinons (red solid arrows) under the action of local exchange
interaction. (f)(g)(h)(i) The two spinons in (e) may exchange
their locations through a sequence of actions. Arrows show
the orientation of singlets. In each stage, open blue arrows
show the location and orientation of the singlets in the pre-
vious stage to show the propagation path, and the open red
up or down arrow marks the initial position of the spinon. In
the final state (i), all but one singlets return to their initial
position and orientation. The orientation of the singlet in the
central triangle is flipped, which indicates an π Berry phase
associated with exchanging spinons.

a given triangle S4 =
∑
i∈4 Si, where the summation is

over all three sites belonging to the triangle.

The energy of Eq. (2) is minimized if S4 = 1/2 for
every triangle. This can be attained by putting nearest-
neighbor spins in spin singlets and covering every triangle
by a singlet (Fig.2a). Since the cactus can be covered in
numerous ways, Eq. (2) has massively degenerate ground
states. A triangle that is covered by a singlet is known
as a “vacuum” triangle since the local interaction energy
is minimized.

Breaking up a singlet in the ground state creates two

unpaired spins, which are S = 1/2 excitations of the
Husimi cactus model (Fig. 2b). One of the unpaired spins
may propagate in the cactus under the action of local ex-
change interaction. However, the other spin is immobile
as it is an eigenstate of the local exchange interaction. In
Fig. 2c, the Sz = 1/2 spin is mobile, while the Sz = −1/2
spin is immobile. It is therefore necessary to distinguish
two types of S = 1/2 excitations: the former, mobile exci-
tation is referred to as a spinon, and the latter, immobile
excitation is known as an anti-spinon11. Furthermore, a
spinon is sandwiched by a vacuum triangle and a triangle
that is not covered by a singlet, whereas an anti-spinon
is sandwiched by two vacuum triangles. Note that the
spinon or anti-spinon character of an unpaired spin is in-
dependent of its spin projection (Sz value). In Fig. 2c,
the Sz = 1/2 spin is a spinon, and the Sz = −1/2 spin is
an anti-spinon. Alternatively, starting from Fig. 2b, one
may choose to move the Sz = −1/2 spin away, which
is identified as a spinon. The Sz = 1/2 spin is then an
anti-spinon.

The cactus also supports non-magnetic excitations. To
see this, we consider a state in which all but one triangles
are covered by singlets. In Fig.2d, the central triangle
(shaded in magenta) is neither covered by a singlet nor
an unpaired spin. Such a triangle is known as a “defect”
triangle. Different from Fig. 2a, the state depicted in
Fig. 2d is not an eigenstate of the Hamiltonian Eq. (2).
Applying the Hamiltonian to the defect triangle results
in two spinons, which may propagate independently un-
der the action of the Hamiltonian (Fig.2e). Calculations
show that a defect triangle should be regarded as a S = 0
bound state of two S = 1/2 spinons, which indicates that
there is an attraction potential between two spinons in
the Husimi cactus model11.

A braiding argument shows that spinons carry fermion
statistics11. To this end, we need to keep track of the
phases of the spinon wave function. Recall that a singlet
formed by two spins Si and Sj changes sign under the
permutation i ↔ j. It is thus convenient to represent
the singlet | ↑i↓j〉− | ↓i↑j〉 as an arrow pointing from the
site i to site j. Fig. 2f shows an arbitrary assignment of
the singlet orientation. The Sz = 1/2 and Sz = −1/2
spinons may exchange their locations through a sequence
of actions (Fig. 2g∼i). Crucially, the orientation of the
singlets at each stage is determined by the local exchange
interaction. Comparing the initial (Fig. 2f) and the final
(Fig. 2i) states, we observe that all but one singlets re-
turn to their initial position and orientation. The singlet
in the central triangle, however, is flipped, which implies
that there is an overall π Berry phase associated with ex-
changing two spinons. We thus conclude that spinons are
fermions. Likewise, a similar braiding argument shows
that anti-spinons carry fermion statistics as well.



4

B. Monomer-Dimer model

Both kagome and Husimi cactus feature the motif of
corner-sharing triangles. It is therefore reasonable to ex-
pect that the local physics of the kagome Heisenberg anti-
ferromagnet is similar to that of the Husimi cactus model.
In particular, one may use the low-energy, local degrees
of freedom in the Husimi cactus model to motivate a
kagome monomer-dimer model12. Note that the result-
ing model necessarily contains physics beyond the Husimi
cactus as the kagome lattice and the Husimi cactus differ
globally; the former contains loops of triangles whereas
the latter has none.

Given that the hyperkagome shares the same motif, we
may adapt the aforementioned methodology to HKHAF
and motivate a similar monomer-dimer model (Fig. 1c).
We surmise that this approach will work even better for
the HKHAF because the hyperkagome lattice is closer to
the Husimi cactus in terms of lattice topology than the
kagome lattice. The shortest loop in hyperkagome con-
tains 10 triangles, whereas the shortest loop in kagome
lattice contains 6 triangles.

To begin with, we assume that the singlet coverings
on hyperkagome belong to the low energy Hilbert space
of the Eq. (1). In the same spirit as the quantum dimer
model, we treat two different singlet coverings as being
orthogonal to each other. Thus, the spin singlets become
dimers.

In analogy with the Husimi cactus model, we would
like to cover each triangle with a dimer (singlet). Had
we been able to do so, the resulted state would be an
exact ground state of the Hamiltonian Eq. (1). How-
ever, a simple counting shows that this is impossible. On
one hand, we can make N/2 dimers from a system of N
spins. On the other hand, the hyperkagome lattice with
periodic boundary condition contains 2N/3 triangles. In
other words, there are not enough dimers to cover every
triangle. Specifically, there must be a fraction of

f = 1− N/2

2N/3
=

1

4
, (3)

triangles being defect triangles. As discussed in Sec. II A,
each defect triangle can be regarded as a S = 0 pair
of two spinons, which may separate under the action of
local exchange interaction. We therefore must include
S = 1/2 spinons in the low energy Hilbert space as well.
By contrast, we exclude anti-spinons because we must
break a singlet to create an anti-spinon, which is a process
costing the energy of order J . Furthermore, we endow
spinons with fermion statistics as the case for Husimi
cactus model. In the language of quantum dimer model,
the spinons are Fermonic monomers carrying S = 1/2
spin. The average number of monomers per triangle is
f = 1/4 for each spin projection.

FIG. 3. (Color online). (a) Arrow rule for a site touched by a
dimer. The arrow points in the same direction as the dimer.
(b) A vacuum triangle is associated with two incoming and
one out-going arrows. (c) A defect triangle is associated with
three out-going arrows. (d) Arrow rule for a site occupied by
a spinon. The arrow points from the vacuum triangle to the
other triangle. (e) A case in which the arrow representation
becomes ambiguous. The arrow can point in either directions.
(f) A spinon (red short arrow) can be regarded as a point de-
fect (red dot) associated with two out-going arrows and one
in-coming arrow. (g) A spinon may hop by flipping a neigh-
boring dimer. In the arrow representation, this corresponds
to flipping an arrow that points toward the point defect (black
dashed arrow).(h,i) The object shown in (e) is in fact a cluster
of three spinons. Hopping the spinon away results in a spinon
and a defect triangle (magenta shaded triangle), which is a
bound pair of spinons.

C. Arrow representations of low energy states

In this section, we employ arrow representation to map
the states in the hyperkagome monomer-dimer model to
arrow configurations in hyperoctagon lattice.12,15,16 The
hyperoctagon lattice is made from the standard diamond
lattice by selectively deleting 1/4 links (Fig.1b)14. Each
unit cell contains 8 sites. The midpoints of the hyper-
octagon links form a hyperkagome lattice. Furthermore,
each site in the hyperoctagon corresponds to the cen-
tre of a triangle in the hyperoctagon. The hyperoctagon
lattice inherits the bipartite property from the diamond
lattice. The two interpenetrating sublattices of the hy-
peroctagon lattice correspond to the array of “up” and
“down” triangles in hyperkagome. Note that our choice
for the hyperoctagon lattice site coordinates is slightly
different from the choice made in Ref. 14, but the two
are topologically equivalent. In what follows, we describe
the arrow representation by enumerating all the rules.
Rule I. We consider a site touched by a dimer (Fig.3a).

The site is shared by two triangles, say 1 and 2. We note
that the said dimer must cover one of the two triangles,
say 1. We then draw an arrow pointing from the center
of the triangle 2 to the center of triangle 1. A neces-
sary consequence of this rule is that a vacuum triangle
is associated with two arrows pointing towards its center
and one arrow pointing away (Fig.3b). By contrast, a
defect triangle is associated with three arrows pointing
away from its center (Fig.3c)16.
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Rule II. We then consider a site occupied by a spinon
(Fig.3d). In this case, the site is shared by a vacuum
triangle and a triangle that is not covered by singlet. We
then draw an arrow that points from the center of the vac-
uum triangle to the center of the other triangle. Combing
it with the Rule I, we see that the vacuum triangle is as-
sociated with two in-coming arrows and one out-going
arrow as it should be. The other triangle, however, is
associated with two incoming arrows and one out-going
arrow. It is then natural to regard the spinon as a point
defect residing on the centre of the said triangle (Fig.3f).
In the ensuing discussion, we shall refer the point defect
as spinons and use the term “spinon” and “point defect”
interchangeably.

Rule III. We consider a special case in which the spinon
is sandwiched by two triangles, none of them being cov-
ered by singlets (Fig.3e). In this case, we may still draw
an arrow pointing from one triangle to the other but the
direction is ambiguous. As a result, the arrow represen-
tation is no longer a one-to-one mapping. We argue that
this ambiguity is insignificant as such cases are rare. In
fact, the object presented in Fig. 3e is a cluster of three
spinons (Fig.3h). To see this, we hop the spinon away and
an empty triangle is left as a result. The latter is equiv-
alent to a spinon pair. Thus, the original object must
consist of three spinons. Given that the spinon density
per spin projection is f = 1/4, such objects occur with
a small density of f3 = 1/64. However, one must cau-
tion that we have assumed the spinons are uncorrelated
in the above estimate. As we shall discuss in Sec. II D,
there is an on-site attraction potential between spinons
with opposite spins, which competes with the long-range
Coulomb repulsion mediated by U(1) gauge fluctuations.
A more careful analysis of the three-spinon clusters re-
quires studying three-body correlation effect, which we
leave for future work.

Since the center of hyperkagome triangles form a hy-
peroctagon lattice, the above rules map the states of
monomer-dimer model to arrow configurations on the
links of the hyperoctagon lattice. Importantly, spinons
are mapped to point defects residing on hyperoctagon
sites. We have argued that the average number of spinons
per hyperkagome triangle is f = 1/4 for each spin projec-
tion. In the arrow representation, the density of spinons
per spin projection is thus f = 1/4 in the hyperoctagon
lattice. A spinon can hop in the hyperkagome by flip-
ping neighboring dimers. In the arrow representation, the
dimer flipping in the hyperkagome is then conveniently
mapped to arrow flipping. Specifically, the point defect
may hop to a neighboring hyperoctagon site by flipping
an out-going arrow (Fig.3f,g).

D. Lattice U(1) gauge theory

After the preparatory steps, we are ready to write
down the phenomenological lattice gauge theory for
HKHAF. We first parametrize the orientation of the ar-

row on the hyperoctagon link rr′ by a pseudo-spin-1/2
variable T zrr′ ≡ −T zr′r = ±1/2. T zrr′ = 1/2 if the spin
points from the site r to r′, and T zrr′ = −1/2 if other-
wise. The spin raising and lowering operators T±rr′ flip

the arrow on the link rr′. Note T±rr′ = T∓r′r in our con-
vention.

We define the spinon (point defect) creation and an-
nihilation operator c†rσ and crσ, where r labels the hy-
peroctagon sites and σ is the spin projection Sz of the
spinon. They obey the standard fermion algebra since
we have endowed the spinon with fermion statistics. The
kinetic term of spinons is then given by,

Ht = −t
∑
rr′,σ

c†r′σT
−
r′rcrσ, (4a)

where the summation is over all oriented links rr′. t > 0
is the hopping amplitude of spinon. The presence of the
spin raising operator T−r′r reflects the fact that the spinon
hops from site r to r′ by flipping an arrow points from r
to r′. Note that Eq. (4a) is Hermitian thanks to the fact
that T±rr′ = T∓r′r.

In the Husimi cactus model, a spin up spinon and a
spin down spinon may form a bound state, which im-
plies that there is an effective on-site attraction between
spinons with opposite spins. We therefore add a potential
term:

Hv = −v
∑
r

c†r↑c
†
r↓cr↓cr↑, (4b)

where the summation is over all hyperoctagon sites. v >
0 is the attraction potential. We take the ratio v/t as an
arbitrary parameter. The full model Hamiltonian is then
given by,

Hgauge = Ht +Hv. (4c)

Since the arrow configurations and the location of
spinons are not independent, we must enforce the fol-
lowing constraint:∑

r′

T zrr′ =
∑
σ

c†rσcrσ − 1/2. (5)

The left hand side is proportional to the number of ar-
rows pointing away from the site r minus the number
of arrows pointing toward r. The right hand side is re-
lated to the number of spinons (point defects) on site r.
Specifically, in the absence of point defect, there are 2 in-
coming arrows and 1 outgoing arrow. The left hand side
is -1/2, which agrees with the right hand side (0− 1/2).
Furthermore, when the site r is occupied by a spinon,
there are two out-going arrows and one-incoming arrow,
and hence the left hand side is 1/2, which equals to the
right hand side (1 − 1/2). Finally, when there are two
spinons on site r, which corresponds to a defect trian-
gle, there arrows point away from r. The left hand side
gives 3/2, which again agrees with the right hand side
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(2 − 1/2 = 3/2). Importantly, the Hamiltonian Eq. (4c)
preserves the constraint Eq. (5).

The above model is a lattice U(1) gauge theory in dis-
guise. To see this, we interpret T zrr′ as the electric fluxes
of a U(1) lattice gauge theory. The constraint Eq. (5)
thus becomes the usual Gauss law constraint. In par-
ticular, a vacuum hyperoctagon site (a vacuum triangle
in hyperkagome lattice) carries charge −1/2, whereas a
spinon carries charge 1. The system is overall charge
neutral as the total charge density is −1/2 + 2f = 0.

We observe that the Hamiltonian Eq. (4c) possesses
a (time-independent) U(1) gauge symmetry: c†r →
c†r exp(iθ) and T−r′r → T−r′r exp[i(θ′r − θr)]. Hence, T−rr′
may be interpreted as the link variable, and then the ki-
netic term Eq. (4a) takes the form of minimal coupling.
Furthermore, the Gauss law Eq. (5) is the generator of
such gauge transformation.

To sum up, we have constructed a phenomenological
lattice U(1) gauge theory for HKHAF. The U(1) gauge
field is coupled to charge-1 fermion at filling factor f =
1/4. Different from a conventional lattice U(1) gauge
theory, the electric fluxes are restricted to value ±1/2,
which implies that the theory is both strongly coupled
and frustrated at the lattice scale.17

III. MEAN FIELD THEORY

In this section, we present a mean-field study of the lat-
tice gauge theory Hamiltonian Eq. (4c). We first set the
on-site attraction between spinons to zero in Sec. III A.
The mean field theory yields a U(1) spin liquid with mul-
tiple spinon Fermi surfaces. In Sec. III B, we compute the
dynamical spin structure within the mean field theory.
When the on-site spinon attraction potential is non-zero,
the spinon Fermi surfaces are unstable toward a BCS
state, which we briefly touch upon in Sec. III C.

A. U(1) spin liquid

We first consider the limit v/t = 0. The kinetic term
Eq. (4a) favors the pseudo-spins to order in the xy plane.
Thus, 〈T−r′r〉 6= 0. If we assume that the gauge fluctua-

tions are weak, we can simply replace T−r′r by its expecta-

tion value, T−r′r → 〈T
−
r′r〉, which is a U(1) phase. In addi-

tion, we may replace both sides the Gauss law constraint,
Eq. (5), by its average value, namely 〈c†rσcrσ〉 = 1/4. If
the time-reversal symmetry is preserved, the flux thread-
ing each 10-site loop of the hyperoctagon lattice is either
0 or π. We consider the simple case in which the fluxes do
not break the symmetry of the lattice. In this case, one
can show that all fluxes must be 0 by using an argument
similar to Ref. 4. We note three 10-site loops in the hy-
peroctagon lattice form a closed surface (Fig. 4). On one
hand, since these three loops are related by a 3-fold ro-
tational symmetry, the fluxes threading these loops must

FIG. 4. (Color online). Top left: A closed surface in the
hyperoctagon lattice. Its three edges, colored in red, green,
blue respectively, are related by a 3-fold rotational symmetry.
The rotational axis is shown as the dashed line. Two edges
form a 10-site loop. The three 10-site loops are related by
the 3-fold rotational symmetry as well. Top right: the cross
section of the fermi surfaces on the (h, h, k) plane. The hole
pocket (red dotted-line) is around (0, 0, 0) or the Γ point.
Two particle pockets (green and blue dotted-lines) enclose
(1/2, 1/2, 1/2) or the R point. Bottom: The spinon dispersion
relation along high symmetry directions. Red dashed line
shows the position of the Fermi energy.

be equal, say Φ. On the other hand, the total flux go-
ing through a closed surface must be 0 modulo 2π. We
thus find 3Φ = 0 modulo 2π. Since we only consider the
time-reversal invariant states, Φ must be 0.

Since all fluxes are 0, we then further set 〈T−〉r′r = 1
for any r′r:

Hgauge ≈ −t
∑
rr′,σ

c†r′σcrσ. (6)

The above is simply a free fermion Hamiltonian, which
can be readily diagonalized. The spinon band structure
along high symmetry directions are shown in Fig.4. Note
we use Miller indices throughout; in other words, the mo-
mentum vectors (h, k, l) are given in units of 2π/a, where
a is the lattice constant of the cubic unit cell. We find
that, at a quarter filling, the spinons possess three small
Fermi pockets: one hole-like pocket surrounding (0, 0, 0)
or the Γ point, and two particle-like pockets surrounding
(1/2, 1/2, 1/2) or the R point. The radius of these pock-
ets are approximately 0.1 or 0.2π/a. Thus, our mean field
treatment finds a U(1) spin liquid with spinon Fermi sur-
faces. Our results are also in agreement with the previ-
ous studies based on the slave fermion mean field theory,
where a U(1) spin liquid state with similar Fermi surface
topology was found.3,4 Here, the result is obtained in a
simpler, more intuitive manner from the phenomenolog-
ical lattice gauge theory.
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FIG. 5. (Color online). S+
i raises the spin on hyperkagome

site i by 1. Such a process is a low-energy one if and only
if a spinon resides on i, as shown in (a) and (c). The arrow
representation for these processes are presented in (b) and (d),
respectively. Red solid circles show the location of the point
defect or spinon in the arrow representation. The white arrow
inside a red circle indicate spin projection of the spinon. Black
open circles marks the midpoint of the hyperoctagon link rr′,
which corresponds to the hyperkagome site i.

While the above mean field spinon band structure re-
sembles the band structure from the parton mean field
theory, the two are not completely identical. The spinons
in the parton construction form 12 bands in the mean
field theory, 4 of which have no dispersion (flat bands)3,4.
Here, the spinons form 8 bands, the dispersion relation of
which agrees with the 8 dispersive bands from the parton
theory. The flat bands are absent in the present theory.
Yet, the absence of the flat bands wouldn’t affect the low
energy physical properties of the HKHAF since the flat
bands are well below the Fermi energy3,4.

B. Dynamical spin structure factor

As a simple application of our phenomenological gauge
theory, we compute the zero-temperature dynamical spin
structure factor (DSSF) of the U(1) spin liquid state
within the mean field approximation. The DSSF is de-
fined as,

S(q, ω) ≡
∫
dteiωt〈S−(q, t)S+(q, 0)〉, (7a)

where,

S+(q) ≡ 1√
N

∑
i

S+
i e

iq·xi . (7b)

Here, the summation is over all hyperkagome sites i, and
xi is the position of i. S±i are the spin raising and low-
ering operators on hyperkagome site i. N is the number
of hyperkagome sites.

The starting point of our calculation is an explicit re-
lation between S±i , which act on the microscopic spin
degrees of freedom, and the operators arising in the lat-
tice gauge theory. S±i flips the spin on hyperkagome site

i. We note that this is a low-energy process if and only if
a spinon resides on i; otherwise, S±i would break a spin
singlet and cost energy of order J . Hence, we only need
to consider the states in which i is occupied by a spinon.
Recall that a spinon is sandwiched by a triangle covered
by a singlet and a triangle that is not. Thus, there are
two cases to be considered, shown in Fig. 5a & c, which
correspond to the singlet covering the bottom (labeled
r′) or top (labeled r) triangles, respectively.

We first consider the case in Fig. 5a, where the bottom
triangle (r′) is occupied by a singlet. In terms of arrow
representation (Fig. 5b), the spinon or point defect re-
sides on the hyperoctagon lattice site r. The arrow on
link rr′ points from r′ to r. Thus, T zrr′ = −1/2. Act-
ing the S+

i operator on such a state flips the spin of the
spinon (point defect). However, the arrow or T zrr′ re-
mains the same after the spin flip. Thus, the transition
process in Fig. 5b may be recast in the operator form as:

c†r↑cr↓T
−
rr′T

+
rr′ , (8a)

where c†r↑cr↓ flips the spin of the spinon (point defect) on

hyperoctagon site r. T−rr′T
+
rr′ projects onto the subspace

with T zrr′ = −1/2.
Likewise, the arrow representation for Fig. 5c is shown

in Fig. 5d. In the arrow representation, the spinon (point
defect) resides on the hyperoctagon site r′, and T zrr′ =
1/2. The transition process in Fig. 5d may be similarly
written as:

c†r′↑cr′↓T
+
rr′T

−
rr′ , (8b)

Combining both channels, we postulate the following re-
lation:

S+
i ≈ c

†
r↑cr↓T

−
rr′T

+
rr′ + c†r′↑cr′↓T

+
rr′T

−
rr′ . (8c)

Eq. 8c translates a microscopic operator S+
i , which acts

on a hyperkagome site i, to lattice gauge theory operators
acting on the hyperoctagon sites r and r′. i is taken to be
the midpoint of the link rr′. Note Eq. (8c) is symmetric
with respect to the interchange r ↔ r′.

Before we proceed, we contrast the spin operator rep-
resentation Eq. (8c) with the more familiar representa-
tion from the standard parton theory in Ref. 3 and 4.
In parton theory, the spin operator is decomposed as a
product of two spinon operators. The gauge degrees of
freedom are hidden in the redundancy of such decompo-
sition. In Eq. (8c), both the spinon and gauge degrees
of freedom are explicit. Furthermore, the decomposition
in the parton theory is an exact operator identity after
projecting out unphysical states, whereas Eq. (8c) is an
approximation. In particular, we have neglected high en-
ergy processes such as spinon-antispinon pair production.
Finally, we remark that a similar spin operator represen-
tation appears in the gauge mean-field theory of quan-
tum spin ice, where both spinon and gauge field degrees
of freedom are also explicit18.
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FIG. 6. (Color online). Dynamical spin structure factor
S(q, ω) along three high symmetry directions. The same color
scale is used for all three plots.

Within the mean field theory, we may further neglect
the fluctuation of T zrr′ , and replace T+

rr′T
−
rr′ and T−rr′T

+
rr′

by their classical expectation value 1/2. We thereby ar-
rive at the following simple relation:

S+
i ≈ (c†r↑cr↓ + c†r′↑cr′↓)/2. (8d)

Plugging Eq. (8d) into Eq. (7b), we find,

S+(q) ≈
∑
k,α

fα(q)c†α↑(k + q)cα↓(k). (9)

We have omitted an over-all normalization constant. α
runs over 8 sublattice labels of the hyperoctagon lat-
tice. cασ(k) destroys a spinon (point defect) with mo-
mentum k, sublattice index α, and spin σ. The form fac-
tor fα(q) =

∑
dα

exp(iq ·dα/2), where the summation is
over all vectors dα pointing from the hyperoctagon sub-
lattice site α to its nearest-neighbors. An example of the
d vectors is given in Fig. 1b. The factor of 1/2 in the
exponential comes from the fact that the hyperkagome
sites are the midpoints of the hyperoctagon links.

Within the mean field theory, the problem of calcu-
lating the DSSF Eq. (7a) in the U(1) spin liquid phase
is reduced to the standard problem of computing two-
body correlation function of the free-fermion Hamilto-
nian Eq. (6). The results are presented in Fig. 6. Note
that, within the mean field theory, the DSSF vanishes
when ω is greater than the bandwidth of the spinon,
which is 6t. We find the spectral weight of the DSSF
is broadly distributed in both momentum and energy
with no sharp features, which is typical of spin liquid.
Furthermore, the DSSF has a larger period in the mo-
mentum space than the spinon dispersion relation due
to the form factor fα(q). In Fig. 6, the DSSF is shown
over the extended Brillouin zone from the center to 8π/a.

FIG. 7. (Color online). The same as Fig. 6 but for a smaller
energy window [0, 0.5]t and smaller momentum range.

FIG. 8. (Color online). The spectral weight of S(q, ω) in the
frequency window [0, 0.1t] as a function of momentum q. Here
the (h, h, k) plane is shown. White lines mark the Brillouin
zone boundary.

Finally, we observe a strong resonance-like feature near
q = (2, 2, 2) and ω ∼ 4t, and a few weaker features
near high symmetry momentum points such as (0, 0, 0),
(1/2, 1/2, 0), and (1/2, 1/2, 1/2).

However, we must caution that the above result is
based on a simple mean field theory calculation. We
don’t expect all features will be stable against gauge fluc-
tuations. Yet, we believe that the low-energy features of
the DSSF are likely to be more robust. To this end,
we zoom in to the lower energy window, ω ∈ [0, 0.5]t
(Fig. 7). Note the overall spectral weight is significantly
smaller as shown in the color bar. We find that there
are dispersive, sharp resonance-like features emanating
from the q = 0, which we attribute to the intra-pocket
particle-hole transitions. The slope of these features is
determined by the Fermi velocity of the pockets. In ad-
dition, the quasi-nesting between the Fermi pockets near
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Γ and R points produces another resonance-like feature
near the quasi-nesting vector q = (1/2, 1/2, 1/2).

The salient features of spinon Fermi surfaces are also
manifest in the constant energy scan of S(q, ω) near ω =
0. Fig. 8 shows the constant energy scan on the (h, h, k)
plane. S(q, ω) is integrated along the ω axis from 0 to
0.1t. We observe that the spectral weight is centered
around Γ point and R point. The intra-pocket scattering
gives rise to a continuum of intensity from the Γ point
all the way up to q ≈ 0.2 or 0.4π/a, which is about twice
the radius of the spinon Fermi pockets. The continuum is
anisotropic, which is due to the fact that the spinon Fermi
pockets are not strictly spherical. Note the strong, ring-
like feature with a small radius comes from the dispersive
resonance seen in Fig. 7. The feature centered at R point
is due to the quasi-nesting between the Γ Fermi pocket
and the R Fermi pockets.

To sum up, since the low-energy features of the dynam-
ical spin structure factor are directly tied to the topology
of the spinon Fermi surface, they will serve as a powerful
probe for the underlying spinon Fermi surface in scatter-
ing experiments.

C. Instability toward Z2 spin liquid

So far we have been focusing on the limit v/t = 0. In
this limit, the mean field treatment yields a U(1) spin liq-
uid with spinon Fermi surfaces. Therefore, when v > 0,
such a state may be unstable toward a BCS state of
spinons, or equivalently a Z2 spin liquid. However, this
picture is based on the assumption that the fluctuations
are negligible. A more rigorous variational calculation
on the HKHAF spin Hamiltonian Eq. 1, in which fluctu-
ations are partially accounted for, shows that the energy
of the U(1) spin liquid state is in fact lower than the
proximate Z2 spin liquid state.3

Nevertheless, one may ask which spinon BCS state will
be stabilized if the HKHAF model Eq. (1) is perturbed in
such a way that a Z2 spin liquid is favored. In this case,
a mean field theory calculation similar to the previous
subsection finds a simple s-wave BCS state with fully
gapped spinons. The spinon gap is very small due to the
small density of states at the Fermi energy. For v/t = 1,
we find the spinon gap ∆/t = 2.747× 10−6. Given such
a small energy scale, it would be very difficult to detect
the Z2 spin liquid state experimentally or numerically.

IV. DISCUSSION

In this paper, we have presented a phenomenologi-
cal lattice U(1) gauge theory for the HKHAF. We have
shown that the theory provides access to both U(1) and
Z2 spin liquid states in a natural, intuitive manner. Fur-
thermore, it points toward various potentially interesting
directions to explore in future.

In a U(1) spin liquid without global spin symmetry
such as the quantum spin ice, the photon will contribute
a sharp, dispersive resonance in the DSSF, which would
be an unambiguous experimental signature for the un-
derlying U(1) spin liquid state17,19,20. By contrast, the
HKHAF model Hamiltonian Eq. (1) possesses a global
pseudospin SU(2) symmetry. The gauge electric field
operators T zrr′ transform trivially under global spin rota-
tions. The photon excitation therefore carries S = 0. As
a result, the photon excitation is invisible in the DSSF,
which probes S = 1 excitations. It would be inter-
esting to devise an experimental measure to probe the
photon excitation in the KHAHF and predict from the-
ory its experimental signature. We note that, in the
context of the kagome U(1) Dirac spin liquid, it has
been shown that Dzyaloshinskii-Moriya (DM) interac-
tion, which breaks the global spin SU(2) symmetry down
to U(1), may endow the gauge fluctuations with a small
magnetic dipole moment and make the photon mode vis-
ible in the DSSF21. Given that the hyperkagome lat-
tice lacks bond inversion symmetry, the DM interaction
is present on symmetry ground22. Different from the
kagome Dirac spin liquid, the photon in the hyperkagome
spin liquid is likely damped by the soft particle-hole ex-
citations near the spinon Fermi surfaces. However, pro-
vided that the density of states is small near the Fermi
energy, we expect that the damping is insignificant.

We have shown that the spinon filling factor f = 1/4
is fixed by the lattice topology. In the absence of mag-
netic field, the density of spin-up spinon, f↑, and the
density of spin-down spinon, f↓, are equal. An external
magnetic field induces the imbalance between f↑ and f↓,
which in turn changes the spinon Fermi surface topol-
ogy. Therefore, the external field provides a means to
manipulate the spinon Fermi surface. In particular, in-
specting the spinon dispersion relation (Fig. 4) shows
that the external field may induce a Lifshitz transition
of the spinons. The drastic change of spinon Fermi sur-
face topology may manifest itself in specific heat, nuclear
magnetic resonance, and scattering experiments. In par-
ticular, the mean-field theory predicts that a Zeeman
field gµBH ≈ 0.36t is sufficient to remove the pockets
at R point. Here, g is the Landé g factor, µB is the
Bohr magneton, and H is the magnetic field. The spinon
hopping parameter t is an unknown, phenomenological
parameter. One may estimate t ≈ J/2 by using the
result from the Husimi Cactus model11. Choosing pa-
rameters that are appropriate for Na4Ir3O8 (J ≈ 300 K,
and g ≈ 2), we find H ≈ 40 T. The required field is
strong but within reach of the high magnetic field facil-
ity. Furthermore, a moderate field (10 ∼ 20 T) should
be sufficient to induce experimentally detectable change
in spinon Fermi surfaces. Finally, the external magnetic
field may induce an internal U(1) gauge flux that is di-
rectly coupled to spinons, which could produce quantum
oscillations in variables physical observables23.

Throughout this work, we assume that the Heisenberg
model Eq. (1) is a good first approximation of Na4Ir3O8.
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Even though various perturbations to the Heisenberg
model, such as the Dzyaloshinskii-Moriya (DM) inter-
action and symmetric anisotropic exchange interactions,
are likely small in magnitude, they may become impor-
tant at very low temperature and lead to a quasi-static
order6,22,24–28. It is therefore important to understand
the impact of these perturbations on the U(1) spin liq-
uid state and, in particular, to examine whether they may
drive instabilities toward magnetic order or valence bond
solid29. A primitive analysis shows that the DM inter-
action induces an effective spin-orbital coupling for the
spinons. We find that a small value of DM interaction is
sufficient to remove one of the two particle pockets near
the R point. More work is needed to clarify its implica-
tions. In addition, it has been suggested that Na4Ir3O8

is proximate to a metal-insulator transition5,7,30,31. It

would also be interesting to incorporate charge fluctua-
tions to our phenomenological gauge field theory.
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