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Abstract: 

Phase decomposition is a well-known process leading to the formation of two-phase 

mixtures.  Here we show that a strain imposed on a ferroelastic crystal promotes the formation of 

mixed phases and domains, i.e., strain phase separation with local strains determined by a 

common tangent construction on the free energy versus strain curves. It is demonstrated that a 

domain structure can be understood using the concepts of domain/phase rule, lever rule, coherent 

and incoherent strain phase separation, in a complete analogy to phase decomposition. The 

proposed strain phase separation model is validated using phase-field simulations and 

experimental observations of PbTiO3 and BiFeO3 thin films as examples. The proposed model 

provides a simple tool to guide and design domain structures of ferroelastic systems. 

PACS number: 62.23.St, 77.55.Nv, 77.80.Dj, 81.30.Kf 
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Phase separation of a homogeneous state into a mixture of two or more phases is the 

manifestation of a common mode of materials instability. For a phase decomposition process, the 

presence and local compositions of mixed phases can be illustrated using the geometrical 

common tangent construction on the free energy versus composition curves (Fig. 1a). It is based 

on the thermodynamic condition that the chemical potential of each species has to be uniform at 

equilibrium [1]. 

The coexistence of domains with different local strains is also a common phenomenon, 

known to minimize the overall elastic energy in a constrained system. In a ferroelastic system, 

the phase transition gives rise to different variants of the low symmetry phase, which may 

coexist and form domains structures. Alternatively, the coexistent domains can be two phases 

with different space groups and distinct physical properties, which may result in enhanced 

responses under external stimuli due to the transition between the two phases [2,3]. The a/c 

multi-domains in PbTiO3 (PTO) films belong to the former case [4,5]. PTO shows a first-order 

transition from a paraelectric cubic phase to a ferroelectric tetragonal phase in single crystals, 

and different variants of the tetragonal phase form a/c multi-domains in a thin film state [6,7]. 

On the other hand, the mixed-phase domain structure in compressively strained BiFeO3 (BFO) 

films is an example of the latter case [8]. BFO bulk materials show space group R3c with 

polarization and out-of-phase oxygen octahedral tilt along the <111> pseudocubic direction [9]. 

Under a compressive strain, a tetragonal-like (T-like) phase is stabilized in BFO films, which 

shows a large c/a ratio of ~1.25 and polarization of ~1.5 C/m2 [8,10]. The T-like phase is not 

exactly tetragonal, but a monoclinic Mc phase, with polarization along the [u0v] direction [11,12]. 

The mixed-phase regions in BFO films give rise to a huge electromechanical response, due to the 

transition between the two-phase mixture and the pure T-like phase [8,13]. Generally, the multi-
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domain structures and related properties are investigated by the analysis of macrostress [14-16] 

and phase-field simulations [4,17]. However, the macrostress analysis usually assumes that the 

local strains are fixed, and phase-field simulations rely on extensive numerical computations. 

In this Letter, we show that the strain-induced domain structures can be analyzed by a 

new concept of domain/phase separation under a specified strain, similar to the much better 

known phase decomposition process with a specified overall composition. The common tangent 

construction, lever rule, and phase rule in the phase decomposition thermodynamics are shown to 

be equally applicable to the strain phase separation process. Strain-temperature and strain-strain 

phase diagrams of PTO are calculated based on the common tangent construction and compared 

to those obtained from phase-field simulations. Domain structures of the mixed rhombohedral-

like (R-like) and T-like phases in BFO are obtained using phase-field simulations and explained 

using the proposed strain phase separation model [17,18], and the predicted domain morphology 

and wall orientations demonstrate excellent agreement with piezoresponse force microscopy 

(PFM) measurements. 

We first discuss the thermodynamics of strain phase separation using a one dimensional 

(1D) problem as an illustration (Fig. 1c). The system consists of two phase/domain regions αL

and βL , with length fraction αf and βf , respectively. Since the total deformation is conserved, 

the overall strain can be expressed by   

ββαα εεε ff +=0 ,                                                                                                       (1) 

The fractions of the two phases/domains can be determined from the lever rule based on 

Eq. (1), 



Manuscript to be submitted to PRB Rapid Communications 
 

4 
 

αβ

β
α

εε
εε

−
−=

0

f  ,                                                                                                             (2) 

 

FIG. 1. Schematics of composition and strain phase separation processes. (a) and (b) Common tangent 

constructions for (a) phase de-composition and (b) strain phase separation. (c) Overall and local 

deformation in a 1-D system. (d) and (e) Coexistence of two domains with different (d) normal strains and 

(e) shear strains. 

 

The free energy density of a two-phase mixture is )()1()(0 ββαααα εε FfFfF −+=  with 

αF and βF  the Helmholtz free energy density. Choosing two free variables αε  and αf , βε can 
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Equations (3) and (4) show that the stresses and Gibbs free energy density are uniform at 

equilibrium, respectively (Gibbs free energy is given by the Legendre transformation, 
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ε
ε

∂
∂−= FFG ). The chemical potential mGV=μ , with mV  the molar volume of the reference state, 

and thus Eq. (4) also indicates that the chemical potential is uniform, i.e., βα μμ = . From Eqs. (3) 

and (4), the common tangent of the free energy vs strain curves determines the equilibrium free 

energy and local strains of the mixed phases/domains (Fig. 1b).  

The above discussion for a simple 1D example can be extended to n fixed strain 

components. A fixed strain can be a normal strain or shear strain, as shown in Figs. 1(d) and 1(e). 

There are a total of 6 strain/stress components, which can be a fixed strain or a fixed stress. If 

there are n fixed strain components, the other 6-n components are specified by stress. With n 

fixed strains, the common tangent construction results in n-D planes in an (n+1)-D free energy-

strain space, and the lever rule should be modified accordingly [1]. If p types of domains coexist, 

the equilibrium conditions for stress and chemical potential lead to n(p-1) and p-1 constraints, 

respectively. Thus, the degree of freedom including temperature is 

2)1)(1(1 +−=−+−+= pnpnnpd                                                                                (5) 

The domain rule in Eq. (5) is similar to the well-known Gibbs phase rule [19]. The degree 

of freedom is the number of intensive variables that can be changed independently without 

disturbing the number of phases in equilibrium. Alternatively, the degree of freedom can be 

interpreted as the number of local composition or strain components that can be changed 

independently. It can be employed to predict the maximum possible domains that can co-exist at 

equilibrium. 
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 We analyze the strain-related phase diagrams of PTO as an example of applying the 

strain phase separation model. With polarization )3,2,1( =iPi as the order parameter, the 

Helmholtz free energy density of a PTO crystal is given by [18] 

),)((
2
1 00

PTO klklijijijklnmlkjiijklmnlkjiijkljiij cPPPPPPPPPPPPf εεεεααα −−+++=            (6) 

where , , and ijklmnα are coefficients of Landau polynomial under stress-free boundary 

conditions, is the elastic stiffness tensor, and and 0
ijε  are the total strain and eigen-strain, 

respectively. The eigen-strain is obtained by lkijklij PPh=0ε , where are coupling coefficients. 

As a first simplest possible example, 1-D strain 22ε is applied, and other boundary conditions are 

stress-free,  
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PTOf  can be calculated for different domains, a1 ( 0,0 321 ==≠ PPP ), a2 

( 0,0 312 ==≠ PPP ), c ( 0,0 213 ==≠ PPP ), and P ( 0321 === PPP ). Note that a1 and c domains 

have the same local 22ε , and we choose c domains for the analysis. Using the free energy 

coefficients from [20], a strain-temperature domain diagram Fig. 2(a) is constructed by solving 

Eqs. (3) and (4) under different 22ε  and temperature T. At temperature T0, the minimal free 

energies of c, P, and a2 are equal (middle panel of Fig. 2b), and the three domains may coexist 

within the strain range between the tangent points of c and a2. Based on the domain rule Eq. (5), 

the degree of freedom 0321 =−+=d , and thus the local strains of the three phases are all fixed. 

With the increased free energies of c and a2 above T0 (upper panel of Fig. 2b), P+c mixture is 

favored by a compressive strain, and P+a2 mixture by a tensile strain. Below T0, the free energies 

ijα ijklα

ijklc ijε

ijklh
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of c and a2 are decreased (lower panel of Fig. 2b), and c+a2 mixture is formed under an 

intermediate strain. Equation (5) is valid for the 2-domain and 1-domain regions in Fig. 2(a), and 

the strain-temperature domain diagram is similar to a composition-temperature phase diagram of 

a eutectic binary system [1,19]. Note that the boundaries of P+c and P+a2 domain regions are 

straight and parallel since only the second order Landau polynomial coefficients are dependent 

on temperature, and only the electrostrictive coupling is considered between strain and 

polarization. 

 

FIG. 2. Strain domain diagrams of PbTiO3. (a) Strain-temperature domain diagram. (b) Free energy as a 

function of strain at different temperatures. (c) Strain-strain domain diagram at room temperature 20 °C. 

(d) Energy surfaces of a1, a2, and c domains. The green triangle denotes the common tangent plane of the 

three energy surfaces. 
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As an analogy to the isothermal section of a ternary system [1], strain-strain domain 

diagrams can be calculated for a specific temperature,  under the boundary condition 
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Fig. 2(d) shows the energy surfaces of a1, a2, and c domains as well as the common 

tangent plane of the three surfaces at room temperature. Based on the common tangent 

construction, a strain-strain domain diagram Fig. 2(c) is calculated. Based on Eq. (5), the degrees 

of freedom in the 3-domain, 2-domain, and 1-domain regions are 0, 1, and 2, respectively. The 

dots in Fig. 2(c) are data collected from phase-field simulations of the PTO films [5], and the 

discrepancy is because interfacial energy and additional coherency strain energy are neglected in 

the common tangent construction [4,21]. Compared with phase-field simulations, the calculation 

based on common tangent construction requires less computational effort to obtain strain-related 

domain diagrams, and the determined boundaries between different domain stability regions can 

be treated as the limiting case when the domain wall density is small, leading to a negligible 

contribution from interfacial energy. 

The second example is the strain induced R/T domains in BFO films. Including the order 

parameter for oxygen octahedral tilt )3,2,1( =iiθ , the total free energy density is written as 

[18,22] 

),)((
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where ijklmnuvα , ijβ , ijklβ , and ijklt  are coefficients of Landau polynomial. The eigen-strain is 

given by lkijkllkijklij PPh+= θθλε 0 , where and are coupling coefficients. First-principles ijklλ ijklh
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calculations show that the T-like monoclinic phase is metastable under stress-free conditions [23]. 

Thus the polynomial of polarization is expanded to the eighth order, which is necessary to 

reproduce a stable or metastable monoclinic phase under stress-free conditions [12]. For 

simplicity, the polynomial of oxygen octahedral tilt and coupling terms are expanded to the 

lowest order, i.e. the fourth order. All the coefficients of BFO at 298 K are listed in 

supplementary materials, which are fitted based on the experimental measurements and first-

principles calculations [23-26].  

To confirm whether the Landau polynomial is able to reproduce the T-like phase, the 

energy landscape is investigated under stress-free conditions, i.e. 0
ijij εε = , eliminating the elastic 

energy contribution in Eq. (9). The energy contours are calculated by changing the values of P1 

and P2, with P3, θ1, θ2, and θ3 optimized to minimize the total free energy. As shown in Fig. 3(a), 

the four energy minima in the middle represent the stable rhombohedral phase, and the eight 

minima near the boundaries denote the metastable T-like phase. Therefore, the eighth order 

polynomial in Eq. (9) can describe both the rhombohedral and T-like phases [27]. 

To illustrate the effect of an epitaxial strain, we apply the thin film boundary conditions 

to the BFO system, i.e. [18,20]  
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where sε is the biaxial epitaxial strain. From Eq. (10), three strain components are fixed, 

resulting in energy surfaces of different domains in a 4-D space. However, the main difference of 

the T and R phases is the in-plane normal strain, and to simplify the analysis, the free energy and 

order parameters are calculated as a function of the isotropic biaxial strain in Figs. 3(b) and 3(c).  
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FIG. 3. Phase stability analysis of BiFeO3. (a) Energy contours under stress-free boundary conditions. (b) 

Total free energy of the different phases under thin film boundary conditions. Common tangent of the two 

curves is plotted, and the shaded region represents the results from the phase-field simulations. (c) Order 

parameter evolution as a function of strain. (d) Volume fraction of the T-like phases from the phase-field 

simulations. The order parameters in (a) and (c) have SI units, i.e. C/m2 and rad for Pi and θi, respectively. 

The R-like phase is stable with a small strain, whereas the T-like phase is stabilized under 

a large compressive strain, as shown in Fig. 3(b). The components of the order parameters are 

calculated with different substrate strains. As plotted in Fig. 3(c) (note the negative sign of 

strain), for a compressive strain smaller than 4%, the out-of-plane component of polarization (P3) 

increases, and the in-plane components (P1 and P2) decrease with an increasing strain magnitude. 

The tilt order parameters have similar behaviors with an increasing θ3 and decreasing θ 1 and θ 2. 
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In this strain range, P1 and P2 are equal, representing the R-like MA phase. With the strain larger 

than 4%, there is a jump of P3, from 0.7 to 1.4 C/m2, caused by the transition from the R-like to 

T-like phases. After the transition, an in-plane polarization component vanishes, and the other 

one has a small jump. The tilt order parameters are suppressed by the enhancement of the total 

polarization and only one in-plane component survives. This is consistent with first-principles 

calculations, which show that the T-like phase has a tilt pattern of 00cba− based on the Glazer’s 

notation [28]. 

To further analyze the microstructures, the coexistence of the two phases in the BFO 

films is predicted by the phase-field method [17]. The gradient energy and electrostatic energy 

are added to the total free energy, which is given by  

∫ −
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where  and ijklκ are the gradient energy coefficients of polarization and oxygen octahedral tilt, 

iE is the electric field calculated by
i

i x
E

∂
∂−= ϕ

 with ϕ  the electrostatic potential, 0ε is the 

permittivity of free space, bκ is the background dielectric constant [29], and V is the system 

volume. Periodic boundary conditions are assumed in the x1 and x2 directions, and a 

superposition method is used for the x3 direction [4]. Short-circuit electrical boundary conditions 

are assumed at the top and bottom surfaces. The top surface is stress-free while the bottom 

interface is coherently clamped by the substrate [4]. To reproduce the self-poled effect [30], P3 is 

initially assigned with small positive random numbers, whereas the other order parameter 

components evolve from small random numbers. The details about how to solve the elastic 

ijklg
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equilibrium equations and Poisson equations under the above boundary conditions can be found 

in Ref. [4,31]. The system size is xxx Δ×Δ×Δ 20 256 256 , and the grid spacing is . 

Figure 3(d) illustrates the volume fraction change from the phase-field simulations. The 

T-like phase fraction decreases linearly with respect to the strain in the mixed-phase region, i.e. 

following the lever rule [32]. The mixed-phase strain range in Fig. 3(d) is smaller than that from 

the common tangent construction in Fig. 3(b). This is because the interfacial energy and 

coherency strain energy were ignored in the thermodynamic analysis. Note that the lever rule is 

still valid after considering the contribution from coherency strain energy (see supplementary 

materials for details) [33]. 

The physical origin of the R/T two-phase mixture is similar to the formation of a/c 

domains in PTO films, i.e. to minimize the elastic energy as indicated by the common tangent 

construction.  However, the mechanical compatibility of the domain walls is different in the two 

cases. The a and c domains in PTO are symmetry-related by a rotation operation, and the domain 

wall orientations can be obtained from either the mechanical compatibility equations or 

Khachatturyan's microelasticity theory, with the latter implemented in the phase-field 

simulations [34-36]. On the other hand, the R-like and T-like phases in BFO have distinct eigen-

strains, and the domain walls are mechanically incompatible. In this case, the coherency strain 

energy is unavoidable, and the domain wall orientations can only be determined from the phase-

field simulations by minimizing the strain energy. 

   

nmx 38.0=Δ
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FIG. 4. Domain structures from (a) and (b) the phase-field simulations and (c) and (d) PFM measurements. 

(a) Three-dimensional domain structures under a compressive strain of -4.0%. (b) Corresponding domain 

structures in the x1x2 plane. The colors are assigned based on the polarization directions. (c) Topography 

of a mixed-phase BFO film with thickness of ~130 nm. (d) Corresponding in-plane PFM phase image. 

The domain structures from the phase-field simulations are plotted in Figs. 4(a) and 4(b). 

Note that in Figs. 4(a) and 4(b), only the polarization order parameters are maintained, i.e. 

maintaining )3,1(0 == iiθ  in the simulations (see supplementary materials for the reasons).  Since 

the initial value of P3 is positive and short-circuit boundary conditions are employed, the final 

domains only show four R-like phase variants and four T-like variants. 
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A T-like domain can form two types of R/T mixed structures with the four R-like 

domains, e.g. a [0.4,0.0,1.4] domain forms 44° domain walls with [0.6, ±0.6, 0.6], and 67° 

domain walls with [-0.6, ±0.6, 0.6], with the angles measuring the polarization vector changes 

across the domain walls. Figures 4(a) and 4(b) show that 44° domain walls are dominant as 

denoted by blue rectangles, consistent with the experimental observations [37]. This 

demonstrates that 44° domain walls with smaller polarization change have smaller interfacial 

energy for the R/T mixed structures. 

The determined domain wall orientations show good agreement with experimental 

measurements. Derived directly from the Khachatturyan's microelasticity theory (see 

supplementary materials for details), the domain wall normal between the [0.4, 0.0, 1.4] and [0.6, 

0.6, 0.6] domains is along the [0.09, 0.58, 0.81] direction. In the x2x3 plane, the wall forms an 

angle of ~36° with the x2 axis, close to the experimental value of ~37° [38]. In the x1x2 plane as 

shown in Fig. 4(b), the domain wall deviates from the x1 axis by ~9°, close to the PFM 

measurements of ~10° in Figs. 4(c) and 4(d) [8,37,38]. The domain wall orientations of other 

R/T mixed structures can be obtained by symmetry operations. Also, in both the phase-field 

simulations and PFM measurements, the domain structures show T/T twins as denoted by green 

rectangles in Fig. 4.   

In summary, we propose a strain phase separation model for multi-domain structures in a 

solid under an externally imposed strain. In particular, we show that different ferroelastic 

domains can be treated as different phases, with a fixed overall strain component analogous to 

the chemical composition. The proposed model can be employed to obtain strain-temperature 

domain/phase diagrams and properties. This is demonstrated by the strain-temperature and 

strain-strain domain diagrams of PbTiO3 and by the domain structures of the co-existent 
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rhombohedral-like and tetragonal-like phases in BiFeO3 films. The strain-induced stability of 

mixed phases is a common phenomenon in ferroelastic systems, and the proposed strain phase 

separation model provides a rather elegant and simple tool to predict the coexistence and 

maximum possible number of domains/phases and to design domain structures such as the types 

of domains/phases and their volume fractions and thus properties.  
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