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We present a method for precisely measuring the tunnel splitting in single-molecule magnets
using electron-spin resonance, and use these measurements to precisely and independently determine
the underlying transverse anisotropy parameter, given a certain class of transitions. By diluting
samples of the SMM Ni4 via co-crystallization in a diamagnetic isostructural analogue we obtain
markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap
resonators we measure the transitions at several frequencies, allowing a precise determination of the
tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to
a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this
anisotropy independent of any other Hamiltonian parameters. This method can be applied to other
SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.

Single-molecule magnets (SMMs) are spin systems
(S > 1

2
) with an energy barrier separating different

spin-orientation states. They exhibit many interest-
ing phenomena such as magnetization tunneling1,2 and
geometric-phase interference of tunneling paths.3 Many
of their properties can be tuned through chemical engi-
neering and, as such, they have the potential to be ex-
ploited as qubits. SMMs will typically crystallize with
>
∼ 1015 molecules in a crystal. Intramolecular mag-
netic interactions can be strong, leading to a rigid spin-S
ground state. However, the molecules are well separated
in the crystal lattice, making intermolecular exchange in-
teractions between them negligible; dipole interactions
are weak enough that, in the >

∼ 1 K temperature range,
the system behaves as a paramagnet. The low-energy dy-
namics of most SMMs are well described by an effective
“giant spin” Hamiltonian:

H = −DS2
z −AS4

z + gzµBBzSz + H
′, (1)

where D and A are axial anisotropy parameters, gz is a
g factor, and Bz is the applied magnetic-field component
along the z axis. H ′ contains terms that do not com-
mute with Sz. With D > 0 and A > 0, this Hamiltonian
describes a system in which the spin has lowest energy
when parallel or antiparallel with z, the easy axis. In
the absence of H ′, Sz is a conserved quantity and the
levels can be identified with values of the magnetic quan-
tum number m. Figure 1(a) illustrates the dependence
of these levels of Bz. H ′, which contains transverse
anisotropy terms and, perhaps, transverse field compo-
nents breaks the symmetry of the molecule. These terms
permit tunneling between levels. Near where the field
brings different m states close together, an avoided level
crossing occurs (inset of Fig. 1(a)), producing a so-called
“tunnel splitting” – the minimum energy gap between
the two levels. In this paper, we will focus on an SMM
with four-fold symmetry, for which Eq. H

′ is given by

H
′ = C

(

S4
+ + S4

−

)

. (2)

The anisotropy parameters in the Hamiltonian for an

SMM are often determined through electron-spin res-
onance (ESR) spectroscopy. Such experiments are of-
ten done at high frequencies/high fields, where the Zee-
man energy dominates the spectrum. Parameters are ex-
tracted by fitting the resulting spectra with predictions
based on the Hamiltonian.4–13 This approach yields val-
ues for axial anisotropy terms with high precision. To
measure transverse anisotropy terms, one typically needs
to apply the field in the spin’s hard (x-y) plane, and anal-
ysis requires a multiparameter fit involving both axial
and transverse anisotropy constants. Because the trans-
verse terms are generally significantly smaller than the
axial anisotropy terms, they can typically only be deter-
mined to little more than one digit of precision. Tunnel
splittings, when sufficiently small, can also sometimes be
inferred from dynamical magnetization measurements us-
ing a Landau-Zener technique.14 In this work, we present
a low-frequency ESR method to directly measure the
zero-field tunnel splitting in SMMs with splittings of or-
der ∆ ≈ 1−10 GHz. By working with dilute orientation-
ally ordered crystals and custom-designed resonators we
precisely measure a tunnel splitting that is determined
through first-order perturbation theory. This allows us
to establish the transverse anisotropy independently from
any other Hamiltonian parameters.

Although dipole interactions between molecules in a
crystal are weak, they are sufficient to cause significant
inhomogeneous broadening of ESR lines and give rise
to decoherence of the quantum spin state, diminishing
the efficacy of these systems as qubits. One method
for reducing dipolar interactions in molecular-spin sys-
tems is applying high fields to polarize the system and,
thereby, reduce decoherence.15,16 Another approach is
to dilute the sample, spacing the magnetic molecules
apart within a diamagnetic environment either by dis-
solving samples in an appropriate solvent17,18 or by co-
crystallizing molecules with diamagnetic analogues.19–23

The co-crystallization technique has the advantage that
the system is crystalline and the molecules therefore
retain orientational order. In addition, recent experi-
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ments have focused on atomic-clock transitions as an-
other method of minimizing decoherence: by working at
an avoided level crossing, the decoherence time T2 can
be significantly enhanced.23–25 Our method allows us to
precisely determine the tunnel splitting and thereby per-
mits pulsed experiments to be tuned precisely to the clock
transition, maximizing spin coherence.
Direct measurements of an SMM tunnel splitting have

recently been done by Shiddiq et al.
23 They studied the

SMM HoW10, diluted by co-crystallization, and mea-
sured the splitting ∆±4 between m = ±4 spin states. In
that case, where ∆m = 8, the states are coupled through
second-order perturbation theory in H ′, meaning that
the splitting depends on both C and D: ∆±4 ∝ C2/|D|.
By performing a similar experiment on a system with
states connected through a first-order perturbation, we
are able to directly measure C for this system with no
reliance on other Hamiltonian parameters.
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FIG. 1. (a) Energy-level diagram for Ni4 as a function of
field along the z axis. Inset: Zoomed-in view of the avoided
crossing for the |±2〉 states near zero field. Solid green and
red dashed lines show the levels corresponding to the two
different conformational states of the molecule. (b) Schematic
of LGR inside a copper shield, with excitations provided by
an antenna. The color map in the central loop and gap shows
the magnitude of the rf magnetic field for a given excitation
amplitude, yielding a strong uniform field in the center of
the loop. Produced using ANSYS Electromagnetics Suite,
Release 16.2.

We investigated the SMM [Ni(hmp)(dmb)Cl]4 (“Ni4”),
a system with spin S = 4,26 where hmp stands for
2-hydroxymethylpyridine and dmb for 3,3-dimethyl-1-
butanol. We studied Ni4 diluted by co-crystallization
with Zn4, an isostructural diamagnetic molecule. Ni4
was synthesized using a previously reported procedure.26

The [Zn(hmp)(dmb)Cl]4 (“Zn4”) complex was synthe-
sized using the same experimental procedure, but replac-
ing NiCl2·4H2O by an equimolar amount of ZnCl2·4H2O.
To prepare dilute crystals of 5% Ni4, 1.75 mg of Ni4 and
35 mg of Zn4 were dissolved in a mixture of 0.25 g of
dmb and 1.7 mL of dichloromethane. Light green crystals
were obtained by slow evaporation of the solution at room
temperature. The unit-cell parameters and face indexes
of all compounds were determined with a Bruker Venture
diffractometer using graphite and monochromatic Mo Kα

radiation (λ = 0.71073 Å) at room temperature. These
parameters were found to be in good agreement with the
parameters previously reported for Ni4. Metal analysis
was performed by dissolving a sample in concentrated ni-
tric acid; determination of the amount of zinc and nickel
was performed using a Varian AA240FS atomic absorp-
tion spectrometer, confirming the expected 5:95 ratio of
Ni:Zn in the crystal. High-frequency ESR spectra on 5%
Ni4 are similar to spectra from non-dilute Ni4, indicat-
ing that dilution leaves many of the Ni4 molecules intact.
Some small peaks that appear only in the spectra for the
dilute sample presumably represent the result of ion ex-
change during crystallization, producing some molecules
in the crystal that are NiZn3 and/or Ni3Zn. These “con-
tamination peaks” are not observable at the low frequen-
cies of the present study. The results presented below
relate to spectral features that can unambiguously be as-
sociated with intact Ni4 molecules.
Ni4 can be well described by Eqs. 1 and 2, and has a

significant transverse anisotropy term C, which produces
a tunnel splitting of ∆±2 ∼ 4 GHz between the m = ±2
states at zero field. Figure 1(a) shows the energy-level
diagram for Ni4, with the inset highlighting this splitting.
At low temperatures, Ni4 undergoes a transition into two
distinct ligand conformational states (isomers), each of
which have slightly different energies as shown by the
green solid and red dashed lines in Fig. 1(a), leading to
a doubling of the ESR spectra.11,27 The effects of this
conformational change on the spin Hamiltonian are not
fully understood, allowing the possibility that the four-
fold symmetry of Ni4 is broken, which could introduce a
second-order transverse anisotropy term. In the absence
of evidence for such symmetry-breaking, or higher-order
transverse anisotropy terms such as S2

z

(

S4
+ + S4

−

)

+h.c.,
we assume that the only significant contribution to the
splitting is the fourth-order “C term”.
For small fields applied along the easy axis, the field

dependence of the splitting of the levels shown in the
inset to Fig. 1(a) can be well described by

f±2 =

√

∆2
±2 + (gzµB (m−m′)B)

2
, (3)

where ∆±2 is the zero-field splitting, m and m′ are the
quantum numbers associated with the levels far from the
avoided crossing — 2 and -2, respectively, for the case
studied here. All energies are measured in units of fre-
quency. The samples studied here were aligned to mini-
mize θ, the angle between the easy axis and the DC field,
such that θ < 10◦, making Eq. 3 a valid description of
the splitting.
ESR measurements were done by placing single-crystal

samples of Ni4 in the loop of a loop-gap resonator
(LGR)28 designed to match specific frequencies. LGRs
produce a uniform, high rf magnetic field in the loop, as
shown schematically in Fig. 1(b). The dimensions of the
loop are small compared with the wavelength, allowing
a high filling factor to be achieved. Our LGRs typically
have quality factors ofQ ∼ 2000. Their resonant frequen-
cies can also be tuned by introducing a dielectric such as
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sapphire into the gap, giving the resonators used in this
work an effective range of several hundred MHz. It is also
straightforward to fabricate new LGRs to have any de-
sired frequency up through X band. The experiments re-
ported here were done using three separate LGRs. Each
LGR was placed inside a Cu shield (outer transparent
cylinder in Fig. 1(b)); the LGR is electrically isolated
from the shield by nylon standoffs (solid grey). A coax-
ial cable (brown) with a few-mm length of exposed inner
conductor acts as an antenna, capacitively coupled to the
LGR’s gap. We measure the reflected power (S11) from
the LGR using a vector network analyzer and determine
the resonator’s quality factor Q from the response. When
the applied field brings the spin transition onto resonance
with the LGR, the measured Q drops. While the results
presented involved cw measurements, LGRs can also be
used with pulsed microwave excitations to study dynam-
ics and determine relaxation times. Since the transition
studied in Ni4 involves excited states, and therefore re-
quires temperatures ∼ 10 K, relaxation was too fast to be
measured with pulsed experiments. However, the pulsed
technique can be employed in other systems for which
the ground-state tunnel splitting is on the order of the
LGR’s mode frequency.
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FIG. 2. ESR spectra (right axis, Q/QHF vs. H) for 4.655
(blue, lowest), 4.833 (green, middle), and 5.072 GHz (red,
highest) at 10 K, offset by their frequency difference and
scaled for clarity, where QHF is the high-field value of Q for
each trace. Transitions appear as dips in Q/QHF. Blue circles
and green squares show the frequency (left axis) and field lo-
cations of the transitions. The dashed blue and dash-dotted
purple lines show fits of these data to Eq. 3, resulting in tunnel
splittings of ∆±2,1 = 4.64(2) GHz and ∆±2,2 = 3.72(20) GHz.
Inset: Scaled spectra at 4.8 GHz and 10 K for 100% Ni4 (red
dashed line) and dilute (Ni4)0.05(Zn4)0.95 (black solid line).
The peaks at ∼ ±600 G in the dilute spectrum arise from
impurities in the apparatus and are not associated with the
sample.

Figure 2 shows (Ni4)0.05(Zn4)0.95 (5% dilute Ni4) spec-
tra taken at ν = 4.655, 4.833, and 5.072 GHz, showing

peaks (symmetric around zero field) associated with tran-
sitions between the states shown in the inset of Fig. 1;
the peaks at lower (higher) fields correspond to transi-
tions associated with the green solid (red dashed) lev-
els. For comparison purposes, the inset shows spectra
at ν = 4.8 GHz for 100% Ni4 (red dashed line) and 5%
dilute Ni4 (black solid line), illustrating the effectiveness
of dilution in enabling the resolution of the fine features
we are investigating (the four central peaks). The pre-
cision of our experiment relies on being able to resolve
these fine features. By fitting the spectral peaks for the
dilute (Ni4)0.05(Zn4)0.95 sample to Lorentzian functions,
we extracted the field location for each peak at each fre-
quency. Figure 2 shows the observed frequency-field re-
lation for peaks from each conformational state as blue
circles and green squares. We fit this data to Eq. 3; in
determining ∆±2, the zero-field tunnel splitting, no as-
sumptions need be made about gz, which only affects the
field dependence. We applied this fitting for both con-
formational states, and the resulting fits are shown as
the blue dashed line and the purple dash-dotted line in
Fig. 2, yielding splitting values of ∆±2,1 = 4.64(2) GHz
and ∆±2,2 = 3.72(20) GHz. Using first-order perturba-
tion theory, one can show that this splitting is related to
the transverse anisotropy through ∆±2 = 720C, which
gives C1 = 6.44(3) MHz and C2 = 5.16(27) MHz for
the two conformational states. These values are in rea-
sonably good agreement with previous measurements9,29

of C = 6 MHz, but give much greater precision and al-
low us to differentiate the values associated with the two
conformational states. The uncertainty in the determi-
nation of the splitting for the second state is significantly
higher than the first, due to the lack of data near its zero-
field frequency. Our measurement technique provides a
determination of the transverse anisotropy parameter C
with unprecedented (three-digit) precision, independent
of the value of any other anisotropy parameters, thus
avoiding the systematics that can arise from cross corre-
lations among multiple fitting parameters. From the fit
to Eq. 3, we also extract gz values of gz,1 = 2.18(8) and
gz,2 = 2.11(16), which are consistent with each other and
with values determined at much higher fields.27

Since our experiment involves applying the field along
the easy axis of the system, we do not gain information
about the direction of the hard axes (x and y) relative to
the crystallographic directions. A careful study of the be-
havior of the tunnel splitting on the azimuthal direction
of a field applied in the x-y plane should allow a pre-
cise determination of the hard-axis directions. In fact,
when the field is applied along a hard axis of a four-
fold symmetric SMM, a geometric-phase-interference ef-
fect should cause the tunnel splitting to be suppressed
for certain field magnitudes,30–32 similar to what has also
been observed in two-fold symmetric molecules.3,33,34 For
some SMMs, the geometric-phase interference has no-
tably different predicted behavior for the giant-spin and
more exact multispin models.10,13 So, an experimental
study of this effect in Ni4 may illuminate the relative



4

validity of various models.

The symmetry of the molecule (S4) allows us to at-
tribute the measured tunnel splitting to Eq. 2, which
is the leading-order term consistent with the symmetry.
Without measurements of other tunnel splittings, we can-
not rule out contributions from higher-order transverse-
anisotropy terms in the Hamiltonian. Neglecting the
small effect of such possible terms, we can relate the
splitting of the observed transition to C through first-
order perturbation theory. It is worth noting that C
is a parameter within the so-called giant-spin approxi-
mation in which the system is treated as a single, large
spin, a model that is only strictly valid in the limit of
large intramolecular exchange interactions. Interestingly,
in Ni4 a fourth-order transverse anisotropy cannot occur
in that limit.35,36 Instead, mixing between different S
manifolds gives rise to the effective transverse anisotropy.
That said, for transitions restricted to the lowest-energy
states, the effective giant-spin Hamiltonian appears to
work remarkably well for Ni4.

27 The technique described

can also be applied to SMMs with lower symmetry, where
the dominant transverse anisotropy would have the form
E
2

(

S2
+ + S2

−

)

and the value of E could be determined di-
rectly by measuring the splitting between m = ±1 states
at zero field.
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