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To explore whether a flat-band system can accommodate superconductivity, we consider repul-
sively interacting fermions on the diamond chain, a simplest quasi-one-dimensional system that
contains a flat band. Exact diagonalization and the density-matrix renormalization group (DMRG)
are used to show that we have a significant binding energy of a Cooper pair with a long-tailed
pair-pair correlation in real space when the total band filling is slightly below 1/3, where a filled
dispersive band interacts with the flat band that is empty but close to EF . Pairs selectively formed
across the outer sites of the diamond chain are responsible for the pairing correlation. At exactly
1/3-filling an insulating phase emerges, where the entanglement spectrum indicates the particles on
the outer sites are highly entangled and topological. These come from a peculiarity of the flat band
in which “Wannier orbits” are not orthogonalizable.
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Introduction— While fascinations with unconventional
superconductivity arising from electron correlation con-
tinue to increase, as exemplified by the high-TC cuprates
and iron-based superconductors, a next question to ask
is whether there exists an avenue where we have super-
conductivity with another pairing mechanism. Namely,
in the superconductivity in correlated electron systems,
the standard viewpoint is that the interaction mediated
by spin fluctuations glues the electrons into anisotropic
pairs such as d-wave or s+−, where the nesting of the
Fermi surface dominates the fluctuation, hence the su-
perconductivity. To look for a different class of models,
one intriguing direction is to consider correlated systems
on flat-band lattices that contain dispersionless band(s)
in their band structure. This is because, regardless of the
Fermi energy residing on or off the flat band, we cannot
define the Fermi surface for the flat band. In other words,
we cannot apply, in one-dimensional cases, Tomonaga-
Luttinger picture for the states around EF even with
multichannel g-ology unlike the case of ladders. Thus, if
superconductivity does arise, this might harbor a mecha-
nism in which the flat band plays a role distinct from the
conventional, nesting-dominated boson-exchange mecha-
nisms.

In the field of ferromagnetism, on the other hand,
there is a long history for the study of flat-band
ferromagnetism1–3 , which is distinct from the conven-
tional (Stoner) ferromagnetism. The ferromagnetic
ground state is rigorously shown for arbitrary repulsive
interaction 0 < U ≤ ∞ when the flat band is half-filled.
The flat-band lattice models are conceived as Lieb model1

with different numbers of A and B sublattice sites, or
Mielke and Tasaki models2,3 such as kagome lattice. A
speciality of these flat-band lattices appears as an anoma-
lous situation that Wannier orbitals cannot be orthog-

onalized, which is called the connectivity condition for
the density matrix4. This immediately dictates that the
flat band arises from interferences, hence totally different
from the atomic (zero-hopping) limit, and indeed the flat-
band models are necessarily multi-band systems, where
the flat band(s) coexist with dispersive ones. Flat-band
systems are not merely a theoretical curiosity, but candi-
date systems have been considered5. Also, recent devel-
opments in cold-atom Fermi gases on optical lattices are
a promising arena, where Lieb6 and kagome7 lattices are
already discussed.

Thus the flat-band system provides a unique play-
ground, because the correlation effects should be strong
for the flat bands (as briefly described in Supplementary
Material C), but also because of the above-mentioned un-
usual structure of the density matrix (or strongly inter-
fering wave functions). We can thus envisage dramatic,
possibly non-perturbative phenomena from the electron-
electron interaction on these macroscopically degenerate
manifolds of single-particle states. Beside the ferromag-
netism, the flat band systems have attracted recent at-
tentions for possible realization of topological insulators
with non-trivial Chern numbers8–12. The next goal, in
our view, is to realize superconductivity in flat-band sys-
tems. We shall show here that there are indeed signa-
tures for pairing for repulsively interaction electrons in a
one-dimensional flat-band lattice.

Theoretically, exploration of superconducting phases
in flat-band systems is quite challenging, since correla-
tion effects become even more difficult to fathom for the
flat bands than in ordinary ones13. Thus far, possibil-
ity of pair formation on flat bands has been examined
by several authors. Pairing of two fermions on diamond
chain with π-flux inserted was discussed by Vidal et al.14

Kuroki et al. have considered a cross-linked ladder that
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contains wide and narrow (or flat) bands in the context of
the high-TC cuprate ladder compound,15 and have shown
that superconducting TC estimated from the fluctuation
exchange approximation (FLEX) is much higher than in
usual lattices when EF is just above the flat band that
interspears the dispersive one. There, virtual pair scat-
terings between the dispersive and fully-filled flat bands
are suggested to cause the high TC . Pair formation has
also been discussed for bose Hubbard model on cross-
linked ladders,16,17 where a large pair hopping gives rise
to the emergence of a superfluid phase (pair Tomonaga-
Luttinger liquid) overlapping with a Wigner-solid region
in the phase diagram. Namely, in flat-band systems, not
only pair hopping amplitudes can be large, but also diag-
onal orders tend to coexist (rather than compete) with
superfluids. These results suggest that the flat bands
may be indeed a good place to look for pair condensates.

This has motivated us here to explore superconduc-
tivity for a repulsive fermionic Hubbard model on flat
band systems. As a model we take a simplest possible,
quasi-1D lattice comprising a chain of diamonds as de-
picted in Fig.1(a). We shall show that for EF close to
but slightly below the flat band (with the filling of the
whole bands slightly below 1/3), attractive binding en-
ergies appear. Concomitantly, the pair-pair correlation
becomes long-tailed in real space at these band fillings.

Model and methods — As methods for calculation
we opt for exact diagonalization and the density-matrix
renormalization group (DMRG) that can deal with
strong correlation, since the correlation phenomena on
flat bands may well call for such non-perturbative meth-
ods. For the position of the Fermi energy, EF , we fo-
cus on the regime where the flat band is empty. This
choice comes from the following observation. When the
flat band is half filled, the ground state is ferromag-
netic. When EF is shifted but still on the flat band,
the diverging density of one-electron states is expected
to give rise to large self-energy corrections, which should
be detrimental to superconductivity. When the flat band
is empty with EF residing in a dispersive band, this prob-
lem can be resolved, with virtual processes between the
dispersive and flat bands still at work. For bipartite lat-
tices such as the diamond chain, the empty flat band is
equivalent to fully-filled flat band due to an electron-hole
symmetry

It is desirable to have, on top of EF , another control
parameter about the flat band. So here we introduce a
hopping t′ between the adjacent apex sites of diamonds
(Fig.1(a)). For t′ = 0 the lattice (a Lieb model) is bipar-
tite with the flat band as a middle one in this three-band
system. As we increase t′ the bands are deformed, until
in the limit t′/t = 1 the bottom band becomes flat (a
Mielke model). Thus we can examine how the pairing
behaves as we change t′ = 0 → 1. We then calculate
the binding energy of pairs with the exact diagonaliza-
tion (ED), and pair-pair (and other) correlation functions
with the DMRG18–21.

We take the conventional Hubbard Hamiltonian on the

diamond chain (Fig.1(a)),

H = Hkin +Hint , (1)

Hkin = t
∑

i,σ=↑↓

c†2,i,σ
∑

m=1,3

(cm,i,σ + cm,i+1,σ)

+t′
∑

i,σ=↑↓

∑

m=1,3

c†m,i,σcm,i+1,σ + h.c , (2)

Hint = U
∑

m,i

nm,i,↑nm,i,↓ , (3)

where t (unit of energy) and t′ are the nearest-neighbor

and inter-apex hoppings, respectively, c†m,i,σ creates a
fermion with spin σ on the m-th leg at the i-th unit cell,

nm,i,σ = c†m,i,σcm,i,σ, and U > 0 is the on-site repulsive

interaction. Figure 1(b) shows the band structure, ǫ(k) =
±[4(1+cos(k))+(t′)2 cos2(k)]1/2+ t′ cos(k) , 2t′ cos(k), in
the noninteracting case (U = 0). As we can see, one of
the three bands becomes flat in the limit of t′ = 0 or
1. We focus on the region where the filling of the whole
bands is around 1/3 (one fermion per unit cell on av-
erage) to investigate the effects of repulsive interaction.
We have, for t′ = 0 → 1, a fully-occupied bottom band
which touches the middle band at k = ±π , where the
middle (bottom) band becomes flat at t′ = 0 (1).
Intriguingly, we have noticed in performing the DMRG

that we have to keep an unusually large number of states
up to mDMRG = 1500 for the present ladder-like lattice.
For DMRG we take an open boundary condition with
inversion-symmetric configurations as shown in Fig.1(a) .
Here we focus on the properties below 1/3-filling to ex-
plore the possibility of fermion superfluidity in terms of
the pair binding energy and correlation functions.
Results— Let us first examine the fermion pair forma-

tion in terms of the binding energy, ∆Eb ≡ Eg(N↑ +
1, N↓ + 1) + Eg(N↑, N↓) − 2Eg(N↑ + 1, N↓), where
Eg(N↑, N↓) is the ground-state energy for Ntot = N↑+N↓

fermions with Nσ being the total number of σ-spin elec-
trons. A negative ∆Eb implies that an attractive in-
teraction works between two particles. Eg(N↑, N↓) is
computed with ED in periodic boundary conditions. In
the numerical calculation, we set the total number of
sites to be N = 18 with the length of the chain being
L = N/3 = 6 .
Figure 2(a) shows ∆Eb as a function of the filling

n = Ntot/2N for t′ = 0 for various values of U/t. We
can immediately notice that two electrons become bound
(i.e., ∆Eb becomes negative) sharply around n = 1/3
(N↑ = N↓ = 6 , N = 18) for all the values of U > 0 con-
sidered. Interestingly, the binding energy is not mono-
tonic against U but peaked around U/t = 4. As we shall
see, the binding occurs for two electrons sitting on the
m = 1 and 3-legs . The binding energy continues to be
negative just below n = 1/3 . In the other flat-band limit
at t′/t = 1, we can see in Fig.2(b) that we have again a
binding at a filling slightly smaller than 1/3 (5/18-filling),
where ∆Eb becomes negative.
We now proceed to DMRG calculations for various cor-
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relation functions, including pair correlation, on the di-
amond chain23. The density (Dm) and spin (Sm) corre-
lation functions on the m-th leg are defined respectively
as

Dm(i, j) = 〈nm,inm,j〉 − 〈nm,i〉〈nm,i〉 , (4)

Sm(i, j) = 〈S(z)
m,iS

(z)
m,j〉 , (5)

with nm,i = nm,i,↑+nm,i,↓ and S
(z)
m,i = (nm,i,↑−nm,i,↓)/2 .

We compute the correlation functions on leg m = 1 and
on 2 (while the correlation functions on m = 3 is equiv-
alent to those on m = 1). The singlet-pair correlation
functions are defined as

Cpair
{m′m}(i, j) = 〈∆m′m,j∆

†
m′m,i〉 , (6)

∆m′m,i ≡ cm′,i+l,↑cm,i,↓ − cm′,i+l,↓cm,i,↑ , (7)

where l characterizes the pair [see Fig.3(a)].
The result for various correlations in Fig.3(b) reveals

that the dominant (most long-tailed with distance r)
correlation for U/t 6= 0 in the vicinity of 1/3-filling
(n ≃ 0.329 with N↑ = N↑ = 54 and N = 164) is the

pair correlation |Cpair
{31}(r)| for the pair,

∆31,i = c3,i,↑c1,i,↓ − c3,i,↓c1,i,↑,

across m = 1 and 3 (see Fig.3(a)) .22 The next dom-

inant correlations are the pair Cpair
{11}(r) (for ∆11,i =

c1,i+1,↑c1,i,↓ − c1,i+1,↓c1,i,↑) and density D1(r) correla-
tions on m = 1 . Then comes the spin S1(r) correla-
tion on m = 1. On the other hand, the correlations
on m = 2 (see Cpair

{21}(r) and Supplementary Material B)

rapidly decay for all the values of n studied here23. As
in the density and spin correlations, the pair correlation
involving m = 2 (∆21,i = c2,i,↑c1,i,↓ − c2,i,↓c1,i,↑) shows
a fast decay. The dominant ∆31,i is consistent with an
analysis of the entanglement entropy and edge states at
t′ = 0 in Supplementary Material A.
The reason why all of the pair, density and spin correla-

tions develop on legsm = 1, 3 in the vicinity of 1/3-filling
can be considered as coming from the basis functions on
the flat band. When the hopping t′ is absent, we can
introduce a basis,

αi,σ = c2,i,σ , βi,σ = (c1,i,σ + c3,i,σ)/
√
2 ,

γi,σ = (c1,i,σ − c3,i,σ)/
√
2 , (8)

with which the kinetic part of Eq.(1) can be expressed as

Hkin,t′=0 =
√
2t

∑
i,σ α

†
i,σ(βi,σ + βi−1,σ) + h.c . The basis

{γi,σ} represents the particles on the flat band (see left
panel of Fig.1(c)), in which the probability amplitude se-
lectively resides on legs m = 1 and 3 (i.e. on A sublattice
if we divide the bipartite lattice). The interaction U then
brings about interband matrix elements between the flat
and dispersive bands around 1/3-filling. The develop-
ment of superconductivity when the flat band is empty
(which is equivalent to full filling in the present electron-
hole symmetric lattice) is consistent with the result in

Ref.15. While the latter uses FLEX, a weak-coupling
method, the present result reveals the flat-band super-
conductivity is in fact prominent in a strong-coupling
(U/t ≃ 4) regime. The behavior of the correlation func-
tions enhanced on m = 1, 3 should come from the virtual
states that have probability amplitudes residing on legs
m = 1 and 3 with the long-range nature of the correla-
tions involving orbits for the flat band.
What happens when the filling is exactly 1/3 is also

interesting, so that we have studied the quantum phases
at that filling in Supplemental Material A. Topological
states are shown to emerge, which is indicated from the
entanglement spectrum for spins on the outer sites as
well as from emerging edge states. This is considered
to be another effect of the unusual Wannier states in
the flat band, and the pairing states for the EF close to
but away from the flat band seems to sits adjacent to a
topological phase at the point where the flat band just
becomes empty.
Summary— We have investigated repulsively interact-

ing fermions on the diamond chain, a simplest possible
quasi-1D flat-band system, with ED and DMRG calcu-
lations. The numerical results have revealed that when
the band filling is slightly below 1/3 with the flat band
close to but away from EF , the pair binding energy cal-
culated with ED has two sharp peaks at two flat-band
limits (t′ = 0 or 1). Then the DMRG shows that, for
t′ = 0, the most dominant correlation is the singlet-pair
across the outer sites (m = 1, 3) of the diamond. For
t′/t = 1, by constrast, a phase separated behavior is ob-
served as indicated in Supplementary Material B. The
flat band promoting superconductivity through virtual
pair hoppings involving the band as conceived in FLEX15

is shown to be prominent in a strong-coupling regime. It
is an interesting future problem to see whether a mecha-
nism beyond the boson-exchange is at work here, which
will require methods that take account of vertex correc-
tions.
While we have concentrated on the quasi-1D dia-

mond chain, enhanced pairing correlations with the ma-
jor component residing on the flat-band wave functions
are expected to be a general property of the flat-band
systems satisfying the connectivity condition. Exten-
sion of the present study to flat-band systems with
fluxes inserted14,16,25 is also an interesting future work.
While the diamond-chain structure has been discussed for
condensed-matter systems such as an insulating magnet
azurite26,27, cold atoms on optical lattices should be an
ideal test bench for experimental realizations of flat-band
lattices.
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Figures

FIG. 1: (Color Online) (a) Hubbard model on a diamond
chain with t (t′) the nearest-neighbor (inter-apex) hoppings,
m labeling the leg while i the unit cell. Also shown are two
types of cuts (vertical and diagonal), which are used in DMRG
calculation of the entanglement entropy. (b) Band structures
in the noninteracting case (U = 0) for various values of t′, with
shaded areas indicating the 1/3 filling. (c) Orbits considered
here for the flat band at t′/t = 0 or 1.

FIG. 2: (Color Online) (a,b) ED result for the binding energy
∆Eb vs band filling n for t′ = 0 (a) or t′/t = 1 (b) for various
values of U/t with N = 18 sites here. (c,d) Binding energy
∆Eb vs t′/t for band filling n = 5/18 (c) or n = 1/3 (d) for
various values of U/t. Top panel is a color-code plot of ∆Eb

against n and t′/t for U/t = 4, where arrows indicate the
cross sections displayed in panels (a-d).

FIG. 3: (Color Online) (a) Correlation of various possible pair
configurations on the diamond chain with t′ = 0. (b) Absolute
values of various pair correlation functions are shown against
real-space distance r along with density and spin correlation
functions for U/t = 4, n = 0.329 . (c) Pair correlation Cpair

{31}(r)

against r for various values of n for U/t = 4. (d) Pair corre-

lation Cpair

{31}(r) for various values of U/t for n = 0.329. Here

the length of the chain is L = 55 (with 164 sites in total).
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