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In s-wave systems, it has been theoretically shown that a ferromagnetic film hosting a skyrmion
can induce a bound state embedded in the opposite-spin continuum. In this work, we consider a case
of skyrmion-induced state in a p-wave superconductor. We find that the skyrmion induces a bound
state that generally resides within the spectral gap and is isolated from all other states, in contrast to
the case of conventional superconductors. To this end, we derive an approximate expression for the
T -matrix, through which we calculate the spin-polarized local density of states which is observable
in scanning tunneling microscopy measurements. We find the unique spectroscopic features of
the skyrmion-induced bound state and discuss how our predictions could be employed as novel
experimental probes for p-wave superconducting states.

PACS numbers: 74.70.Pq, 74.78.Na,74.78.Fk

I. INTRODUCTION

Topology has played a significant role in our under-
standing of robust features of condensed-matter systems.
Topological protection guarantees nontrivial materials
properties and enables promising potential applications
within electronics and technology. Materials with suit-
able structure provide an excellent ground to produce
low-energy excitations analogous to concepts originating
in particle physics. One such example is the magnetic
skyrmion, a topological defect in a magnetic field which
manifests as a vortex-like spin configuration [1 and 2].
The magnetic configuration is then characterized by a
topological invariant given by

Q =
1

4π

ˆ
d2rB̂ ·

(
∂xB̂× ∂yB̂

)
, (1)

where B̂ is a unit vector aligned with the local magnetic
field. Q takes on integer values and is denoted the topo-
logical charge of the skyrmion. Configurations with dif-
ferent topological charges are separated from each other
by a finite energy barrier, making skyrmions robust ex-
citations.

In recent years, significant experimental progress has
been made within the field [3–11]. Notably, skyrmions
can easily moved by applying spin currents [12 and 13].
Employing spin-polarized scanning tunneling microscopy,
Romming et al. [14] demonstrated a controlled method
of creating and destroying individual skyrmions. As a
consequence, skyrmions are of special interest from a
technological perspective due to their properties being
potentially suitable for use in electronics.

Concurrently with the expanded experimental possibil-
ities, there has been a rise in interest towards skyrmion-
superconductor heterostructures [15–17], not least be-
cause the interplay between skyrmions and superconduc-
tivity is expected to give rise to topological systems. In s-
wave superconductors, skyrmions with |Q| = 1 have been

Figure 1. Two types of skyrmions with equal topological
charge Q = 1, a) Néel skyrmion and b) Bloch skyrmion. The
respective magnetic field textures are described by Eq. (4).

theoretically shown to give rise to Yu-Shiba-Rusinov-like
states with long-range wavefunctions [15]. These states
are within the spectral gap of the bulk states with paral-
lel spin-polarization, but generally still reside within the
bulk with anti-parallel spin-polarization, making them
resonance peaks in the density of states. Also, Skyrmions
with even charge Q have been argued to host Majorana
zero-energy states [16] on two-dimensional (2D) s-wave
substrates.

In this letter, we extend the study of skyrmions on
superconductors (SCs) to p-wave SCs. These are of par-
ticular interest due to the rich physics stemming from
anisotropic pairing that could itself support topological
superconductivity. While this type of unconventional su-
perconductivity has not been conclusively shown to exist
in nature, there are nevertheless some possible candidate
materials under consideration, most notably Sr2RuO4

[18]. Hence it is interesting to consider what sort of prop-
erties such a system would be expected to have. Using
standard techniques to analyze the spectra of supercon-
ducting states, we find that: i) skyrmions with |Q| = 1
bind localized subgap states, which is in stark contrast
to the results previously obtained for s-wave systems; ii)
depending on the type of p-wave coupling, states bound
to Bloch and Néel skyrmions show qualitatively different
behavior.
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II. SYSTEM

The object of interest in this paper is a magnet-SC
heterostructure, the magnetic texture being cylindrically
symmetric. The simplest case is that of a constant Zee-
man field. Consider at first a system consisting of a two-
dimensional p-wave SC with a constant background mag-
netic field. The Hamiltonian density of this system is

H0 =

(
ξpI2×2 −Bσz ∆d · σ

(∆d · σ)† −ξpI2×2 −Bσz

)
. (2)

where ξp = p2

2m − µ is the kinetic energy, B is the
background magnetic field, and ∆d · σ is the su-
perconducting pairing function. This Bogoliubov-de
Gennes Hamiltonian acts on the Nambu spinor Ψk =

(ψk↑, ψk↓, ψ
†
−k↓, −ψ

†
−k↑)

T , where the operator ψ†kσ cre-
ates an electron of spin σ and momentum k. The su-
perconducting triplet pairing is encoded into the vector
d. In this paper, we will consider two different types of
pairing vectors: out-of-plane d = (0, 0, px + ipy) and
in-plane d = (px, py, 0). These result in two different
Hamiltonians

Ha
0 = ξpτz + ∆(pxτx − pyτy)σz −Bσz

Hp
0 = ξpτz + ∆(pxσx + pyσy)τx −Bσz

(3)

where Ha
0 is for out-of-plane d-vector (pairing of antipar-

allel spins) and Hp
0 for in-plane d-vector (pairing of par-

allel spins); τi and σi are Pauli matrices in particle-hole
and spin space, respectively. Throughout this work we
will treat both types of p-wave pairing in parallel.

When the system is coupled to a skyrmion, the
magnetic-field term in the Hamiltonian acquires a spatial
dependence Bσz → B(r) · σ. We will here consider the
two different configurations of the magnetic field seen in
Fig. 1, known as Néel and Bloch skyrmions, respectively.
The fundamental difference between the two cases lies in
the direction of rotation for the magnetization vector as
a function of radius. The magnetic textures of each is
described by the following vectors:

BNéel(r) = B
(
x
r sin θ(r) y

r sin θ(r) cos θ(r)
)

BBloch(r) = B
(
−yr sin θ(r) x

r sin θ(r) cos θ(r)
)
.

(4)

where we model the position-dependent angle as

θ(r) = π

{
r
R , r < R,
1, r ≥ R. (5)

In the above, R can be viewed as the radius of the
skyrmions. Calculating the topological charge for the
two configurations above as per Eq. (1), we find that
they are equal: for both configurations, |Q| = 1.
This indicates that the two skyrmions are topologically
equivalent, and indeed it is possible to transform be-
tween the two through a unitary transformation H →
e−iπσz/4Heiπσz/4. However, since the transformation
between skyrmions does not leave the in-plane p-wave

Hamiltonian Hp
0 invariant, one might expect to see differ-

ences between the two types of skyrmions in that model.
In order to ascertain the effect of the skyrmions on the
p-wave system, we will proceed to calculate the local den-
sity of states (LDOS), as it contains the relevant spectral
properties of the system and further is amenable to ex-
perimental analysis.

III. GREEN’S FUNCTION AND THE
MULTIPOLE EXPANSION

For generic spatial dependence, an explicit analytic so-
lution of the system including the exact magnetic texture
is challenging. As a first approximation we assume that
the skyrmion radius R is small compared to the super-
conducting coherence length ξ0. We then perform a mul-
tipole expansion around the origin to obtain corrections
to a desired order. This gives us an effective potential
and allows us to employ the T -matrix formalism to find
an approximative solution to the full Green’s function
of the system, the validity of which is tied to that of
the multipole expansion, namely R � ξ0 ≈ vF /(∆pF ).
We restrict ourselves to the second order of the calcula-
tion, corresponding to the monopole/anapole term for
the Néel/Bloch-type skyrmions, respectively. The ex-
pansion for both skyrmions contain a constant magnetic
field term, which for the purposes of this work can be
treated as part of the unperturbed background; con-
sequently, Eq. (3) will be used as a starting point of
the expansion. The remainder of the multipole terms
will then be treated as a scattering potential. We fur-
ther note that, in real systems, skyrmions can gener-
ally be moved around by perturbations unless they are
pinned down by static terms [19 and 20]. This can
be modelled by adding a pointlike scalar potential to
the skyrmionic terms. Taking this into account, we
will consider a change to the Hamiltonian of the form
H → H0 − V = H0 − Uτzδ(r)− S(r) · σ, where

SNéel(r) ≈ S0δ(r)ẑ− S1∇δ(r)

SBloch(r) ≈ S0δ(r)ẑ− S1 (ẑ×∇) δ(r)
(6)

Correspondingly, in momentum space, the perturbative
potential can be written

VNéel ≈ S0σz + Uτz − iS1σ · p
VBloch ≈ S0σz + Uτz − iS1 [σ × p]z .

(7)

The magnitudes of S0 and S1 can be obtained as the
respective moments of the expansion. As this calcula-
tion makes no reference to the superconductivity, and
the skyrmions are generally related by a simple rotation,
we can in both cases simply use the magnitudes obtained
from the Néel magnetic texture:

S0 =

ˆ
d2r[S(r)− S(∞)] · ẑ =

1

π
(π2 − 4)SR2

S1 =
1

2

ˆ
d2r[S(r)− S(∞)] · r =

R

π
S0.

(8)
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Figure 2. a) LDOS of system with a skyrmion and out-of-plane d-vector, showing a subgap bound state. Parameters used
are pF = 20, vF = 100, B = 0.5, ∆ = 0.5, with skyrmion radius R = 1

8
vF

∆pF
(red circle). Energy selected is E = 0.1529EG

with an imaginary part of 10−3 for peak broadening. The green line is a fit C exp(−2r/ξ)/r, showing that the LDOS decays
asymptotically as a Yu-Shiba-Rusinov state. The value of the LDOS has been cut off within the skyrmion radius in order to
display the long-range behavior. b) Spin-polarized DOS at r = 0 for the same system. The dashed lines correspond to the same
parameters but with U = 4. Energies are given relative to the bulk gap EG. c) Spin-polarized DOS at r = 0 for an in-plane
d-vector coupled to a Bloch-type skyrmion. Parameters same as in (a) and (b). The dashed line has potential U = 15.

The above relations fix the values of S0, S1 as a function
of the background magnetic field B and the skyrmion
radius R. Using the truncated multipole expansion we
can then find an approximation for the T -matrix of the
skyrmion through use of the Lippmann-Schwinger equa-

tion

T (p1,p2)=V (p1−p2)+

ˆ
d2q

(2π)2
V (p1−q)G0(q)T (q,p2).

(9)
The equation can be solved analytically in the approx-
imation where the incoming and outgoing momenta are
close to the Fermi level [21]. The explicit solution for the
T -matrix allows us to calculate the full Green’s function
of the system. Inserting our result for the T -matrix up
to second order in the multipole expansion [21] results in
an expression for the Green’s function

G(r) = G0(r) +

ˆ
d2p1

(2π)2

ˆ
d2p2

(2π)2
G0(p1, ω)T (p1,p2)G0(p2, ω)ei(p

1−p2)·r

≈ G0(r) +G0(r)T 0G0(−r) +Wi(r)T 1
i G0(−r) +G0(r)(T 1

i )†Wi(−r) +Wi(r)T 2
ijWj(−r),

(10)

where we used the fact that the integrals over the two
momenta can in each case be separated into two different
integrals. Hence finding G(r) reduces to finding the value
of the integrals

G0(r) =

ˆ
dp

2π
G0(p, ω)eip·r (11)

Wj(r) =

ˆ
dp

2π
G0(p, ω)

pj
p
eip·r, (12)

where G0(r) is the spatial Green’s function of the sys-
tem without a skyrmion. The integrals are analytically
tractable, and the solutions for both types of p-wave pair-
ing are presented in the supplemental material. We hence
have an analytic expression for the full Green’s function
in terms of these integrals. Moving on, we can use G(r) to
calculate the spin-polarized local density of states (SPL-

DOS) through use of the formula

ρλ(r) = − 1

π
Im Tr

[
1 + λσs

2

1 + τz
2

G(r)

]
, (13)

where λ = +1 (−1) corresponds to spin up (down) elec-
trons. The SPLDOS is useful in that it can be probed
by spin-polarized STM and hence provides a direct way
of comparing theory to experiment. Further, the sum of
the terms for spin up and down directly yields the LDOS
measured in typical STM experiments.

IV. RESULTS

Based on the treatment above, we have calculated the
LDOS of the system. Notably, we find that the p-wave
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Figure 3. LDOS as a function of radius and energy for (a) Out-of-plane d-vector; (b) In-plane d-vector with a Bloch skyrmion.
In both cases, the parameters are pF = 20, vF = 100, B = 0.5, ∆ = 0.5, R = 1

8
vF

∆pF
, and the scalar potential U = 0. Energies

are given relative to the bulk gap EG.

SC-skyrmion system can support subgap bound states
well separated from the continuum, unlike the s-wave
SC, as seen in Fig. 2. An example of the LDOS of a
system with parameters supporting subgap bound states
can be seen in Fig. 2 (a) for the case of an out-of-plane d-
vector. To illustrate its location within the gap, in Figs. 2
(b) and (c) we have plotted the spin-polarized DOS at
the origin for both types of d-vector. In the latter two we
have also included the DOS in the case of non-zero scalar
potential U as dashed lines. As is clear from the figures,
the non magnetic potential has a quantitative effect on
the energies of pre-existing bound states, although the
degree and direction of this shift depends on the d-vector.
We find in total four bound states (including those at
negative energies), consistent with results obtained for
p-wave Yu-Shiba-Rusinov systems [22].

Interestingly, the type of skyrmion makes a significant
qualitative difference in the case of an in-plane d-vector.
In the studied regime, the Néel-type skyrmion did not
support subgap bound states at all, whereas the Bloch-
type skyrmion supports subgap bound states for a wide
parameter range [23]. In a system with out-of-plane d-
vector on the other hand, the two skyrmions are equiva-
lent and the system can support subgap states regardless
of skyrmion type. The bound states in general follow
from simple Yu-Shiba-Rusinov states in p-wave super-
conductors [22], giving their wavefunctions the charac-
teristic asymptotic ∝ exp(−r/ξ)/

√
r decay, as seen in

Fig. 2(a). As seen in Fig. 3, we also observe [24] oscil-
lation on scales ∝ 1/pF as typical for Yu-Shiba-Rusinov
states. In addition to these states, at higher energies (not
shown in the figures) we observe bound states which do
not extend to the center of the skyrmion. Due to the
finite size of the skyrmion, these are expected features,
and we interpret them as states of higher angular mo-
mentum. In the case of in-plane superconductivity the
simple Yu-Shiba-Rusinov description gets more involved
for skyrmions, since the Cooper pairs couple spin and
momentum. Heuristically, the effect observed in this pa-

per can be understood in terms of classical orbits. Cou-
plings of the type p · σ, as we have here, require spin
parallel to momentum. In the region far away from the
skyrmion, the constant magnetic field is necessarily or-
thogonal to the spin of the Cooper pair; however, a clas-
sical circular orbit around the core of the skyrmion cre-
ates a trajectory where B always has an in-plane com-
ponent tangent to the circle. Similarly one would expect
p × σ-couplings to support bound states around Néel
skyrmions, which can easily be seen to be the case as
the unitary transformation that rotates Bloch skyrmions
into Néel skyrmions change the superconducting coupling
exactly thus. For completeness, we note that while the
in-plane p-wave SC coupled to a Néel skyrmion does not
support bound states for the parameters used in Figs. 2
and 3, it can host bound states for high enough scalar
potentials U . However, in this case the states are clearly
bound to the scalar potential rather than the skyrmion,
and in fact the presence of the skyrmion increases the
scalar potential needed to form a subgap bound state in
this system. It is important to note that these features
are rather generic: the SC-skyrmion combinations that
support subgap bound states do so for a wide range of
parameters.

Thus we propose that it may be possible to distin-
guish between s-wave and different types of p-wave su-
perconductivity depending on the effect seen when the
system is coupled to skyrmions. The existence of subgap
bound states in general indicates that the superconduc-
tive pairing is not s-wave, and dependence on the type
of skyrmion can act as a separator between out-of-plane
and in-plane d-vectors.

V. CONCLUSIONS AND OUTLOOK

We have found new bound states that are generated
in a p-wave superconductor in proximity to a ferromag-
netic film hosting a skyrmion with topological charge
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|Q| = 1. We predict sharp features in the non-polarized
as well as spin-polarized local density of states that can
be measured by tunneling spectroscopy in superconduc-
tors. To be general, we considered two types of p-wave
superconductors, i.e., in-plane and out-of-plane d-vector.
In contrast to s-wave superconductors, which can only
host bound states embedded in a continuum, we found
that both studied types of p-wave systems can support
genuine subgap bound states. In the out-of-plane case,
both skyrmions are equivalent due to rotational symme-
try. However, for the in-plane d-vector, we found re-
markable qualitative differences between the two types of
skyrmions: namely, a Bloch skyrmion can induce a sub-
gap bound state in the superconductor for a wide range
of parameters, while we observed no bound states for the
Neel skyrmion (but see again [23]). This feature could
be used experimentally to investigate the character of
the pairing of a given p-wave superconductor.

We also found that a scalar potential U can have an
impact on the structure of the bound states. In general,
U will shift the energies of any bound states present,
depending on its sign potentially bringing them to low
energies or gapping the system altogether. High scalar
potentials can result in bound states even for an in-plane
d system with a Néel-type skyrmion; however, in this
case it is clear that the state is bound specifically to the
scalar potential well – not the skyrmion – and in fact the
presence of the skyrmion increases the minimum scalar
potential for which a bound state appears.

Our prediction of subgap bound states also opens up
further venues for research, in addition to being use-
ful for distinguishing different types of superconductiv-
ity. Within the past decade, it has been experimen-
tally shown that under some circumstances, lattices of
skyrmions can form spontaneously [3, 4, and 7]. More
recently, 2D lattices of hybridized subgap bound states
have been found to give rise to interesting topological
behavior in both s-wave [25 and 26] and p-wave [27] su-
perconductors. Similarly, we may expect the slowly de-
caying subgap states in a skyrmion lattice to hybridize
and potentially induce interesting topological behavior.
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Appendix A: T -matrix

This appendix is dedicated to the derivation of the T -
matrix for the multipole expansion of the Skyrmion. The

derivation done here closely follows that of what was done
in the appendix of Ref. [15]. To simplify, we leave out the
scalar impurity V (k) = −Uτz throughout the derivation
and only reintroduce it at the very end.

Our starting point is the Lippmann-Schwinger equa-
tion for the T -matrix which reads

T (pout,pin) =V (pout − pin)+ˆ
d2p

(2π)2
V (pout − p)G0(p, ω)T (p,pin).

(A.1)

In the multipole expansion, the potential is V (p) =
S0σz− iS1fijpiσj , where the matrix fij is either equal to
the Kronecker delta δij or the Levi-Civita symbol ε3ij ,
depending on whether the Skyrmion is of Néel or Bloch
type.

For out-of-plane and in-plane d-vector respectively,
and as elaborated in Appendix B, this is

Ga0(0, ω) = −πν0

∑
λ=±1

Pσλ
ωλ −∆2 pF

vF γ
τz√

∆2p2
F − γω2

λ

Gp0(0, ω) = −πν0

∑
λ,λ′=±1

PσλPτλ′
ω − ∆2

γvF
(λ′pF + λ B

vF
)√

∆2
(
λ′pF + λ B

vF

)2

− γω2

(A.2)

where P are the projection operators along the z axis –
Pσλ ≡ 1

2 (1 +λσz), Pτλ ≡ 1
2 (1 +λτz) – and γ ≡ 1 + ∆2/v2

F .
Henceforth we will denote G0(0, ω) ≡ G0 for nota-
tional simplicity. We can insert G0 into the Lippmann-
Schwinger equation in order to calculate the full Green’s
function of the skyrmion-superconductor composite sys-
tem:

In order to proceed, we also make a few simplify-
ing observations: first, the potential only consists of a
momentum-independent term and a linear term. This
observation together with the form of Eq. (A.1) suggests
that a good ansatz for the T -matrix is one with terms
that are at most quadratic in momentum. The T -matrix
can then be written as

T (pout,pin) = T 0+T 1
i p

out
i +(T 1

i )†pin
i +T 2

ijp
out
i pin

j , (A.3)

where T j are matrices to be determined. Note that the
(T 1
i )† follows from general symmetry arguments for the

T -matrix. The second observation we make is that the
scattering processes primarily occur close to the Fermi
surface, allowing us to write p = pF n̂ (n̂ is a unit vector
and pF is the Fermi momentum) for all momenta in the
ansatz expression for the T -matrix and the potential term
in Eq. (A.3). Inserting all this into Eq. (A.1) gives us
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T 0 + T 1
i n

out
i + (T 1

i )†nin
i + T 2

ijn
out
i nin

j =

V
(
pF (nout − nin)

)
+

ˆ
d2p

(2π)2

[
S0σz − iS1pF fij(n

out
i − ni)σj

]
G0(p, ω)

[
T 0 + T 1

i ni + (T 1
i )†nin

i + T 2
ijnin

in
j

]
,

(A.4)

from which we by matching components get a system of
equations for the matrix components:

T 0 = S0σz + S0σzG0(ω)T 0 + S0σzI
1
j T

1
j IjT

0

+ iS1pF fjkσk + iS1pF fijσjI
2
ikT

1
k (A.5)

T 1
j = −iS1pF fjkσk − iS1pF fjkσkG0(ω)T 0

− iS1pF fjkσkI
1
i T

1
i (A.6)

T 2
ij = −iS1pF fikσkG0(ω)(T 1)†j − iS1pF fikσkI

1
l T

2
lj ,

(A.7)

where we have introduced the the two integrals

I1
j =

ˆ
d2p

(2π)2
G0(p, ω)nj , I2

ij =

ˆ
d2p

(2π)2
niG0(p, ω)nj .

(A.8)
We postpone the evaluation of these integrals to the next
section. The matrix components can now be obtained by
first solving for I1

i T
1
i in Eq. (A.6). This is achieved by

multiplying Eq. (A.6) with I1
j and summing over j. We

can then easily express I1
i T

1
i in terms of T 0 and solve

the original equation for T 1
j in terms of T 0. Inserting

this into Eq. (A.5) is then trivial albeit cumbersome. To
solve for T 2

ij it is then only a matter of performing a
similar multiplication and summation trick as we did for
I1
i T

1
i . We are finally left with

T 0 =
[
Q† − ΞG0(ω)

]−1
Ξ (A.9)

T 1
j = −iFjQ−1(1 +G0(ω)T 0) (A.10)

T 2
jk = −iFjQ−1G0(ω)(T 1)†k, (A.11)

where we have introduced the matrices

Fj = S1pF fjkσk

Q = 1 + iI1
j Fj

Ξ =

[
S0σz +

1

2
FjG0(ω)Fj

]
Q−1.

(A.12)

This concludes the derivation of the T -matrix in the mul-
tipole expansion. We can now add the scalar impurity
term by noting that it would only appear together with
S0σz, so all we need to do is replace S0σz → S0σz +Uτz
in the expression for Ξ in (A.12) and we are done. As a
final note, we emphasize that the derivation is valid for
both in- and off-plane d, since they only differ in G0(p, ω)
whose explicit form was not used in the above derivation.

Appendix B: Integrals

In this Appendix we will evaluate some integrals en-
countered in the main text and in the previous appendix.
Specifically, we consider the integrals in Eq. (11) in the
main text,

G0(r) =

ˆ
dp

2π
G0(p, ω)eip·r (B.1)

Wj(r) =

ˆ
dp

2π
G0(p, ω)

pj
p
eip·r, (B.2)

as well as two integrals from the previous appendix:

I1
j =

ˆ
d2p

(2π)2
G0(p, ω)nj (B.3)

I2
ij =

ˆ
d2p

(2π)2
niG0(p, ω)nj . (B.4)

We begin with the integrals from the main text. Due to
convergence, it is necessary to consider the cases r > 0
and r = 0 separately. For the bare Green’s function,
inverting H and inserting suitable resolutions of identity
yields the following integrals at r = 0:

Ga
0(0, ω) =

∑
λ=±1

Pσλ
ˆ

d2p

(2π)2

ω + λB + ξpτz
(ω + λB)2 − ξ2

p −∆2p2

Gp
0(0, ω) =

∑
λ,λ′=±1

PσλPτλ′
ˆ

d2p

(2π)2

ω − λB + λ′ξp
ω2 − ξ2

p −∆2p2 −B2 + 2λλ′ξpB

(B.5)

These integrals do not strictly converge as written, ulti-
mately due to the fact that BCS theory is not valid at
high energies. They can be calculated, however, by intro-
ducing a suitable cutoff. Here, this can simply be effected

by assuming the relevant scale is near the Fermi level and
hence approximating p ≈ pF + ξp/vF . This reduces both
Green’s functions to simple residue calculations, imme-
diately yielding the expressions in Eq. (A.2).
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The Green’s function for r > 0 can be calculated from

Ga
0(r, ω) =

∑
λ=±1

Pσλ
ˆ

d2p

(2π)2

ωλ + ξpτz + λ∆(pxτx − pyτy)

ω2
λ − ξ2

p −∆2p2
eip·r

Gp
0(r, ω) =

∑
λ,λ′=±1

PσλPτλ′
ˆ

d2p

(2π)2

ω + λ′ξp − λB + τx∆(pxσx + pyσy)

ω2 − ξ2
p −∆2p2 −B2 + 2λλ′ξpB

eip·r.

(B.6)

The terms in the numerator proportional to the momen-
tum can be written as derivatives with respect to the
appropriate coordinate. The angular integral then di-
rectly gives a Bessel function of the first kind. Factoring

the denominator in terms of its zeroes, we find that cal-
culation of the two Green’s functions reduces to solving
three integrals:

Ga
0(r, ω) =

1

2π

∑
λ=±1

1 + λσz
2

[
ωλI

0
G + τzI

1
G + iλℵI2

G

]
(B.7)

Gp
0(r, ω) =

1

2π

∑
λ,λ′=±1

PσλPτλ′
[
ω−λI

0
G + λ′I1

G + i∆τxσ · r̂I2
G

]
(B.8)

where we have defined the integrals

I0
G =

ˆ ∞
0

dp
pJ0(pr)[

p2 − (p+
0 )2
] [
p2 − (p−o )2

] = − i

2β

[
K0(−ip+

0 r)−K0(ip−0 r)
]

(B.9)

I1
G =

ˆ ∞
0

dp
pξpJ0(pr)[

p2 − (p+
0 )2
] [
p2 − (p−o )2

] = − i

2β

{
ξ+K0(−ip+

0 r)− ξ−K0(ip−0 r)

}
(B.10)

I2
G =

ˆ ∞
0

dp
p2J1(pr)[

p2 − (p+
0 )2
] [
p2 − (p−o )2

] = − 1

2β

[
p+

0 K1(−ip+
0 r) + p−0 K1(ip−0 r)

]
, (B.11)

(B.12)

where Ki(x) is the modified Bessel function of the second

kind, and ξ± =
(p±0 )2

2m − p2F
2m . Here p±0 are the zeroes of the

denominator in the respective Green’s function (indices
λ, λ′ have been suppressed). Specifically, we have for
out-of-plane superconductivity

p±0 =

√
p2
F − 2m2∆2 ± i2m∆

√
p2
F −m2∆2 − ω2

λ/∆
2

β = 2m∆
√
p2
F −m2∆2 − ω2

λ/∆
2

(B.13)

and for in-plane SC

p±0 =

√
p2
F − 2m2∆2 ± i2m∆

√
p2
F −m2∆2 − ω2

λ/∆
2

β = 2m∆

√
p2
F −

(
m∆− λλ′B

∆

)2

− ω2 −B2

∆2
.

(B.14)

The result (B.9) is obtained through residue integration
upon representing the Bessel function as an integral; the
others can consequently be deduced through recurrence
relations. The imaginary part of p±0 constitutes the in-
verse of the effective coherence length ξ of the system.
We have in this work assumed that the argument of the
square root in β is positive in all cases; to first order in
∆/vF , this is equivalent to requiring that the energies lie
within the bulk gap.

The integrals in Wj can be solved in a similar manner.
We first consider the case r = 0. This can be easily solved
by factorizing the denominator as above, yielding

W a
j (0) = (−1)j

∑
λ=±1

Pσλλτj
∆m2

[
p+

0 + p−0
]

4B
(B.15)

W p
j (0) = −

∑
λ,λ′=±1

PσλPτλ′λσjτx
∆m2

[
p+

0 + p−0
]

4B
.

(B.16)
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Consider then the case r > 0. The angular integral is
most conveniently handled by pulling out a derivative

with respect to rj , upon which again we obtain a number
of integrals over Bessel functions:

W a
j (r) =

i

2πr

∑
λ=±1

Pσλ
[
ωλrjI

0
W + τzrjI

1
W − ajI0

W − bjI3
W

]
(B.17)

W p
j (r) = − i

2πr

∑
λ,λ′=±1

PσλPτλ′
{[
−ω−λrj + i∆τx(σj − 2

rj
r
σ · r̂)

]
I0
W − λ′rjI1

W + i∆τxσ · r̂rjI2
W

}
. (B.18)

defined in terms of

I0
W =

ˆ ∞
0

dp
pJ1(pr)[

p2 − (p+
0 )2
] [
p2 − (p−o )2

] =
π

4β

[
J1(p+

0 r) + iH1(p+
0 r) + J1(p−0 r)− iH1(p−0 r)

]
(B.19)

I1
W =

ˆ ∞
0

dp
pξpJ1(pr)[

p2 − (p+
0 )2
] [
p2 − (p−o )2

] =
π

4β

(
ξ+
[
J1(p+

0 r) + iH1(p+
0 r)
]

+ ξ−
[
J1(p−0 r)− iH1(p−0 r)

]
+

2β

πm

)
(B.20)

I2
W =

ˆ ∞
0

dp
p2J0(pr)[

p2 − (p+
0 )2
] [
p2 − (p−o )2

] =
π

4β

(
p+

0

[
J0(p+

0 r) + iH0(p+
0 r)
]

+ p−0
[
J0(p−0 r)− iH0(p−0 r)

])
(B.21)

where Hi is the Struve function of the first kind, and the
other parameters are the same as previously.

Finally we turn to the integrals in the previous ap-
pendix. In both cases, the angular integral is trivial and
can be integrated out. Looking at the remaining inte-
grals over the momentum, it is then immediately evident
that

I1
j = Wj(0)

I2
jk =

δjk
2
G0(0, ω).

(B.22)
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