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Motivated by the discovery of spiral and modulated collinear phases in several magnetic materi-
als, we investigate the magnetic properties of Heisenberg spin S=1/2 antiferromagnets in 2 and 3
dimensions, with frustration arising from 2nd-neighbor couplings in one axial direction (the axial
next-nearest-neighbor Heisenberg (ANNNH) model). Our results clearly demonstrate the presence
of an incommensurate spiral phase at T=0 in 2 dimensions, extending to finite temperatures in 3
dimensions. The crossover between Néel and spiral order occurs at a value of the frustration pa-
rameter considerably above the classical value 0.25, a sign of substantial quantum fluctuations. We
also investigate a possible modulated collinear phase with a wavelength of 4 lattice spacings, and
find that it has substantially higher energy and hence is not realized in the model.
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I. INTRODUCTION

Frustrated magnetic materials continue to provide a
fruitful interaction between experiment and theory [1].
In particular, large quantum fluctuations in systems with
low spin and low dimensionality, coupled with frustra-
tion, can lead to novel states [2], quite different from the
usual Néel state of classical antiferromagnetism.

Magnetic frustration can arise from the lattice struc-
ture itself, as in triangular and kagome systems, or from
the presence of additional further neighbor interactions
which favor a different type of order from that which
would arise from nearest-neighbor interactions alone.
One such scenario is the inclusion of 2nd-neighbor in-
teractions along one axial direction, in square or cubic
lattices, referred to as the ANNNH (axial next-nearest-
neighbor Heisenberg) model [3-6].

The ANNNH model is the obvious quantum extension
of the Ising version, the axial next-nearest-neighbor Ising
(ANNNI) model, which was much studied primarily in
connection with modulated phases in both magnetic and
alloy systems [7,8]. The ANNNI model was found to have
an extremely rich finite temperature phase diagram, in
both 2 and 3 dimensions, with modulated phases having
both constant and continuously varying wavevectors.

Our motivation for studying the quantum ANNNH
model is twofold. Firstly, there are now a number of ma-
terials where commensurate-incommensurate transitions
and modulated spiral and collinear phases have been re-
cently observed to arise [9-12]. For example, in the ma-
terials Lu1−xSrxMnSi, cycloidal antiferromagnetic order
is argued to arise from an axial next-neighbor interac-
tion [10]. In the material BiMn2PO6 also a number of
commensurate and incommensurate phases are observed,
driven by the spatial anisotropy of the interactions in a
3-dimensional spin system [11]. On the other hand, the
material FeSe shows a ‘pair-checkerboard’ collinear mag-
netic order [12]. It would be intersting to establish if such

phases also arise in ANNNH models, like in their Ising
counterpart.
Secondly, on general grounds one expects that the pres-

ence of further neighbor interactions will favour spiral
phases, in which the average moment varies sinusoidally
with a wavevector along the frustration axis. It is well
known that quantum fluctuations can stabilize collinear
phases [13]. Thus, it is interesting to ask if additional
modulated collinear phases are stabilized in these sys-
tems due to quantum fluctuations.
We find that such spiral phases do indeed arise in the

quantum models [6]. In two-dimensions, long-range or-
der only arises at zero temperature, but in 3-dimensional
systems, such phases extend to finite temperatures, and
there is a Lifshitz point where Néel, spiral and param-
agnetic phases meet [14]. We find that, despite strong
quantum fluctuations, the ANNNH model does not sup-
port modulated collinear phases. Instead, the parameter
region for the stability of the collinear Néel phase is sub-
stantially enhanced by quantum fluctuations.
We consider a Heisenberg model with Hamiltonian

H = J0

(0)∑

<ij>

Si · Sj + J1

(1)∑

<ik>

Si · Sk + J2

(2)∑

<il>

Si · Sl (1)

where the sums are over nearest-neighbor bonds perpen-
dicular to the modulation axis, nearest-neighbor bonds
along the modulation axis, and next- nearest pairs along
the modulation axis, with coupling constants J0, J1, J2
respectively. This is shown in Fig. 1 for the 2-dimensional
(2D) case. The Si are quantum spin S=1/2 operators. In
the present work we consider all interactions to be anti-
ferromagnetic (Ji > 0), although other cases could be
treated in a similar way.
The phase diagram for classical spins is well known,

but we repeat the argument here for completeness. The
energy of a classical spiral ground state is
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FIG. 1: Coupling constants of the ANNNH model in two-
dimensions.

E

NS2
= −nJ0 + J1 cos q + J2 cos 2q (2)

where q is the angle between neighboring spins in the
modulation direction and n=1(2) for the square(simple-
cubic) lattice. Minimization gives

q = π J2/J1 < 1/4

= π − cos−1(
J1
4J2

) J2/J1 > 1/4. (3)

Thus the small J2 Néel phase becomes an incommen-
surate spiral with wavevector q at the transition point
J2 = J1/4. It can also be seen that in the large J2
limit, where q → π/2, a collinear phase in which each
column has two spins ’up’ followed by two spins ’down’,
with neighboring columns ordered antiferromagnetically,
will become degenerate with the spiral. Such a phase
has been termed [10] ’pair-checkerboard’, but we will re-
fer to it as a ’2+2 phase’. Such a phase occurs in the
ANNNI model for large frustration and, while in the clas-
sical vector case (Eq. 3) it only occurs as a limiting case,
its stabilty in the quantum case has not been investigated
previously, to our knowledge.
A number of studies of the quantum ANNNH model

were reported in the 1980’s [3-5], using bosonic Hamil-
tonians obtained via standard Holstein-Primakoff or
Dyson-Maleev transformations. These studies, which fo-
cussed only on the case of ferromagnetic J0, J1, encoun-
tered difficulties in treating quantum corrections about
the classical states in a consistent way. In any case, these
analytic approaches are essentially large S theories, and

FIG. 2: The Néel, spiral and 2+2 states.

their reliability for S=1/2 is uncertain. The quantum
antiferromagnetic model was studied in two dimensions
by Zinke et al [6] using coupled-cluster method focusing
on the spiral order and its pitch angle. We present vari-
ous comparisons with their study for the two dimensional
case.
Our aim in the present work is to explore the physics

of this model for spin 1/2, using series expansion meth-
ods [15,16]. This approach has been amply demonstrated
to give reliable results for quantum spin models, and is
a method of choice for models with strong frustration,
where Quantum Monte Carlo methods are defeated by
the infamous ’minus sign’ problem. In the following sec-
tions we derive and analyse series for the ground state
energy and magnetization for both the 2D and 3D mod-
els. In Section 4 we compute series at high T for spin-spin
correlations and for the structure factor S(q). This anal-
ysis clearly shows that the large J2 phase is an incom-
mensurate spiral in agreement with the coupled-cluster
work [6]. Following the 2D work, in Section 4 we treat
the 3D model, and present results at both T=0 and high
T. Clear differences from the 2D case are demonstated.
Finally, in Section 5, we summarize our results and sug-
gest possible extensions of this work.

II. GROUND STATE OF THE 2D ANNNH
MODEL

We use the linked-cluster method [15,16] to obtain se-
ries for the ground state energy and magnetization. In
this approach, series are computed for a sequence of fi-
nite connected clusters, and these are combined to obtain
series in the thermodynamic limit of a bulk lattice. For
each finite cluster, the Hamiltonian is decomposed in the
usual perturbative form H = H0 + λV , where H0 de-
scribes a simple system with known ground state and V
is treated perturbatively to high order. In the present
work we use ’Ising expansions’ in which H0 consists of
the diagonal Sz

i S
z
j terms, and V consists of the trans-

verse quantum fluctuations. Thus the SU(2) symmetry
is broken by the choice of H0, which reflects the order
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in the chosen phase, but is restored in the limit λ = 1.
Provided there is no singularity for 0 < λ < 1 the true
ground state will be reached in this limit. We refer the
readers to more detailed expositions [15,16] for further
details of the method.

A. Néel phase

To derive series to 8th order we need to consider clus-
ters of up to 8 sites, having 3 bond types. There are a
total of 10,644 distinct such clusters for the 2D case. The
ground state energy and magnetization are expressed in
the form

E0/N =

∞∑

n=0

anλ
n (4)

M =

∞∑

n=0

bnλ
n (5)

with the coefficients (an, bn) computed to 12 figure ac-
curacy. The series are analysed by standard Padé ap-
proximant methods to yield estimates of E0 and M for
any values of the exchange constants (J0, J1, J2). In the
present work we choose J0 = J1 = 1 and plot quantities
versus the frustration parameter J2/J1.

B. 2+2 phase

The 2+2 phase has a 4-sublattice structure, and it is
necessary to distinguish two types of J1 bond, between
like and unlike spins. This results in a total of 22,613
clusters with 4 bond types, to 8th order. The derivation
and analysis of the series then proceeds in the same way
as above.

C. Spiral phase

To carry out an Ising expansion for a non-collinear
ordered phase we transform to a local basis, in which
each spin is directed along its local z-axis. This results
in a Hamiltonian of the form

H = −
1

4
(J0 + J1 cos θ + J2cos2θ)N +H0 + λV (6)

with

H0 = J0

(0)∑

<ij>

(−Sz
i S

z
j +

1

4
) + J1cosθ

(1)∑

<ij>

(−Sz
i S

z
j +

1

4
)

+J2cos2θ

(2)∑

<ij>

(Sz
i S

z
j −

1

4
) (7)

and

V = −
1

2
J0

(0)∑

<ij>

(S+
i S+

j + S−

i S−

j )

−
1

4
J1

(1)∑

<ij>

[(1 + cosθ)(S+
i S+

j + S−

i S−

j )

−(1− cosθ)(S+
i S−

j + S−

i S+
J )

+2 sinθ(S+
i Sz

J + S−

i Sz
j − Sz

i S
+
j − Sz

i S
−

j )]

−
1

4
J2

(2)∑

<ij>

[(1 − cos2θ)(S+
i S+

J + S−

i S−

J )

−(1 + cos2θ)(S+
i S−

j + S−

i S+
j )

−2 sin2θ(S+
i Sz

j + S−

i Sz
j − Sz

i S
+
j − Sz

i S
−

j )] (8)

where the superscripts 0,1,2 refer to the 3 bond types,
and θ is the angle between successive spins in columns
(actually the angle is π− θ in the original picture, before
a rotation of axes). This Hamiltonian contains the angle
θ as a parameter, and this is not known a-priori. Thus
we choose a range of values, plot the energy as a function
of θ, and choose the correct θ from the minimum.
In practice, the minimum is quite shallow and it is dif-

ficult to choose θ with high precision. However, this does
not seriously affect the energy estimates. We calculated
series for various θ values at intervals of 5 degrees, and
estimated the θ values where the energy are minimum.
The values of θ at the minima were in rough agreement
with the coupled-cluster calculation of Ref. 6. We got
estimates for θ values for J2 = 1.0, 0.8, 0.7, 0.6 and 0.5
of 80, 75, 70, 60 and 45 degrees respectively. Thus the
pitch angle q = π − θ was somewhat below the classical
value for J2 > 0.7, but became sharply larger for smaller
J2 values.

D. Results

Figure 3 shows the ground state energy and magnetiza-
tion versus J2/J1 for the 2D ANNNH model, for the Néel,
spiral and 2+2 phases, obtained from our series. The se-
ries have been analysed by standard Padé approximant
techniques, using both the direct series and the logarith-
mic derivative. The latter are found to give slightly more
stable results, but the two approaches are broadly con-
sistent. Where error bars are shown in the figues, they
represent ’confidence limits’ based on the spread of dif-
ferent approximants.
We first comment on the ground state energy. These

series are very regular, and any uncertainty is estimated
to be no larger than the plotted points, except very near
the transition point. The Néel and spiral series appear
to meet smoothly at a point near J2 = 0.47 ± 0.02, well
above the classical transition point 0.25. We note that
in the coupled-cluster study the Néel order was found to
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continue upto a J2 value of approximately 0.4. The tran-
sition is consistent with a continuous transition, although
the match of the energy of spiral and Néel phases is not
perfect. This is probably caused by the uncertainty in
determining the pitch angle and the spiral-state ground
state energy near the transition. In Fig. 3a we also plot
the energy of the 2+2 phase. This clearly lies at higher
energy, and is thus not a stable phase. It seems that,
as J2 → ∞, the energies of the spiral and 2+2 phases
become asymptotically equal, as for the classical case.
The magnetization series are less regular, and the error

bars become quite large near the transition point. The
most interesting feature is that both the Néel and spiral
phase magnetizations appear to be dropping to zero at
the transition, between 0.45 and 0.5. Thus quantum fluc-
tuations in this 2D model are large enough to destroy the
long- range order at this point. Indeed we cannot exclude
the possibility of a (very) narrow non-magnetic phase.
We also show the magnetization for the 2+2 phase, but,
since this phase has higher energy, it is of little signifi-
cance.

III. HIGH T SERIES FOR S(Q)

High temperature series [15] provide a complementary
approach for studying the nature of magnetic orders. Al-
though the Mermin-Wagner theorem precludes any finite
temperature ordered phase in the 2D model, it is ex-
pected that, as the temperature is lowered, the correla-
tions that build up will reflect the nature of the order
which occurs at T=0. High T expansions for a correlator
< Sz

i S
z
j > can be developed as

C(r) =
1

Z

∞∑

n=0

(−1)n

n !
Tr{[Sz

0S
z
rH

n}βn (9)

where β = 1/kBT , and Z is the partition function, which
is itself expanded as a series in β. We note that, since we
are in a paramagnetic phase, the correlations have full
rotational symmetry and it suffices to compute the (zz)
correlators.
From these we compute a high T series, in powers of

β, for the static structure factor

S(q) =
∑

r

eiq·rC(r) (10)

which should develop a peak at whatever q value reflects
the T = 0 order.
To compute the structure factor series to 8th order, for

general q, would require correlator series for all cluster
space-types with 8 or fewer bonds, a total of over 600,000
distinct clusters. However, for q in the modulation di-
rection, this number can be reduced considerably, by ef-
fectively calculating correlator series between horizontal
rows of spins. This requires only 76712 clusters.

FIG. 3: Ground state energy (upper panel) and magnetization
(lower panel) as a function of J2 for the 2D ANNNH model.

The S(q) series converge rapidly at high T (small β)
and can be evaluated using Padé approximants down to
about t = kBT/J1 ∼ 0.5. We have carried out such an
analysis for q = (π, qz) for various J2 and results are
shown in Fig. 4, for the temperature t = 0.5. Below this
t the series become too erratic. We see that for J2 = 1.0
there is a clear peak at qz = 0.58π, corresponding to an
angle of 76 degrees. As J2 is decreased, the peak broadens
and moves to larger qz (smaller angles). Note that qz =
π/2 would correspond to a modulation wavelength of a
lattice spacings, as for the 2+2 structure, whereas q = π
corresponds to the Néel phase. The peak positions do
not change significantly with temperature.
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FIG. 4: Structure factor S(q) for the 2D ANNNH model,with
q in units of π/a, for different values of J2, as calculated from
high T series expansions. The values of J2 for the different
plots are indicated within brackets.

IV. THE 3D ANNNH MODEL

We have used the same approach to study the ANNNH
model on the simple-cubic lattice.

The ground state energy and magnetization are shown
in Figure 5.

The following points can be noted:
1. The energy series are very regular, and the curves
meet smoothly at J2 = 0.34± 0.01. The Néel series can
be accurately continued well beyond this point, as shown.
We also note the maximum in the spiral phase energy
near 0.4, which then drops again to meet the Néel curve
smoothly. This feature occurs in the classical case, and is
also apparent, though less clearly, in the 2D case (Fig.3).
The Néel to spiral crossover point, at J2 ∼ 0.34, is again
well above the classical value 0.25, but the difference is
less than in the 2D case, reflecting the smaller quantum
fluctuations in higher dimension.
2. The magnetization series are less regular, and this is
reflected in the error bars, although the size of the uncer-
tainty is exaggerated by the scale chosen for the figure.
We note that the magnetization decreases on approach-
ing the crossover point from either side, but only by ap-
prox. 10 percent. Unlike the 2D case, the magnetization
does not drop to zero, again showing that quantum fluc-
tuations are less dominant.

As in the 2D case, we have also derived high T series for
the structure factor S(q). There is, however, one impor-
tant difference. In 3D the system will retain long-range
magnetic order at finite temperature, up to some critical
temperature Tc(J2). On approaching Tc(J2) from above,
the structure factor S(q) at the appropriate wavevector
is expected to diverge in the thermodynamic limit, re-
flecting the development of long-range correlations at the

FIG. 5: Ground state energy (upper panel) and magnetization
(lower panel) for the 3D ANNNH model, from series expan-
sions.

critical temperature. Thus we may expect to be able to
estimate the locus of this critical line from our series.
Some results are shown in Figure 6.
Figure 6(a) shows S(q) versus qz for various J2. For

J2 = 0.0, 0.2 the maximum is at qz = 1.0, corresponding
to Néel order. For larger J2 the peak moves continu-
ously to smaller qz : qz ∼ 0.73 for J2 = 0.4, qz ∼ 0.64
for J2 = 0.6, qz ∼ 0.6 for J2 = 0.8. This is indicative
of an incommensurate spiral phase. The qz values are
consistent with those found to give the lowest ground-
state energy in the T=0 spiral phase. The point where
the peak begins to move away from qz = 1 is close to
J2 = 0.325 .
We have also analysed the S(q) series to estimate the

values of the critical temperature as a function of J2.
While the 8th order series are too short to provide esti-
mates of high precision, Padé approximants to the loga-
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FIG. 6: (a)Structure factor S(q) versus qz at a temperature
t=1.2, for several values of J2, for the 3D ANNNH model; (b)
structure factor at the critical wavevector versus temperature,
for several values of J2. The values of J2 for the different plots
are indicated within brackets.

rithmic derivative series do show a fairly consistent pole
on the positive real axis, corresponding to a line of critical
points.
In Figure 6(b) we plot the value of S(qc), at the critical

wavevector qc, versus reduced temperature t = kBT/J0.
A strong divergence is clearly seen. Our best estimates
for the critical temperatures are: 1.09 (J2 = 0.0), 0.82
(J2 = 0.325), 0.89 (J2 = 0.6). For J2 = 0, the isotropic
simple-cubic nearest-neighbor model, a more precise es-
timate is available from longer series [17]. There are, as
far as we know, no previous estimates of the critical line
for the 3D ANNNH model. The critical temperature is

lowest near J2 = 0.325, which is also where the peak in
S(q) moves away from qz = 1. This is a Lifshitz point
[14], where paramagnetic, Néel ordered and spiral phases
meet and coexist.

V. SUMMARY AND DISCUSSION

We have used a combination of perturbation series at
T=0 and high T expansions to investigate the nature of
magnetic order, and the magnetic phase diagram in the
quantum spin S=1/2 ANNNH model, in both 2 and 3
dimensions. While it is easy to show, for classical vec-
tor spins, that an incommensurate spiral phase exists for
large frustration J2, previous analytic studies for quan-
tum spins have encountered difficulties. Our study con-
firms that the classical picture remains qualitatively cor-
rect. However, quantum fluctuations shift the crossover
point between Néel and spiral phases substantially. In
the two-dimensional case, we also looked for possible
modulated collinear phases. However, we found that even
the most robust of those, the 2+2 phase, has a rather high
energy and hence is not stabilized. Hence, we conclude
that such modulated collinear phases are unlikely to arise
in the model.

For the 2D model we find that the magnetizations
in both Néel and spiral ground states appear to tend
continuously to zero at the crossover point. This was
not expected, and is reminiscent of the behaviour in
the J1 − J2 model, where there is an intermediate non-
magnetic phase. We see no evidence for such a phase
here, although we cannot exclude the possibility of a very
narrow phase of this kind. In the 3D model, the magne-
tizations clearly cross over at a finite value.

In the 3D model, the magnetic phases extend to finite
temperature, and we have estimated the position of the
critical line, and of the Lifshitz point, where paramag-
netic, Néel and spiral phases coexist.

In the large J2 limit a collinear phase, the ’2+2 phase’,
becomes asymptotically degenerate with the qz = π/2
spiral, both having a modulation wavelength of 4 lattice
spacings. Such a phase, termed ’pair-checkerboard’, was
found to exist in the FeSe monolayer system [12]. We
find that, in the ANNNH model, such a phase always
has higher energy than the spiral. Thus, if it exists as
a stable phase, a more complex Hamiltonian would be
indicated.
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