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We analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced non-
equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the
electron scattering. We demonstrate that the competition between these effects leads to an enhanced supercon-
ducting transition temperature in a broad range of parameters. Our results may explain the observed transient
enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of
terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

The application of a strong electromagnetic drive has
emerged as a powerful new way to manipulate material prop-
erties [1, 2]. Long-range charge density wave order has been
melted by light [3–6], insulators have been destroyed [7–
9], and the breaking of superconducting pairs has been ob-
served [10–14]. Even more remarkably, long range order can
be not only destroyed but also created by exciting samples
with light. For instance, the dynamic emergence of transient
spin-density wave [15], charge-density wave [16], as well as
superconducting order [17–21] has been demonstrated. These
observations lead to the very fundamental theoretical ques-
tions of the origin of the light induced order, including: What
is the mechanism for the emergence of transient collective
behavior? What determines the lifetime of transient ordered
states? How robust and universal are the observed phenom-
ena? Answers to these questions may hold the key to a
novel route for achieving ordered many-body states by peri-
odic driving as opposed to cooling; a subject that has attracted
considerable theoretical attention recently [22–28].

We propose a general mechanism for making a normal
conducting metal unstable toward Cooper-pair formation by
irradiation with light. The key ingredient is the nonlinear
coupling between optically active infrared phonons and the
Raman phonons that mediate electron-electron attraction, re-
sponsible for superconductivity (Fig. 1). Depending on the
form of the nonlinearity (Tab. I), several effects can arise.
These include the parameter renormalization of the time-
averaged Hamiltonian, the dynamic excitation of the Raman

TABLE I. Types of the phonon nonlinearities and their static and
non-equilibrium effects on the system. The renormalization of the
parameters leads to an effectively static Hamiltonian, while phonon
squeezing and the periodic Floquet modulation of system parameters
are purely dynamical.

static renorm.
of parameters

dynamical
squeezing

periodic
Floquet

I: (QIR
0 )2QR

0 X × X

II: (QIR
0 )2QR

kQ
R
−k X X X

III: QIR
0 Q

R
kQ

R
−k × X X

phonons into squeezed quantum states, which can have sig-
nificantly enhanced coupling to electrons, and, finally, the pe-
riodic modulation of system parameters leading to Floquet
states. Of these effects, we find that phonon squeezing uni-
versally leads to an enhancement of Tc, by potentially a large
factor [29]. The periodic modulation of the system parame-
ters (Floquet) can also enhance Cooper pairing, via a super-
conducting proximity effect in time rather than space. By
contrast, the static renormalization of the system parameters
can, depending on material-specific details, either enhance or
suppress Tc.

Driving phonons into a highly excited state, unfortunately,
also leads to an increased electron-phonon scattering rate,
which weakens Cooper pairing. We analyze the competition
between the enhanced Cooper pair formation and Cooper pair
breaking and show that the enhancement of pairing can dom-
inate in a broad parameter range resulting in signatures of su-
perconductivity that appear at higher temperatures compared
to equilibrium. We note that the predicted enhancement of
Tc should be understood as a transient phenomenon, since in-
elastic scattering of electrons with excited phonons will even-
tually heat the system and destroy the superconducting order.
Even though our study is motivated by specific experiments,
the minimal models that we introduce and study are intended
to elucidate the qualitative origins of these effects, rather than
to provide detailed material-specific predictions.

Furthermore, the proposed mechanism can be readily ap-
plied to many other types of long-range order such as charge-
density and spin-density waves, by performing the instability
analysis in the appropriate channels.

I. ROLE OF THE PHONON NONLINEARITY

We now describe the consequences of different types of
optically-accessible phonon nonlinearities. The pump pulse
directly couples to infrared-active phonon modes, which have
a finite dipole moment. Since the photon momentum is negli-
gible compared to the reciprocal lattice vector, the drive cre-
ates a coherent phonon state at zero momentum, QIR

q=0(t) =
E cos Ωt, where Ω is the drive frequency and E is proportional
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FIG. 1. Dynamical enhancement of the superconducting transition temperature. A schematic representation of the physical processes
leading to light-induced superconductivity: (1) The pump pulse couples coherently to (2) an infrared-active phonon mode which in turn (3) via
nonlinear interactions drives Raman phonons that are responsible for superconducting pairing. The non-equilibrium occupation of the Raman
phonons (4) universally enhances the superconducting coupling strength γ, which is a product of the density of states at the Fermi level NF
and the induced attractive interaction between the electrons U , and hence (5) increases the transition temperature Tc of the superconducting
state. We calculate the relative enhancement of Tc compared to equilibrium (Tc−Tc,eq)/Tc,eq by taking into account the competition between
dynamical Cooper pair-formation and Cooper pair-breaking processes, as a function of the pump frequency Ω/ω̄ and the driving amplitude
A. The data is evaluated for linearly dispersing phonons with mean frequency ω̄, relative spread ∆ω/ω̄ = 0.2, and negative quartic couplings
of type II between the Raman and infrared-active modes; Tab. I. Moreover, the electron-phonon interaction strength is chosen to give an
equilibrium effective attractive interaction U/W = 1/8 that is weak compared to the bare electronic bandwidthW . The static renormalization
of Raman modes leads to the uniform increase of Tc with increasing driving amplitude A, the squeezed phonon state manifests in the strong
enhancement near parametric resonance Ω ∼ ω̄, and the temporal proximity effect dominates near Ω/ω̄ ∼ 0.

to the drive amplitude. In the presence of phonon nonlinear-
ities, the driven infrared-active phonon mode couples to Ra-
man modes QR

q of the crystal [18, 22, 30, 31], which in turn
can couple to the conduction electrons.

There are three leading types of phonon nonlinearities
which can have static and dynamic effects (Tab. I). A static
renormalization of the Hamiltonian parameters arises from
phonon nonlinearities that involve even powers of QIR

0 , since
these terms have finite time averages. For phonon nonlin-
earities of type I (Tab. I), this leads to a static displacement
of the zero-momentum Raman phonon while for nonlineari-
ties of type II the frequency of the Raman phonons is modi-
fied, cf. App. A. Both affect the superconducting instability,
causing either enhancement or suppression; the analysis can
be done with a standard equilibrium Migdal-Eliashberg for-
malism [32]. Here we will focus, however, primarily on the
dynamical effects. There are two types of dynamical effects
that can be distinguished: First, a simple modulation of sys-
tem parameters, which makes system instantaneously more
or less superconducting, and, second, dynamical squeezing of
phonons, which is an explicitly quantum effect. Notably, both
dynamical effects lead to an increased superconducting insta-
bility temperature.

II. A MINIMAL ELECTRON-PHONON MODEL

We illustrate the aforementioned effects by using a model
with Fröhlich-type electron-phonon interactions that couple
with strength gk to the displacement of the Raman phonons
QR
k (PR

k is the conjugate momentum) to the local electron den-
sity niσ:

Ĥel-ph = −J0

∑
〈ij〉,σ

c†iσcjσ +
∑
k

(PR
k P

R
−k + ω2

kQ
R
kQ

R
−k)

+
∑
ikσ

√
2ωk
V

gke
ikri QR

k niσ. (1)

We consider dispersive optical phonons ωk with mean fre-
quency ω̄ and spread ∆ω. Here, J0 is the bare electron hop-
ping matrix element and V the volume of the system. Further,
we assume a quartic nonlinearitiy of type II. The phonon drive
term, introduced for t > 0, reads

Ĥdrv(t) = −
∑
k

ω2
kAk(1 + cos 2Ωt)QR

kQ
R
−k, (2)

whereAk = −ΛkE2/2ω2
k and E is the amplitude of the driven

infrared-active phonon.
The effect of the drive is twofold. First, there is a static

contribution, which renormalizes Raman phonon frequencies.
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For negative nonlinearities, Λk < 0, phonons are softened
by ω2

k(1 − Ak). The mode softening suppresses the electron
tunneling, increases the density of states and thus the over-
all pairing strength. Second, the time dependent part of the
drive (2) realizes a parametrically driven oscillator which dy-
namically generates phonon squeezing correlations and can
strongly suppress the electron tunneling matrix element [33].
While the mode softening effect on Tc depends on the sign of
the nonlinearity, the dynamical generation of squeezing corre-
lations universally leads to enhancment of Tc.

Effective Hamiltonian.—We will now derive an effective
electronic Hamiltonian by integrating out phonons. This is
analogous to the standard derivation of the Bardeen-Cooper-
Schrieffer (BCS) Hamiltonian starting from the Fröhlich
model, however, with the phonons being driven strongly out
of equilibrium. As a consequence, the Hamiltonian will be
explicitly time-dependent. In addition, it will contain resid-
ual electron-phonon scattering that contribute to the electron
scattering rate.

We first perform the Lang-Firsov transformation (App. B),
which eliminates the electron-phonon interaction term in
Eq. (1) but introduces an effective electron-electron interac-
tion and dresses the electron tunneling with phonons. This
dressing, which depends on the phonon squeezing, suppresses
the electron tunneling and modulates it in time. We (i) take
into account the softening of the Raman modes by a static
renormalization of the phonon coordinates and (ii) treat the
dynamic excitation of finite-momentum phonons by trans-
forming the system into a rotating frame. Since we are con-
sidering optical phonons, we assume their thermal occupation
to be negligible before the drive was switched on. Tracing out
the phonons, leads to the dressed electron tunneling matrix el-
ement Ĥkin → J(t)

∑
ijσ c

†
iσcjσ . (iii) We compute the rate

of non-equilibrium Cooper pair breaking processes resulting
from dynamical excitations of the Fermi sea induced by the
drive and take into account the competition between the en-
hanced pair formation and pair breaking. This treatment is
justified by showing a posteriori that pair formation domi-
nates pair breaking.

Solving the full problem numerically we find that J(t) os-
cillates with 2Ω around its mean value

〈J(t)〉 = Jeqe
−ζ , (3)

which is suppressed by mode softening and phonon squeez-
ing, as parametrized by ζ. Near parametric resonance the
squeezing correlations increase in time leading to a decrease
in J(t) and an increase in the amplitude of its oscillations.
Since we are studying transient phenomena, we compute the
average over the first ten driving cycles to extract the effec-
tive electron tunneling. We take the electron-phonon cou-
pling gk such that g2

k/ωk = const., which leads to a local
Hubbard-type electron-electron interaction U . This assump-
tion is reasonable for phonons with wavevectors above the
Thomas-Fermi screening length [32]. We emphasize however
that this assumption is not crucial for our analysis. For tech-
nical convenience, we transform the oscillatory part from the
kinetic to the interaction term by rescaling time, yielding the
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FIG. 2. Dynamical Cooper instability. The dynamical Cooper
instability evaluated within the Floquet BCS theory including non-
equilibrium pair-breaking processes, red solid line, is compared to
the one without pair breaking, black dotted line, and the BCS solu-
tion for the equilibrium problem, blue dashed line. Data is evaluated
for mean phonon frequency ω̄/W = 1/8 and effective attractive in-
teractionsU/W = 1/8 that are weak compared to the bare electronic
bandwidth W , a phonon frequency spread of ∆ω = 0.2ω̄, driving
strength A = 0.1, and driving frequency (a) Ω/ω̄ = 0.001 and (a)
Ω/ω̄ = 0.8. The non-equilibrium Cooper pair-formation rate domi-
nates over the pair breaking, hence, leading to an enhanced transition
temperature.

effective time-dependent Hamiltonian

H̃(t) = Jeqe
−ζ

∑
ij

c†iσcjσ − U(1 +A cos 2Ωt)
∑
i

ni↑ni↓

+ Ĥel-ph scatt., (4)

where Ĥel-ph scatt. represent electron-phonon scattering terms
that vanish upon tracing out the phonons in the rotating frame.
The drive, Eq. (2), has thus several effects: (i) a suppression of
the electron tunneling by a factor exp[−ζ], (ii) a dynamic Flo-
quet contribution from modulating the interaction energy by
A cos 2Ωt, and (iii) an enhancement of the electron scattering
due to the non-equilibrium phonon occupation.

Dynamical Cooper instability.—We study the dynamical
Cooper instability toward pair formation in Hamiltonian (4)
by combining the BCS approach [34] with a Floquet analy-
sis [35]. We also take into account the finite electron life-
time τ due to the non-equilibrium phonon occupation, by in-
troducing an imaginary self-energy correction i/τ [calculated
in (App. B) using Floquet Fermi’s Golden rule]. In contrast
to elastic scattering on a time-reversal symmetry preserving
potential, where Anderson’s theorem [36, 37] shows that the
thermodynamics of a superconductor remains unchanged, the
inelastic scattering processes arising here indeed alter the su-
perconducting properties.

To carry out the BCS Floquet analysis of the pairing insta-
bility, we use the equations of motion technique [38]. We
introduce infinitesimal pairing amplitudes ak = 〈ck↑c−k↓〉
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and determine whether the system is stable or unstable to
the growth of ak [39, 40] by finding the eigenfequencies of
the corresponding collective mode. We decompose ak(t) into
Floquet modes ak(t) ∼ e−iEt

∑∞
n=−∞ akne

2inΩt, where E
is the energy which has to be determined self-consistently
from the Floquet BCS gap equation (App. C)

0 = (U−1 + Fn)∆n +
A
2
Fn(∆n−1 + ∆n+1) (5a)

Fn =
1

V

∑
k

1− 2nk
E + 2nΩ− 2(εk + i/τ − µ− Uρ)

. (5b)

The instability of the system manifests in the appearance of
an eigenmode with negative imaginary part of E which we
obtain by searching for the zeros of the determinant of (5) in
the complex plane of E [39, 40]. Here, ∆n = U

V

∑
k a
∗
kn

are the Floquet harmonics of the gap, ρ is the electron density
of a single spin-component, µ the chemical potential, nk the
Fermi-Dirac distribution of the electrons determined by the
temperature of the undriven system, and εk the electron dis-
persion. The assumed thermal state of the electrons is justified
in the weak-coupling regime and since we are only interested
in transient effects that follow the drive [41]. We determine
the critical Tc by locating the highest temperature at which
we find an unstable solution of the Floquet BCS gap equations
(5). Equations with similar structure are obtained for spatially
inhomogeneous superconductors [42].

The high and low frequency limits of the Floquet BCS gap
equations (5) can be understood from perturbative arguments.
In the high frequency limit, Ω→∞, we use a Magnus expan-
sion to derive the stroboscopic Floquet Hamiltonian [35]. To
zeroth order in 1/Ω, the Floquet Hamiltonian is given by the
time averaged Hamiltonian. Thus for the harmonic drive in
Eq. (4), the contribution∼ A drops out and we obtain an equi-
librium BCS gap equation with interaction U and the reduc-
tion of the electron tunneling Jeq exp[−ζ] due to the squeezed
phonon state. Enhancement of Tc due to the suppression of
the effective electron bandwidth has also been suggested in a
model without phonons [25].

In the low frequency limit Ω→ 0, the core of the gap equa-
tions (5) barely depends on the Floquet index n leading to
[U−1 +F (1+A)]∆ = 0. The maximally enhanced transition
temperature Tc is thus determined by an equilibrium BCS gap
equation with U(1 +A) which is the largest instantaneous at-
tractive interaction. Hence, in the slow drive limit, the pairing
induced by the strongest instantaneous interaction dominates
the Cooper pair formation which can be interpreted as a su-
perconducting proximity effect in time rather than in space.

We verify these perturbative predictions by numerically
solving the Floquet BCS gap equations (5) on a two-
dimensional square lattice away from half-filling. The conver-
gence of the results with system size and number of Floquet
bands is checked. We choose linearly dispersive phonons with
mean frequency ω̄/W = 1/8, interaction energyU/W = 1/8
weak compared to the bare electron bandwidth W , and set
the width of the phonon branch to ∆ω = 0.2ω̄; a typical
value for optical phonons. We first solve the driven phonon
problem from which we determine the average suppression of
the electron tunneling e−ζ and the effective amplitude A of

the oscillations in the interaction. Then we solve the Floquet
BCS problem. In Fig. 2 we show the dynamical Cooper insta-
bility including pair-breaking processes for driving Ω/ω̄ =
{0.001, 0.8} and Ak = A = 0.1 constant for all k, red
solid line, and compare them to the instability without pair
breaking, black dotted line, and the equilibrium solution, blue
dashed line.

The reduction of the superconducting transition tempera-
ture due to the finite electron lifetime is of the Abrikosov-
Gorkov form Tc = Tc,0 − 1/τ , where Tc is the dynamical
transition temperature including pair-breaking and Tc,0 the
one without pair-breaking. We find an enhancement of the
dynamical Tc compared to equilibrium, Fig. 2, and hence that
the pair-formation rate dominates the pair-breaking rate. In
the high-frequency limit Ω/ω̄ = 0.8, (b), the enhancement
results mainly from the efficient suppression of the electron
tunneling near parametric resonance Ω ∼ ω̄ and in the slow
drive limit Ω→ 0, (a), from a combination of mode softening
and the temporal proximity effect. The relative enhancement
of Tc, taking into account pair-breaking processes, is shown
in Fig. 1 for an extended range of drive amplitudes A and fre-
quencies Ω/ω̄. Softening of the Raman modes leads to the
uniform increase of Tc with driving amplitude for all values
of the pump frequency, while the effect of phonon squeez-
ing is most prominant near parametric resonance Ω ∼ ω̄ and
can dominate mode softening by about an order of magnitude.
As a result, the enhancement of Tc displays an intricate non-
monotonic dependence on the driving frequency.

III. EXPERIMENTAL IMPLICATIONS

Even though we are not studying a specific material from
first principles, let us estimate the typical order of magnitude
of the discussed effects for a recent experiment in which tran-
sient non-equilibrium superconductivity has been explored in
K3C60 fullerides [21]. Typical energy scales in K3C60 are
the following [43]: bare bandwidth W ∼ 0.6eV, intramolec-
ular phonon frequencies ω ∼ 0.03 − 0.2eV, and interaction
U = g2/ω ∼ 0.1eV. Thus, the parameters we chose are
representative for K3C60 . In the experiment [21] the driving
frequency Ω ranges from a tenth to a third of the bandwidth.
Translating to our scenario, the main enhancement of Tc in
this experiment should result from a combination of the static
mode softening and the dynamic phonon squeezing.

Our calculations suggest that the increase of Tc is related
to a dynamical enhancement of the effective electron mass,
Eq. (3). Such a dynamical renormalization of the electronic
dispersion can, for instance, be determined experimentally
by time-resolved ARPES measurements, see e.g. [3, 11–
13]. Contributions from mode softening and phonon squeez-
ing can, in principle, be experimentally distinguished by the
driving-strength dependence of the mass renormalization, that
we predict to be linear in the former and quadratic in the latter
case.
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IV. SUMMARY AND OUTLOOK

We studied the competition between the increased Cooper
pair formation and Cooper pair breaking in strongly-driven
electron-phonon systems and found that the latter need not
to inhibit the dynamic enhancement of Tc. Even though we
focused on superconducting instabilities, the proposed mech-
anism for achieving a larger coupling constant is generic and
can be directly applied to other forms of long-range order such
as spin or charge density waves.

The present analysis addresses the transient dynamics of
the system. At long times, the inelastic scattering of electrons
from excited phonons will increase their temperature and will
tend to destroy superconducting order, as seen in the exper-
iments. At intermediate times, heating of the electrons can
give rise to nonequilibrium distribution functions which po-
tentially enhances superconducting coherence as experimen-
tally seen by microwave irradiation of superconducting sam-
ples [44–49]. The analysis of complete thermalization due to
feedback effects in a fully self-consistent and conserving cal-
culation is an exciting future direction.
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Appendix A: Type I nonlinearity: Uniform lattice displacement

A nonlinear phonon coupling of form I, Λ(QIR
0 )2QR

0 (cf. Tab. 1 in the main text), acts as a classical force on QR
0 proportional

to (QIR
0 )2 [18, 22, 30, 31]. The drive (QIR

0 )2 = E2 cos2 Ωt = E2

2 (1 + cos 2Ωt) can be separated in a static and an oscillatory
contribution. We take into account a simple electron-phonon model in which the phonons modulate electron hopping processes
−(J0 + g QR

0 )
∑
〈ij〉,σ c

†
iσcjσ (g is the electron-phonon coupling and c†iσ the electron creation operator) as for example in a

Su-Schrieffer-Heeger (SSH) model [51]

HSSH = −(J0 + g QR
0 )

∑
〈ij〉,σ

c†iσcjσ +
1

2

∑
k

(PR
k P

R
−k + ω2

kQ
R
kQ

R
−k) + Λ(QIR

0 )2QR
0 . (A1)

The infrared phonon is coherently driven QIR
0 = E cos Ωt. Neglecting the feedback of the electrons on the phonons, we find for

the phonon equation of motion

Q̈R
0 + ω2

0Q
R
0 =

ΛE2

2
(1 + cos 2Ωt). (A2)

This equation can be solved analytically with QR
0 (t) = Q̃ + δQ cos 2Ωt, where Q̃ = ΛE2

2ω2
0

and δQ = ΛE2

2(ω2
0−4Ω2)

. The phonon

displacement thus oscillates with twice the pump frequency 2Ω around a mean value Q̃. Plugging this into the SSH Hamiltonian,
we find

HSSH = −[J0 + g(Q̃+ δQ cos 2Ωt)]
∑
〈ij〉,σ

c†iσcjσ +
1

2

∑
k 6=0

(PR
k P

R
−k + ω2

kQ
R
kQ

R
−k). (A3)

The finite displacement of the lattice along the coordinates of the Raman mode renormalizes the electron tunneling by a term
∝ gΛE2. The effective electronic bandwidth is reduced when gΛ < 0; a condition that is material specific. Reducing the
bandwidth results in a higher density of states and hence an enhanced superconducting transition temperature Tc. For gΛ > 0
contrary is the case. These general considerations may account for the physical origin of the enhancement of the transition
temperature which has been seen in ab initio calculations for specific materials [18]. On top of the enhancement due to the
time-averaged displacement of the Raman phonon mode, the strong oscillations at 2Ω can give rise to an additional dynamic
enhancement of Tc by the temporal proximity effect as we discuss in this work.

Appendix B: Type II and III nonlinearities: Finite-momentum phonon excitations

An alternative form of the nonlinear phonon interaction contains pairs of Raman phonons at finite but opposite momenta.
Here, we analyze both the quartic type II and the cubic type III nonlinearities (cf. Tab. 1 in the main text for their classification).
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FIG. 3. Phonon squeezing as a universal mechanism for the enhancement of Tc. The relative change of the superconducting transition
temperature is shown for (a) quartic type II phonon nonlinearities with positive Λk > 0 and (b) cubic type III phonon nonlinearities, taking into
account the competition between Cooper pair formation and pair breaking. (a) Quartic phonon nonlinearities that couple to finite momentum
Raman modes have two distinguished effects on the bandwidth renormalization: (i) the static displacement of the Raman modes and (ii)
phonon squeezing. For positive nonlinearities, the static displacement hardens the frequency of the Raman phonons. This leads to the uniform
suppression of Tc with increasing magnitude of the driving amplitude A. However, near parametric resonance Ω ∼ ω̄, the phonon squeezing
dominates over the static displacement, leading to the universal enhancement of Tc. (b) Cubic nonlinearities exhibit only the squeezing
mechanism, and hence irrespectively of the sign of the coupling lead to an enhanced transition temperature. Furthermore, the shape of the
enhancement diagram is similar to the one for quartic interaction with the main difference that in the case of quartic nonlinearities the resonance
condition is Ω ∼ ω̄ while in the cubic case it is Ω ∼ 2ω̄. The data is evaluated for ω̄/W = 1/8, U/W = 1/8, ∆ω = 0.2ω̄.

Type II: Quartic nonlinearities.—The lowest order nonlinearity in centro-symmetric crystals containing pairs of Raman
phonons is of the quartic form Λk(QIR

0 )2QR
kQ

R
−k (type II). In this case, the coherently driven infrared phonon excites Raman

phonons in pairs and with opposite finite momenta, leading to quantum correlations between k and −k modes. These states are
referred to as squeezed states in quantum optics [52]. The driven phonon Hamiltonian has the form

Ĥph =
∑
k

(PR
k P

R
−k + ω2

kQ
R
kQ

R
−k)−

∑
k

ω2
kAk(1 + cos 2Ωt)QR

kQ
R
−k = Ĥph,0 + Ĥdrv., (B1)

with Ak = −ΛkE2/2ω2
k, which describes a parametric oscillator with resonance condition Ω = ωk

√
1−Ak.

The drive can be again separated into a static and an oscillatory contribution with the implications of the static displacement
being crucially dependent on the sign of the nonlinearity Λk. For Λk < 0 the frequencies of the Raman modes ωk are softened
and hence the effective electron-electron interaction, which is typically of the form g2

k/ωk, is increased, while for Λk > 0 the
opposite is the case. By contrast, we find that irrespective of the sign of the couplings, the oscillatory term squeezes the Raman
modes which results in a polaronic suppression of the electron tunneling matrix element compared to equilibrium and hence
in an enhanced density of states, Fig. 3 (a). Such an enhancement in the density of states in turn increase the superconducting
coupling constant, enabling dynamic Cooper pair formation at higher temperatures where equilibrium Cooper pairing would be
impossible.

Type III: Cubic nonlinearities.—In non-centrosymmetric crystals, the lowest order phonon nonlinearity is of the cubic form
III, QIR

0 Q
R
kQ

R
−k, as the zero-momentum infrared active phonon mode can linearly couple to the displacement of the Raman

modes. Coupling to pairs of Raman modes at opposite momentum gives rise to phonon squeezing that leads to an enhanced Tc.
Hence, phonon squeezing is largely insensitive to the microscopic details of the phonon nonlinearities and can occur in a variety
of nonlinear couplings. The effective phonon Hamiltonian arising from such a nonlinearity is

Ĥph =
∑
k

PR
k P

R
−k + ω2

k(1 +Ak cos Ωt)QR
kQ

R
−k, (B2)

with Ak = ΛkE , which also describes a parametric oscillator but with resonance condition Ω = 2ωk. In the case of cubic
interactions, direct mode softening cannot occur because the the time average of QIR

0 vanishes. Nonetheless, the dynamic
generation of squeezing near the parametric resonance is universally present also for cubic nonlinearities and qualitatively
similar enhancement diagrams can be also obtained in that case, cf. Fig. 3 (b).
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For studying phonon nonlinearities which generate squeezed states, we consider the Holstein model with Fröhlich electron-
phonon interactions where the phonon displacement couples to the charge density

Hel-ph = −J0

∑
ijσ

c†iσcjσ +
∑
k

ωkb
†
kbk +

1√
V

∑
ik

gk(bk + b†−k)eikriniσ. (B3)

We expect our results to be insensitive to the fine details of the model and expect for example similar results for the SSH model.
We pursue the following strategy:

1. Using a Lang-Firsov transformation we remove the electron-phonon interaction.

2. We determine the unitary transformation W that transforms the system into a rotating frame in which the phonon driving
is absent. This leads to a driven Floquet BCS problem.

3. We estimate the dynamic Cooper pair breaking rate due to the non-equilibrium scattering of phonons and due to oscil-
lations in the microscopic interaction parameter using Floquet Fermi’s Golden rule. The Cooper pair-breaking rate is
self-consistently taken into account by adding an imaginary self-energy correction to the Floquet BCS equations.

4. Solving the driven Floquet BCS problem, we determine the enhancement of Tc relatively to the undriven one.

1. Lang-Firsov transformation

Considering the Holstein model (B3), we introduce operators b̃k and b̃†−k which diagonalize the static phonon Hamiltonian∑
k P

R
k P

R
−k + ω2

k(1 − Ak)QR
kQ

R
−k. These operators are related to the bk, b†−k operators which diagonalize Hph,0 e.g. by

(b†−k−bk) = (1−Aq)
1
4 (b̃†−k−b̃k). The electron-phonon interaction in Eq. (B3) can be removed by a Lang-Firsov transformation

Hel-ph → eSHel-phe
−S with S = − 1√

V

∑
qjσ

gq

ωq
√

1−Aq
eiqrj (b̃q − b̃

†
−q)njσ. (B4)

Applying it to the Hamiltonian and switching on the drive we obtain

H = −
∑
ijσ

Jijc
†
iσcjσ +

∑
ijσσ′

Uijniσnjσ′ +
∑
k

PR
k P

R
−k + ω2

k(1−Ak −Ak cos 2Ωt)QR
kQ

R
−k. (B5)

with dressed tunneling matrix element Jij = J0e
− 1√

V

∑
k

gk

ωk(1−Ak)3/4
(eikri−eikrj )(bk−b

†
−k)

and attractive electron-electron inter-

action Uij = − 1
V

∑
k e
−ik(rj−ri) g2

k

ωk
√

1−Ak
.

2. Rotating phonon frame

We construct a unitary transformation to remove the phonon driving following Ref. [53]. We introduce the undriven and
driven phonon Hamiltonian, respectively, as

H0 = PqP−q + ω2
qQqQ−q = ωq(b

†
qbq + b−qb

†
−q) (B6a)

H1 = PqP−q + ω2
qΩ2

tQqQ−q =
1

2
(Ω2

t + 1)ωq(b
†
qbq + b−qb

†
−q) +

1

2
(Ω2

t − 1)ωq(b
†
qb
†
−q + bqb−q). (B6b)

Applying the unitary transformation, we find

i
d

dt
W |ψ0〉 = i

dW

dt
|ψ0〉+Wi

d

dt
|ψ0〉 = i

dW

dt
|ψ0〉+WH0 |ψ0〉 = H1W |ψ0〉 (B7)

yielding

i
dW

dt
W † +WH0W

† = H1. (B8)



8

Multiplying this equation from left by W and from right by W † and identifying H0 = H0,ph and H1 = Hph,0 +Hdrv, we obtain

W †(Ĥph,0 + Ĥdrv)W − iW † dW
dt

= Ĥph,0. (B9)

Our goal is to construct a mapping of the quantum problem onto a classical Mathieu equation which determines the transfor-
mation W [53] uniquely. To this end, we introduce the Ansatz

W (t) = eξe
−2iωqtK+−ξ∗e2iωqtK−e−2iK0φ, (B10)

where

K0 =
1

2
(b†qbq + b−qb

†
−q), K+ = b†qb

†
−q, K− = bqb−q, (B11)

which obey SU(2) algebra [K−,K+] = 2K0, [K0,K±] = ±K±. The time dependent factors in Eq. (B10) are chosen such
that bqeiωqt = b̂q(t) are invariants of the undriven problem H0, which are defined by requiring that they commute with the
corresponding action, i.e., [b̂q(t), i∂t −H0] = 0. For a given invariant b̂q(t), b̂q(t) |ψ〉 remains an eigenstate of H0 provided |ψ〉
is an eigenstate, since 0 = [b̂q(t), i∂t −H0] |ψ〉 = (i∂t −H0)b̂q(t) |ψ〉. We furthermore introduce the invariants of the driven
problem as

[âq(t), i∂t −H1] = 0, (B12)

which will be generated by the unitary transformation âq(t) = Wbq(t)W
†. By differentiation and subsequent integration we

obtain for the invariants

âq(t) = Wbq(t)W
† = eiφ(cosh |ξ|bqeiωqt −

ξe−iωqt

|ξ|
sinh |ξ|b†−q) ≡ χ(t)bq + λ∗(t)b†−q (B13a)

â†−q(t) = Wb†−q(t)W
† = e−iφ(cosh |ξ|b†−qe−iωqt −

ξ∗eiωqt

|ξ|
sinh |ξ|bq) ≡ χ∗(t)b†−q + λ(t)bq. (B13b)

We do not explicitly write the q dependence in χ and λ, as these functions are symmetric in q, i.e., χq = χ−q .
Next, we compute the invariants i∂tâq(t) = [H, âq(t)], (B12), using relations (B13)

dχ

dt
= i

ωq
2

(Ω2
t + 1)χ− iωq

2
(Ω2

t − 1)λ∗ (B14a)

dλ∗

dt
= −iωq

2
(Ω2

t + 1)λ∗ + i
ωq
2

(Ω2
t − 1)χ. (B14b)

We transform α = χ− λ∗, β = χ+ λ∗ which yields the Mathieu equation

d2α

dt2
+ ω2

qΩ2
tα = 0

dα

dt
= iωqβ. (B15)

From the initial conditions that require χ(0) = 1, λ(0) = 0, we find

α(0) = 1, α̇(0) = iωq. (B16)

Using the definition of χ, λwe find the relations between ξ(t), φ(t) from the unitary transformation Eq. (B10) and the parameters
of the Mathieu equation

cosh |ξ|eiφ =
e−iωt

2
(α− iα̇

ωq
) (B17a)

sinh |ξ| ξ
|ξ|
eiφ =

eiωt

2
(α+

iα̇

ωq
). (B17b)

Plugging in the driving from Eq. (B5), we find Ω2
t = (1 − Aq − Aq cos 2Ωt). Even though the Mathieu equation can not

be solved analytically, for this form of the driving its solution is well understood, as it realizes the parametric oscillator, which
displays a parametric resonance when Ω = ω

√
1−A. On resonance the phonon squeezing |ξ| increases linearly in time while

off resonance it oscillates around a mean value, Fig. 4.
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FIG. 4. Mathieu equation. Numerical solution of the Mathieu equation at parametric resonance (A = 0.1, Ω = ω
√

1−A), blue solid line,
and off resonance (A = 0.1, Ω = 0.9ω

√
1−A), red dashed line. On resonance the phonon squeezing |ξ| increases linearly in time, while off

resonance it oscillates around a finite mean value.

Now we turn again to the electron-phonon problem. Using the unitary transformation W , we remove the driving in Eq. (B5).
Following equation Eq. (B9) we have to transform the phonon operators in the dressed kinetic energy according to W † ·W

W †bqW = cosh |ξ|eiφbq +
ξe−2iωqt

|ξ|
sinh |ξ|e−iφb†−q (B18a)

W †b†−qW = cosh |ξ|e−iφb†−q +
ξ∗e2iωqt

|ξ|
sinh |ξ|eiφbq. (B18b)

Assuming, that the drive is adiabatically switched on, the system remains in phonon vacuum in the rotating frame from which
we find

J(t) = −J0e
− 1

2V

∑
q(2−2 cos q(ri−rj))

g2
q

ω2
q(1−Ak)3/2

|αq|2
, (B19)

where αq = (cosh |ξ| − ξ∗e2iωqt

|ξ| sinh |ξ|)eiφ. Upon time averaging this equation yields equation (3) where we parametrize the
relative suppression of the electron tunneling compared to the one at equilibrium by the exponential factor exp[−ζ].

3. Rescaling of time

It is convenient to transform the time evolution from the kinetic energy to the interaction energy. Once, we evaluated the
phonon dynamics, Eq. (B19), we obtain the effective electron Hamiltonian of the form

H(t) = J(t)ĤT − UĤU , (B20)

where we used ĤT and ĤU as short hand notation for the kinetic energy and the interaction energy, respectively, and J(t) is the
time dependent hopping matrix element. We introduce J(t) = Jeqe

−ζj(t) where j(t) is an oscillating function with mean value
one. In order to move the time dependence from the kinetic energy to the interaction energy, we consider∫ t

0

H(t)dt =

∫ t

0

H̃(t) j(t)dt︸ ︷︷ ︸
dt′

=

∫ t′

0

H̃(f(t′))dt′ (B21)

where

H̃(τ) = Jeqe
−ζĤT −

U

j(τ)
ĤU (B22)

and

t′ =

∫ t′

0

dt′ =

∫ t

0

j(t)dt = f−1(t). (B23)
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FIG. 5. Relative strength of the oscillations in the microscopic parameters. We show the time dependence of U/J(t) relatively to the
undriven system for ω̄ = U = W/8, ∆ω = 0.2ω̄, A = 0.1, (a) off resonance Ω/ω̄ = 0.1 and (b) near the parametric resonance Ω/ω̄ = 0.9
(blue solid line). Initially oscillations at multiple frequencies appear, however, all oscillations except for the driving frequency are washed out
in time because for a dispersive phonon the only common frequency of all modes is the driving frequency. Oscillations with Ω are indicated by
the red dashed line which we choose to approximate the dynamics of the microscopic parameters. The time average of U/J(t), black dashed
line, is enhanced near resonance and with increasing driving strength.

The inverse of this equation cannot be calculated analytically, however, for an oscillating function with amplitude small compared
to the mean of j(t) follows that t ∼ t′ which holds because we chose j(t) to oscillate around one. Thus we can directly transform
the time dependent part from J(t) to the interaction and arrive at

H̃(t) = Jeqe
−ζĤT −

U

j(t)
ĤU . (B24)

As we show in the next section, the oscillations in the interaction can be well described by a single harmonic.

4. Time dependence of the microscopic parameters

For a dispersive phonon with spread ∆ω the time evolution of U/J(t) typically oscillates at driving frequency Ω which is a
common oscillation frequency for the phonon modes at all wave vectors. We approximate the oscillations ofU/J(t) with a single
harmonic of frequency Ω and strength A, see Fig. 5. In case of strongly off-resonant driving, the interaction oscillates around
its equilibrium value, while near the parametric resonance on average it is enhanced, as a result of the polaronic suppression
of the bandwidth Jeqe

−ζ . The mean suppressed bandwidth Jeqe
−ζ and strength A of the oscillations in U/J(t) are extracted

numerically, cf. Fig. 6.

5. Floquet Fermi’s Golden Rule

Fluctuations around the initial phonon state and the temporal modulation of the interactions reduce the quasiparticle lifetime
which in turn decrease the superconducting transition temperature.

Below, we compute the quasiparticle scattering rate from the phonon fluctuations 1/τph and the modulated interactions 1/τint
by Floquet Fermi’s Golden Rule. Due to the time dependence of the coupling constants, energy required to create particle-hole
excitations can be borrowed from the drive. This enhances the scattering rate compared to equilibrium. The total dynamic Cooper
pair breaking rate 1/τ = 1/τph + 1/τint is shown in Fig. 7 for ω̄ = U = W/8. For low driving frequencies, the pair-breaking
rate is small, since only higher order Floquet harmonics can provide the required energy and the corresponding matrix elements
are small. When the driving frequency is near parametric resonance with phonon pair excitations, the effective interactions and
hence the decay rate increases since the drive can efficiently provide the required energy to create particle-hole excitations. In
broad regime of parameters we find that the enhanced pair formation rate dominates over the enhanced pair breaking rate, c.f.
Fig. 1 in the main text.
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FIG. 6. Relative enhancement of the effective mass in the driven system compared to the undriven one and the amplitude of coherent
oscillations. The data is shown for linearly dispersing phonons ω̄ = U = W/8, and ∆ω = 0.2ω̄. Near Ω/ω̄ ∼ 1 we find a strong
enhancement of (a) the effective mass exp[ζ] and (b) the effective amplitude A due to the efficient phonon squeezing. Furthermore, a weaker
enhancement is observed at the higher order resonances where Ω/ω̄ ∼ 1/n with n being an integer. In addition to the enhancement of the
effective mass near the parametric resonance, it generically increases with increasing driving amplitude A due to the softening of the phonon
modes.
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FIG. 7. Cooper pair breaking rate. The Cooper pair breaking rate due to phonon fluctuations and the modulation of the effective electron-
electron interactions evaluated from Floquet Fermi’s golden rule for ω̄ = U = W/8.

The full form of the effective Hamiltonian (4) is

H̄ = −Jeqe
−ζ

∑
ijσ

e−
∑
k α
∗
k(t)Γ∗kb

†
ke

∑
k αk(t)Γkbkc†iσcjσ − U(1 +A cos 2Ωt)

∑
i

ni↑ni↓, (B25)

where Γk = − 1√
V

(eikri − eikrj ) gk
ωk(1−Ak)3/4 . Taking the phonon vacuum expectation value of Eq. (B25), we obtain the

first two terms of equation (4). The electron-phonon scattering term, represented by the last term in equation (4) is given by
Ĥel-ph scatt. = −Jeqe

−ζ ∑
ijσ(e−

∑
k α
∗
k(t)Γ∗kb

†
ke

∑
k αk(t)Γkbk − 1)c†iσcjσ which as discussed vanishes upon taking the phonon

vacuum expectation value. Using a Floquet Fermi’s Golden Rule analysis we estimate the Cooper pair-breaking rate which orig-
inates from both (i) phonon fluctuations in the kinetic energy and (ii) modulation of the effective electron-electron interactions.

a. Phonon Fluctuations. Fluctuations around the phonon vacuum require energy. This energy can be borrowed from the
time dependence of the drive. Expanding the exponentials of the electron phonon scattering term Ĥel-ph scatt. to first order, we
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obtain

Ĥel-ph scatt. ∼ −Jeqe
−ζ 1√

V

∑
kqσ

2gq
ωq(1−Aq)3/4

[
∑
d

cos kd − cos(kd − qd)](αq(t)bq − α∗−q(t)b
†
−q)c

†
kσck−qσ

=
1

V

∑
kqσ

[Fqkαq(t)bq −F∗qkα∗q(t)b
†
−q] c

†
kσck−qσ (B26)

with

Fkq = −2Jeqe
−ζ [

∑
d

cos kd − cos(kd − qd)]
gq

ωq(1−Aq)3/4
. (B27)

Higher order terms in the series expansion of the exponentials correspond to multi-phonon processes which are energetically
suppressed.

The finite lifetime of quasiparticles at the Fermi energy can be calculated from the imaginary part of the retarded phonon-
fluctuation self energy

1

τph
= Im Σph,+

kF
. (B28)

To leading order the corresponding greater and lesser components are

Σ
ph,≷
k (t1, t2) = =

i

V

∑
q

|Fkq|2αq(t1)α∗q(t2)G
≷
k−q(t1, t2)D≷

q (t1, t2). (B29)

Here, G≷
k (t1, t2) is the bare electron and D≷

q (t1, t2) the bare phonon propagators, which are functions of the time difference as
the unperturbed Hamiltonian is static. Thus, in Fourier space they are given by

G>k (ω) ≈ −2πiδ(ω − εk + µ)[1− nk],

G<k (ω) ≈ +2πiδ(ω − εk + µ)nk,

D>
q (ω) ≈ −iπδ(ω − ωq),

D<
q (ω) ≈ −iπδ(ω + ωq),

where we considered the phonons to be in the vacuum state and thus neglected their distribution functions in D> and D<. The
self-energy contains the drive αq(t) and therefore is a fully non-equilibrium object which is a function of two times, Eq. (B29).
We rewrite the self-energy using the average time T = 1

2 (t1 + t2) and the time difference t = t1 − t2

Σ
ph,≷
k (t, T ) =

i

V

∑
q

|Fkq|2αq(T + t/2)α∗q(T − t/2)G
≷
k−q(t)D

≷
q (t). (B30)

In order to estimate a quasi-particle lifetime, we integrate over the “slow” timescale T which yields for the effective coupling
|ᾱq(t)|2 = Ω

π

∫ π
Ω

0
dTαq(T + t/2)α∗q(T − t/2). The effective coupling |ᾱq(t)|2, distinguished from the bare coupling by the bar,

is only a function of the time difference t. From a Fourier transform we obtain its Floquet components |ᾱqn|2, where n ranges
from −∞ to∞. We calculate the retarded self-energy Σ+

ph,k using

Σph,+
k (ω) = i

∫
dω′

2π

Σph,>
k (ω′)− Σph,<

k (ω′)

ω − ω′ + i0+
, (B31)

where ω is the conjugate variable to the time difference t, and find for the lifetime at the Fermi surface

1

τph
=

π

2V

∑
qn

|FqkF |2|ᾱqn|2{(1− nkF−q)δ(2nΩ− EkF−q − ω) + nkF−qδ(2nΩ− EkF−q + ω)}. (B32)

In order to obtain a semi-analytical estimate for the pair breaking rate, we neglect the weak wavevector dependence of gq/ωq(1−
Aq)

3/4 and replace them by their mean. We replace wavevector summations by integrals over energies with a constant density
of states, yielding

1

τph
=
π

2

∑
n>0

eζ

8Jeq

ḡ2

ω̄2(1−A)3/2
(2nΩ− ω̄)2Θ(2nΩ− ω̄){αnΘ(|EF + 2nΩ− ω̄| −W )

+ α−nΘ(|EF − 2nΩ + ω̄| −W )}, (B33)

where W = 4Jeqe
−ζ is half of the electronic bandwidth.
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b. Modulated interactions. The temporal modulation of the effective electron-electron interaction leads to another source
for decreasing the quasiparticle lifetime. Similarly as in the case of phonon fluctuations, we estimate the interaction decay rate
by computing the imaginary part of the leading order self-energy contribution

Σ
int,≷
k (t1, t2) = =

1

V 2

∑
ql

U2(1 +A cos 2Ωt1)(1 +A cos 2Ωt2)×

G
≷
k+l−q(t1, t2)G≷

q (t1, t2)G
≶
l (t2, t1). (B34)

Performing a Floquet Fermi’s Golden Rule analysis, we first integrate over the “slow” timescale T to obtain an effective coupling
as a function of the time difference t and then compute the Floquet components of the coupling. Plugging this into the expression
for the retarded self-energy and taking the imaginary part, we obtain the decay rate

1

τint
=
U2A2

4V 2

∑
ql

[(1− nkF+l−q) (1− nq)nl + nkF+l−q nq (1− nl)]

[δ(2Ω− (EkF+q−l + Eq − El) + δ(2Ω + (EkF+q−l + Eq − El)]. (B35)

We evaluate both quasiparticle decay rates numerically, cf. Fig. 7. The total pair-breaking rate 1/τ = 1/τph + 1/τint, which
we consider as an imaginary self-energy correction in the Floquet BCS equations, is in a wide parameter range much smaller
than the Cooper pair formation rate and thus only slightly shifts the transition temperature to lower values.

Appendix C: Floquet BCS approach

We first evaluate the equations of motion for c†k↑c
†
−k↓ from the rescaled Hamiltonian equation (4) taking into account the

Cooper pair breaking rate 1/τ , computed in Sec. B 5, as an imaginary self-energy correction

d

dt
c†k↑c

†
−k↓ = 2i(εk + i/τ − µ)c†k↑c

†
−k↓ − i

U(1 +A cos 2Ωt)

V

∑
mq

c†m↑c
†
q↓(cm+q−k↓c

†
−k↓ − c

†
k↑cm+q+k↑) (C1)

and factorize the quartic term using a mean-field decoupling

d

dt
〈c†k↑c

†
−k↓〉 = 2i(εk + i/τ − µ)〈c†k↑c

†
−k↓〉

− iU(1 +A cos 2Ωt)

V

∑
q

〈c†k↑c
†
−k↓〉(nq↑ + nq↓) + 〈c†q↑c

†
−q↓〉(1− nk↑ − nk↓). (C2)

Using spin symmetry and defining 2ρ = 1
V

∑
q(nq↑ + nq↓) we obtain

d

dt
〈c†k↑c

†
−k↓〉 = 2i(εk + i/τ − µ− U(1 +A cos 2Ωt)ρ)〈c†k↑c

†
−k↓〉 − iU(1 +A cos 2Ωt)(1− 2nk)

1

V

∑
q

〈c†q↑c
†
−q↓〉. (C3)

Next, we remove the term 2iUρA cos 2Ωt〈c†kc
†
−k〉 by an appropriate unitary transformation of the form

〈c†k↑c
†
−k↓〉 = a∗k exp[−iUρA

Ω
sin 2Ωt] (C4)

which gives:

d

dt
a∗k = 2i(εk + i/τ − µ− Uρ)a∗k − iU(1 + cos 2Ωt)(1− 2nk)

1

V

∑
q

a∗q . (C5)

Using the Floquet Ansatz

a∗k(t) = eiEt
∑
n

a∗kne
i2nΩt (C6)
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we obtain

[E + 2nΩ− 2(εk + i/τ − µ− Uρ)]a∗kn = −(1− 2nk)
U

V

[∑
q

a∗qn +
A
2

∑
q

(a∗qn+1 + a∗qn−1)

]
. (C7)

Dividing by E + 2nΩ− 2(εk + i/τ − µ− Uρ), and summing over k, we find the Floquet BCS gap equation:

1

V

∑
k

a∗kn = − 1

V

∑
k

1− 2nk
E + 2nΩ− 2(εk + i/τ − µ− Uρ)︸ ︷︷ ︸

=Fn

U

V

[∑
q

a∗qn +
A
2

∑
q

(a∗qn+1 + a∗qn−1)

]
. (C8)

Defining the gap ∆n = U
V

∑
k a
∗
kn, we obtain the simple system of equations

(U−1 + Fn)∆n +
A
2
Fn(∆n−1 + ∆n+1) = 0. (C9)

The fact that we used a single harmonic to describe the time evolution of U(t) reflects in the gap equation having only a
single side band. More complicated functions would lead to further side bands which would give quantitative differences but
our conclusions will not be altered on the qualitative level. The BCS Floquet equations have a nontrivial solution, when the
determinant is zero, which we determine by scanning E in the complex plane. The Cooper pair formation rate is characterized
by the imaginary part of E.
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A. Föhlisch, L. Kipp, W. Wurth, and K. Rossnagel, “Ultrafast Melting of a Charge-Density Wave in the Mott Insulator 1T - TaS2,” Phys.
Rev. Lett. 105, 187401 (2010).

[6] Timm Rohwer, Stefan Hellmann, Martin Wiesenmayer, Christian Sohrt, Ankatrin Stange, Bartosz Slomski, Adra Carr, Yanwei Liu,
Luis Miaja Avila, Matthias Kallne, Stefan Mathias, Lutz Kipp, Kai Rossnagel, and Michael Bauer, “Collapse of long-range charge order
tracked by time-resolved photoemission at high momenta,” Nature 471, 490–493 (2011).

[7] Matteo Rini, Ra’anan Tobey, Nicky Dean, Jiro Itatani, Yasuhide Tomioka, Yoshinori Tokura, Robert W. Schoenlein, and Andrea Caval-
leri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature 449, 72–74 (2007).

[8] D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt,
“Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett.
99, 226401 (2007).

[9] Mengkun Liu, Harold Y. Hwang, Hu Tao, Andrew C. Strikwerda, Kebin Fan, George R. Keiser, Aaron J. Sternbach, Kevin G. West,
Salinporn Kittiwatanakul, Jiwei Lu, Stuart A. Wolf, Fiorenzo G. Omenetto, Xin Zhang, Keith A. Nelson, and Richard D. Averitt,
“Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).

[10] J. Demsar, R. D. Averitt, A. J. Taylor, V. V. Kabanov, W. N. Kang, H. J. Kim, E. M. Choi, and S. I. Lee, “Pair-Breaking and Supercon-
ducting State Recovery Dynamics in MgB2,” Phys. Rev. Lett. 91, 267002 (2003).

[11] R. Cortés, L. Rettig, Y. Yoshida, H. Eisaki, M. Wolf, and U. Bovensiepen, “Momentum-resolved ultrafast electron dynamics in super-
conducting Bi2Sr2CaCu2O8+δ ,” Phys. Rev. Lett. 107, 097002 (2011).

[12] J. Graf, C. Jozwiak, C. L. Smallwood, H. Eisaki, R. A. Kaindl, D.-H. Lee, and A. Lanzara, “Nodal quasiparticle meltdown in ultrahigh-
resolution pump-probe angle-resolved photoemission,” Nat. Phys. 7, 805–809 (2011).

[13] Christopher L. Smallwood, James P. Hinton, Christopher Jozwiak, Wentao Zhang, Jake D. Koralek, Hiroshi Eisaki, Dung-Hai Lee, Joseph
Orenstein, and Alessandra Lanzara, “Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission,”
Science 336, 1137–1139 (2012).

[14] Ryusuke Matsunaga, Yuki I. Hamada, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, and Ryo Shimano, “Higgs
amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation,” Phys. Rev. Lett. 111, 057002 (2013).
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