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We explore non-analytic quantum phase dynamics of dipolar exciton condensates formed in a
system of 2D quantum layers subjected to voltage quenches. We map the exciton condensate physics
on to the pseudospin ferromagnet model showing an additional oscillatory metastable phase beyond
the well-known ferromagnetic phase by utilizing a time-dependent, non-perturbative theoretical
model. We explain the coherent phase of the exciton condensate in quantum Hall bilayers, observed
for currents equal to and slightly larger than the critical current, as a stable time-dependent phase
characterized by persistent flow of charged order parameter defect in each of the individual layers
with a characteristic AC Josephson frequency. As the magnitude of the voltage quench is further
increased, we find that the time-dependent current oscillations associated with the charged order
parameter defect flow decay, resulting in a transient pseudospin paramagnet phase characterized
by partially coherent charge transfer between layers, before the state relaxes to incoherent charge
transfer between the layers.

I. INTRODUCTION

The dipolar exciton condensate (DEC) has provided
dramatic observations of collective phenomena in a broad
swath of host systems including: cold atoms2–5 semi-
conductor microcavities7–9, and semiconductor quantum
wells10–16. In each of these settings, the Coulomb inter-
action between spatially segregated charge carriers drives
many-body phase transition from the normal Fermi liq-
uid phase to that of a superfluid. Beyond the interesting
correlated physics these systems demonstrate, they con-
tinue to harbor tantalizing prospects for ultra-efficient,
electrically-tunable information processing systems based
on predictions of elevated Kosterlitz-Thouless transition
temperatures (Tc) without the need for external magnetic
fields to quench the kinetic energy17. These prospects
may be directly traced to the realization of new Dirac ma-
terial systems such as graphene18–20 and time-reversal in-
variant topological insulators21–25. In particular, recent
experimental work in monolayers of graphene separated
by hexagonal boron nitride show signatures of correlated
behavior well-above cryogenic temperatures26.

Of the signatures indicative of the collective phe-
nomena associated with pseudospin ferromagnetism
model(PFM), some of the most dramatic are those found
in carrier transport. Within the context of carrier trans-
port, one of the most fundamental parameters is the crit-
ical current (Ic), the maximum current that the DEC
can sustain by simply reorganizing its order parameter.
The behavior of the PFM is well-understood below Ic
where the system exhibits coherent superfluid flow, char-
acterized by time-independent coherent current flow and
perfect Coulomb drag27;28. However, in the region past

the critical current, there is a clear deficiency concern-
ing PFM system behavior as voltage quenches resulting
in current flow greater than Ic are applied. Naturally,
in this regime, linear response approach is not be appli-
cable and non-perturbative approaches are required. As
a corollary, recent study in dynamical phase transitions
in transverse field Ising model have shown non-analytic
behavior when considering real-time quenches from ferro-
magnet to paramagnet29 whose behavior is not captured
within framework of linear response theory.

Here, we theoretically explore the behavior of a generic
PFM system beyond linear response theory. We consider
spatially segregated 2D semiconducting layers using a
time-dependent Kadanoff-Baym (TDKB) formalism31;32

subjected to time-dependent voltage quenches. We are
motivated by recent experiments on DEC10;11 where,
surprisingly, at an interlayer voltage equal to the crit-
ical voltage, Vc, the condensate behaves in a manner
consistent with the fully coherent regime. We explain
this observation as a voltage-driven competition between
the PFM and a pseudospin paramagnetic (PPM) phase
characterized by a time-dependent coherent exciton state
which recovers its coherence by periodically launching
order parameter defects (OPDs). We define OPDs to be
zeros in the excitonic order parameter that contain π dis-
continuity of the order parameter phase. This new regime
could serve as an ideal setting for a direct measurement,
which should be more definitive than observations of
non-zero longitudinal resistance of condensates at finite
temperatures12;13 or indirect influence of topological ex-
citations on Shapiro steps30. As the magnitude of the
voltage quenches are increased well-beyond Vc, we find
that the system can no longer relax the superfluid flow
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by inducing OPDs and the interlayer coherence, which
characterizes the PFM phase, is lost and the layers be-
have independently, as expected from experiments10;11.
Moreover, our analysis shows that the condensate in
the crossover regime not only will respond to microwave
frequencies30 but shows new possibilities as a voltage-
tunable electrical oscillator.

This paper is organized in the following manner. We
begin in Section II with an explanation of the methods
and approximations that we have utilized to explore the
non-equilibrium time-dependent dynamics of the DEC as
a function of bias. In this paper, we endeavor to under-
stand the physics of the DEC within spatially segregated
systems through the use of the PFM1. Using the pseu-
dospin language, the layer degree of freedom, either top
or bottom, is mapped onto an s = 1/2 spin in which
the top layer quasiparticles have pseudospin up (|↑〉) and
bottom layer quasiparticles have pseudospin down (|↓〉).
In Section III, we present the numerical results of our
self-consistent time-dependent quantum transport calcu-
lations of two coupled 2D layers, which are the main sub-
ject of this paper. We show that our time-dependent
method qualitatively reproduces the well-known inter-
layer transport characteristics of exciton condensates in
the quantum Hall regime as the system transitions from
the coherent PFM phase to the incoherent PPM phase10.
Furthermore, we show the existence of an additional os-
cillatory metastable phase that exists beyond at an in-
terlayer voltage that is beyond PFM phase and prior to
the onset of the PPM phase resulting from interlayer ex-
change related destabilization of the steady-state trans-
port. We attribute the existence of this metastable state
to a persistent flow of charged OPDs in each layer with
a characteristic AC Josephson frequency. In Section IV,
we summarize our results and conclude.

II. METHODOLGY

A. System and Hamiltonian

We begin in Fig. 1(a) where we schematically picture
the system of interest. We consider a system consisting
of two 2D semiconducting layers in which the top layer
is assumed to contain electrons and the bottom layer is
assumed to contain an equal population of holes. For
simplicity, we assume that the layers are free from disor-
der and the system temperature for all of our simulations
is set to the zero temperature limit or Tsys = 0 K. We
attach contacts to the left and right ends of the top layer
(CTL and CTR) and the bottom layer (CBL and CBR)
from which we inject and extract currents. The con-
tacts are modeled as a semi-infinite layers with the same
Hamiltonian parameters as the device region described
below. Within our system, we apply bias to the top left
contact, VTL and set all of the other contact potentials
to be zero or VTR = VBL = VBR = 0. In this bias
configuration, all carriers are injected from CTL when

FIG. 1: (a) Schematic illustration of a pseudospin ferromag-
net with contacts attached to each of the edges of the system.
The arrows indicate the directions of the inter and interlayer
quasiparticle motion in each layer. Above Ic the system prolif-
erates charged vortices which propagate in the same direction
within each layer. (b) Plot of the calculated time-averaged
coherent tunneling current from CTL to CBL (CBR to CTR)
as a function of interlayer bias. We obtain the experimentally
expected behavior which may be associated with the exis-
tence of three distinct pseudospin regimes: coherent (PFM),
metastable (PFM-PPM), and incoherent (PPM). The bars on
the plot illustrate the range in time-averaged currents calcu-
lated via our model.

VTL < 0 while the injected carriers are then extracted
via the other three contacts. Similarly, all carriers are ex-
tracted from the coupled wire system through CTL when
VTL > 0. With the system defined, we may now write
the tight-binding Hamiltonian for a single layer using a
simple 2D single subband chain as

HT,B =
∑
i,j

−(τc†i,jci,j±1 + τtransc
†
i,jci±1,j), (1)

where lattice points i and j are the coordinate of x and y
directions. In Eq.(1), τ is the nearest neighbor hopping
energy that we have set to be τ = 2τtrans = ±1(plus for
the top layer and minus for the bottom) for the calcu-
lations presented in this work. We choose the value of
|τtrans| = 0.5 so that the range of the voltage we apply
during the simulation does not exceed the top or the bot-
tom of the transverse mode band. This choice allows the
current flow through the device can exceed the critical
current of the condensate. We may now generalize our
individual layer Hamiltonian to the double layer Hamil-
tonian by coupling the top and bottom layers20;35

Hsys =

[
HT 0
0 HB

]
+
∑
i=x,y

∆i ⊗ σi, (2)
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where σi represents the Pauli spin matrices acting on
the layer degree of the freedoms and ⊗ represents the
Kronecker product. In Eq. (2), first term of the right
hand side is the non-interacting contribution to the total
Hamiltonian consisting of the individual layer Hamilto-
nians. The second term of the right hand side represents
the mean-field interlayer interaction term that consists of
both single particle tunneling and the mean-field many-
body contribution resulting from the Coloumb interac-
tions between the layers. ∆ represents an effective pseu-
dospin magnetic field, originates from the interactions,
of which more will be explained later in this section. As
we are interested in the interacting physics between the
two layers in a qualitative sense, we use a local density
approximation in which the interaction contribution be-
tween the layers is the on-site in in-plane direction6;20;35.
Additionally, full quantum many-body calculations have
shown that the interlayer interaction is screened in the
coupled layer system and, thus, the local density approx-
imation we utilize in this work is reasonable44. As a re-
sult, each component of ∆ in Eq. (2) is described using
a typical mean-field decomposition as

∆x = ∆sas + U〈mx
ps〉,

∆y = U〈my
ps〉.

(3)

where ∆sas is the single particle tunneling amplitude be-
tween the top and bottom layers. In Eq. (3), the terms
〈mx

ps〉 and 〈my
ps〉 represent x̂ and ŷ directional pseudospin

magnetizations that are a part of the overall pseudospin
magnetization vector, mps that we define as1;6;22

mps =
1

2
Tr[ρpsσ]. (4)

In Eq. (4), σ = (σx, σy, σz) is a vector of the Pauli spin
matrices, and ρps is the 2× 2 Hermitian pseudospin den-
sity matrix that we define as

ρps =

[
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

]
. (5)

The interlayer exchange interactions defined in Eq. (3),
〈mx

ps〉 and 〈my
ps〉, are obtained from the pseudospin den-

sity matrix as

〈mx
ps〉 =

1

2
(ρ↑↓ + ρ↓↑),

〈my
ps〉 =

1

2
(−iρ↑↓ + iρ↓↑),

〈mz
ps〉 =

1

2
(ρ↑↑ − ρ↓↓),

(6)

where ρ↑↓ and ρ↓↑ are the off-diagonal contributions to
the pseudospin density matrix that arise due to the in-
teractions between the two layers. In Eq. (6) , we justify
the omission of the exchange potential in the ẑ direction
because this contribution is small compared to the elec-
trostatic potential difference between layers induced by
the interlayer bias voltage quench. As a result, we may

express the system Hamiltonian in terms of pseudospin
field contributions,

Hsys =

[
HT ∆x − i∆y

∆x + i∆y HB

]
. (7)

The planar pseudospin angle that will play a central role
in the discussion below is defined by

φps = tan−1

[ 〈my
ps〉

〈mx
ps〉

]
. (8)

This angle corresponds physically to the phase difference
between electrons in the two layers.

With the system Hamiltonian defined, we select the
parameters for the simulations, though the qualitative
physics we address in this paper is irrespective of the
parameter choices. In Eq. (3), we have set U = -0.8
and ∆sas=10−4. The initial populations of electrons
and holes are set to result in half-filled energy bands.
Within each layer, we have 30 × 10 lattice points along
the transport(ŷ) and the transverse(x̂) directions. For
transverse direction, we assumed periodic boundary con-
dition. Therefore, the order parameter is constant over
the transverse direction. With the methodology estab-
lished, we begin our calculations by obtaining the equi-
librium density matrix, ρps, self-consistently by iterating
over the Hamiltonian, via Eq. (2). Our particular choice
of parameters result in a condensate gap size of ∆DEC =
0.009.

B. Time Evolution of Pseudospin Density Matrix

After having self-consistently obtained the equilibrium
pseudospin density matrix, we now seek the evolution of
the system with time after a voltage quench has been
applied. In order to incorporate the time-dependent dy-
namics associated with voltage quenches of the PFM, we
must solve the time-dependent Kadanoff-Baym equations
(TDKB)32;36 using as an input the self-consistently ob-
tained equilibrium pseudospin density matrix at t = 0 as
the starting point for the time evolution. The Kadanoff-
Baym equation governs time propagation of the non-
equilibrium pseudospin density matrix as

(i∂t−Hsys)Gsys(t, t
′) = δ(t, t′)+

∫
dt1Σ(t, t1)Gsys(t1, t

′).

(9)
In Eq. (9), Gsys is the Green’s function that connects

nearest neighbor points i and j as, G<
sys(t) = i〈c†jci〉 =

iρps(t)
37, with ρ as the single particle density matrix,

and Σ(t, t′) as the self-energy term. We may signifi-
cantly reduce the complexity of the time propagation
when the interactions are local in time. In this case, the
off-diagonal time terms in the self-energy must vanish
resulting in a very simple expression for the self-energy,
Σij(t, t

′) = δ(t − t′)vjiG<
sys(t, t

′) which includes the ex-
change interaction, vij . Within the mean-field approx-
imation, the interaction terms are always local in time
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which justify our methods. In order to obtain the time
evolution of the density matrix, we solve Eq. (9) using a
standard 4th-order Runga-Kutta method. Utilizing this
result, we are capable of calculating the time evolution
of the density matrix ρps(t) at any time t > 0 after the
voltage is applied.

C. Review of Pseudospin Transfer Torques

In this section, we briefly review the concept of pseu-
dospin transfer torques6;20;35;45 that will serve in inter-
preting the subsequent numerical results of the next sec-
tion. In the DEC we consider here, the transport prop-
erties depend only on the quasi-particle Hamiltonian and
on the chemical potentials within the leads. As we rep-
resent the ẑ direction of pseudospin orientation to be
the difference of the occupation number between the top
layer and the bottom layer, the change of the mz

ps over
time is given as a sum of intra and interlayer current.
From the current conservation, the system must satisfy45

∂tm
z
ps = −∇ · jz − 2

~
(mps ×∆)z. (10)

where jz is the ẑ component of the pseudospin current
contribution within the same layer. In Eq. (10), the con-
tribution of jz originates from the quasiparticles injected
via the various layer contacts. The interlayer current
contribution in the second term is re-written as a cross
product of the pseudospin density matrix, mps, and the
interaction, ∆. Note that the above representation of the
current equation shows that the dynamics of the DEC
behaves as a ferromagnet under the influence of an effec-
tive field ∆ and injected pseudospin polarized current jz.
In order to achieve steady state transport, whereby Eq.
(10) must go to zero, the injected current from the con-
tact twists the angle between the pseudospin orientation
and the exchange field to satisfy

2|mps||∆| sin(φps − φ∆) = 2∆sasm
y
ps = ~∇ · jz. (11)

In Eq. (11), we define φ∆ to be the orientation of ∆
within the x̂− ŷ plane. The pseudospin orientation does
not align with the effective pseudospin exchange field that
the injected quasiparticles experience because their pseu-
dospin orientations must precess away from the injected
pseudospin orientation as they move between layers in
the bilayer system. The realignment of transport or-
bital pseudospin orientations in turn alters the total pseu-
dospin and, therefore, the interaction contribution to ∆.
As a result, the change in mps×∆ due to transport cur-
rents is referred to as the pseudospin transfer torque, in
analogy with the terminology commonly found in metal
spintronics. If the interlayer bias voltage drives a current,
∇ · jz, that exceeds Ic = 2∆sas〈my

ps〉/~, or the maximal
interlayer current that occurs when sin(φps − φ∆) = 1,
it will no longer be possible to achieve steady state as
the condensate can no longer adjust its phase across the

layer in order to accommodate current flow. Under these
circumstances, the interlayer current will oscillate in sign
and the time-averaged current will be strongly reduced.
In next section, we show that DEC actually has an in-
teresting non-equilibrium phase oscillating between the
coherent and incoherent phases.

III. NUMERICAL RESULTS OF
TIME-DEPENDENT NON-EQUILIBRIUM

DYNAMICS

With an understanding of the physics we expect, we
now apply positive voltage to the top left contact (VTL =
Vint) that serves to drive both interlayer and intralayer
current flow within the dipolar exciton condensate for
times t > 0. We examine the current flow into and out of
each respective contact to determine the non-equilibrium
dynamics and resultant phase diagram of the dipolar ex-
citon condensate after a voltage quench. As we are in-
terested in voltage based phase transitions, we may de-
lineate these phases with the definition of the critical
voltage, Vc, or the interlayer voltage that results in the
critical current, Ic, thereby signaling the end of the PFM
region. In Fig. 1(b), we plot the time-averaged interlayer
coherence as a function of the bias applied to VTL.

We immediately notice that Fig. 1(b) can be di-
rectly compared with the known experimental interlayer
transport properties over the entire range of interlayer
voltages10. Specifically, we recover the observed experi-
mental trends in steady-state interlayer conductivity in
PFM systems for VTL−Vc < 0 and φps 6= 0, correspond-
ing to the growth of the coherent tunnel current of the
exciton condensate with the applied voltage. In this case,
when the system is in the PFM phase, the associated in-
terlayer current35;38 is

Jint(r) = i[H,Ntop] = ∆sasc
†
T cB−∆sasc

†
BcT = 2∆sasm

y
ps

(12)
where cT (B) is a quasiparticle annihilation operator in
the top (bottom) layer. In the PFM regime, when cur-
rent is injected from CTL (CTR), an equal and opposite
amount of current will flow into CBL (CBR). This perfect
Coulomb drag may be understood from a simple anal-
ogy to Andreev reflections in superconductivity20;28;35.
Within the PFM regime of a condensate, it is always
possible to obtain a self-consistent steady state solution
between the equations of motion, the electrostatics, and
the interactions with respect to global time-dependent
phase rotation. In other words, the static limit of
Landau-Lifshitz-Slonczewski (LLS) equation must posses
a solution38.

When the applied voltage is equivalent to the critical
voltage, VTL − Vc ≈ 0, the interlayer current reaches Ic
and we observe an abrupt drop in the magnitude of the
interlayer current transfer in Fig. 1 along with a suppres-
sion of the interlayer Coulomb drag. This drop signals
the termination of the purely PFM regime and the onset
of an intermediate metastable regime. While the drop in
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FIG. 2: Time evolution of the order parameter and the termi-
nal current for the metastable regime((a)-(b)) and the PPM
regime ((c)-(d)). (a) Plot of the terminal currents versus time
for VTL = 0.184 for the layers containing 30×10 points in the
computational space. (b) Plot of the magnitude of the pseu-
dospin order parameter as a function of time and length. (c)
Plot of the terminal currents versus time for VTL = 0.5. (d)
Plot of the magnitude of the pseudospin order parameter as
a function of time and length.

interlayer charge transfer is expected based on the mis-
alignment of the layer Fermi surfaces, the bars on the plot
within Fig. 1(b) detailing the tunneling current indicate
the presence of significant oscillations in the magnitude
of the terminal currents within the metastable regime.
This behavior is associated with the persistent launching
of OPDs in both layers which slows down the conden-
sate velocity and recovers the coherent phase. Further
increase in the applied potential, in which VTL−Vc & ∆,
shows that the magnitude of the interlayer current con-
tinues to decrease as the two layers become increasingly
energetically separated. In this range of voltages, the
system is in the incoherent, or PPM phase, in which the
magnitude of the interlayer current is governed solely by
the value of ∆sas, in agreement with previous experimen-
tal results.10;11.

To form a more complete understanding of the nature
of the terminal currents past Vc, we examine the resulting
terminal currents and |mps| for several interlayer volt-
ages each resulting in VTL > Vc. In Fig. 2(a), we apply
a bias of VTL = 0.184 that results in a current within
the metastable regime. Indeed, in Fig. 2(a), we see that
each of the terminal currents begins to stably oscillate
with the largest magnitude oscillations appearing in ITR

and IBR. These oscillations are signatures of a competi-
tion between the PFM and PPM phases with a frequency
consistent with the AC Josephson frequency proportional
to e(V − Vc)/h41;42(See supplementary46 for the numeri-
cal confirmation of the frequency dependence). Its max-
imum value is limited by excitonic gap size which corre-
sponds to a frequency of 16.7 GHz, using experimentally
measured value of gap43. The coherence between the lay-
ers triggers an electron current in the top layer and an
equivalent hole current flow in the bottom layer. Time-
averaged current flow in bottom layer is lower than top
layer as a a consequence of the partial suppression of co-
herence brought about by the competition between the
two distinct phases and non-zero spatial overlap between
successive OPDs. At minimum points of IBR and ITR,
the layers temporarily lose coherence. The loss of co-
herence results in IBR possessing nearly zero value and
a peak in ITR indicating that the observed behavior is
associated with the negative density fluctuations.

Beyond Vc, we expect there is non-zero electric field
inside the system, which accelerates the exciton pairs
across the system, and is approximately given by E ≈
(VTL − Vc)/L. By launching the defect, the phase gradi-
ent is reduced and the exciton pairs in the PFM phase
are decelerated in order to keep a constant superfluid ve-
locity. To be more specific, when the φps winds into the
ẑ-direction, the system launches an electron-like OPD
that flow from the left of the system to the right at an
applied bias of VTL = 0.184, as seen in Fig. 2(b). The
OPDs are topological defects39;40 that break the order of
the condensate and retain with them pseudospin order
that points solely in the ẑ-direction. The corresponding
to zeros in |mps| are accompanied by a π phase slip in
the condensate after which coherence is restored within
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FIG. 3: Time evolution of pseudospin orientation at x = 5
lattice point for (a) the intermediate PFM-PPM metastable
oscillations at an applied bias of VTL = 0.184 (b) the PPM
phase at an applied bias of VTL = 0.5. Each of these figures
is taken within the time frame of a couple of phase slip period
for visual simplicity.

the DEC. Therefore, the stable oscillations in the termi-
nal currents are attributed to voltage-driven fluctuations
between the PFM and PPM phases characterized by the
entering and exiting of OPD pair from the contacts. The
maxima in IBR and ITR indicate that the coherence is
recovered after the fluctuation passes. In Fig. 2(a), the
condensate is not fully recovered at maximum points, as
the OPD bound states are not fully localized and the
non-zero spatial overlap between bound states forms the
discrepancy from strong interaction limit.

In Fig. 2(c), we see another transition from the inter-
mediate metastable oscillations between PFM and PPM
phases to a stable PPM phase, which arises when mz

dominates the pseudospin orientation. In this regime,
the bias induced energy separation between the two lay-
ers wins a competition with the coherence of bilayer. As
a result, in PPM phase, the current flows from CTL to
CTR with only a transient response in CBL and CBR.
Yet within the transient regime the current flowing to
the lead CBR is positive indicating the presence of tran-

sient interlayer coherence in the system. Fig. 2(d) shows
the exponential decay of order parameter magnitude as
the exchange enhancement is lost and the value asymp-
totes towards the non-interacting ∆sas with φps pointing
in the ẑ-direction. It is critical to note that, in closed
system, the transition to PPM phase is forbidden since
total magnetic moment in ẑ-direction mz−tot =

∑
imz is

a roughly conserved quantity within time scale 1/∆sas.
However, open contacts act as a thermal reservoir that
exchanges both energy and pseudospin. Thus, the exis-
tence of the reservoir allows the thermalization to PPM
state. In other words, at t > 0, direct insertion and
extraction of pseudospin (quasiparticles) through open
contact can relax the system to the PPM phase.

To more clearly illustrate voltage induced phase tran-
sition, Fig. 3 shows trajectory of normalized pseudospin
evolution along the Bloch sphere. Fig. 3(a) shows oscilla-
tory behavior between PFM-PPM phase characteristic of
the metastable phase as the pesudospin orientation pre-
cesses in x − y plane. It precesses out of plane to touch
z-axis before returning to x − y plane when a launched
OPD passes through the observation point. Afterwards,
the orientation returns to x-y plane we observe persis-
tent precession in its orbit until the next OPD reaches
the observation point. The pseudospin precession within
x−y plane is a consequence of global phase evolution and
the acceleration of the superfluid. When the pseudospin
phase touches the north pole of the pseudospin Bloch
sphere, it winds once about the pole as a direct reflection
of presence of the OPD. Regress of pseudospin to x − y
plane indicates the recovery of phase coherence. In Fig.
3(b), the excessive bias breaks the coherence between the
layers forcing the transition from PFM to PPM phase.
After the initial transient behavior, the pseudospin phase
angle eventually precesses into the z-direction, consistent
with the current-induced phase transition to the PPM
phase. In transient regime before the PPM phase is fully
established, pseudospin winds north pole several times
before reaching its stable out-of-plane orientation along
the pseudospin Bloch sphere and confirming quenched
phase transition.

Based on our results, it is clear that there is a depen-
dence on the locations of the phase transitions on the
strength of the interlayer interactions. We explore this
relationship in Fig. 4, which shows interaction strength
dependence of phases. We find that the location of the
phase boundary of PFM-PPM metastable transition, de-
fined to be a point where two OPDs are launched within
10 fs, is proportional to the excitonic gap. In Fig. 4,
we find a clear linear dependence of Vc on ∆ when we
examine the location of the phase transition between the
PFM and PFM-PPM metastable phases. As the gap size
increases with the increase in the interaction strength,
the PFM phase stability to changes in interlayer voltage
increases in concert with the critical voltage, Vc, which
also moves to higher interlayer voltages. Additionally,
we observe a similar trend in the transition between the
metastable and PPM regions. In this work, we define
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FIG. 4: Phase boundaries of PFM-Metastable transition (blue
circle) and Metastable-PPM transition (green diamond). The
phases are calculated within a given time window of 10 fs. For
each point of blue curve, we use interaction strengths of U =
−0.85, 0.9, 0.95, 1 while, for green curve, U = −0.85, 0.9, 0.95
are used.

the Metastable-PPM transition to be the point at which
the interlayer coherence decreases to 30% of the initial
self-consistently obtained value. In the zero gap limit,
we know that the both the PFM and the PFM-PPM
metastable phase must vanish. Therefore, in limit of in-
finite time response, intersection of the two boundaries
must meet at origin of the plot. In Fig. 4, the inter-
section of the two lines is shifted from the origin due to
nature of time dependent simulation. As we always have
a finite time window within the simulation methodol-
ogy associated with the TDKB formalism, it is inevitable
that setting criteria to determine the location of a phase
transition from given finite time simulation will result in
discrepancies when compared to the infinite time limit.
These criteria give a time scale cutoff which shifts the
phase boundaries from infinite time response limit.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have studied the non-equilibrium
time-dependent dynamics of dipolar exciton condensate
phases focusing on the behavior past Vc via use of the

time-dependent Kadanoff-Baym equations in coupled 2D
layers. We have explained the salient features within the
dipolar exciton condensate using the language of pseu-
dospin ferromagnetism. We have demonstrated that,
using this non-perturbative approach, we are able to
completely reproduce the well-known experimental in-
terlayer transfer characteristics associated with dipolar
exciton condensates in quantum Hall semiconductor bi-
layers without assuming the phase of the system. We
have shown that for voltages VTL − Vc < 0, the sys-
tem exhibits pseudospin ferromagnetism denoted by per-
fect drag counterflow between the two layers. As the
interlayer voltage is increased past the critical voltage,
VTL − Vc ≈ 0, the system exhibits stable oscillation be-
tween the pseudospin ferromagent phase and the pseu-
dospin paramagnet phase. The voltage-induced oscilla-
tion between the two phases manifests itself as persis-
tent oscillations in terminal currents corresponding to the
continuous launching OPDs across the superfluid with a
characteristic AC Josephson frequency. When the inter-
layer bias exceeds, VTL − Vc & ∆, we have shown that
the coherence between the layers is destroyed and the sys-
tem transitions into the pseudospin paramagnet phase in
which the interlayer transport is limited by single particle
tunneling.
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