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The application of the Pancharatnam-Berry (PB) phase approach to the design of nonlinear 

metasurfaces has recently enabled sub-diffractive phase control over the generated nonlinear 

fields, embedding phased array features in ultrathin structures. Here, we rigorously model, 

analyze, and design highly efficient nonlinear metasurfaces with advanced functionalities, 

including the generation of pencil-beams steered in arbitrary directions in space, as well as 

vortex beams with polarization-dependent angular momentum, and we extend the PB approach 

to various nonlinear processes. To this purpose, we develop an accurate and efficient theoretical 

framework – inspired by the linear phase array theory – based on the effective nonlinear 

susceptibility method, thus avoiding the use of time-consuming numerical simulations. Our 

findings allow exploiting the flat nonlinear optics paradigm, enabling exciting applications 
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based on subwavelength field control over flat and large-scale structures with giant nonlinear 

responses. 

PACS numbers: 78.67.Pt, 45.25.Gy, 42.65.-k, 78.67.De 

I. INTRODUCTION 

Nonlinear metasurfaces have recently provided record-high conversion efficiencies in nonlinear 

processes and hold a great potential to revolutionize the field of nonlinear optics by replacing 

bulk nonlinear crystals with flat structures of sub-µm thicknesses [1–4]. Strong nonlinear 

responses from such electrically small volumes requires light-matter interactions much stronger 

than what is attainable in bulk crystals. This is where the field of plasmonics provides powerful 

tools. The use of carefully engineered subwavelength plasmonic inclusions offers a flexible and 

efficient way to engage strong fields in small volumes and boost the efficiency of nonlinear 

processes, such as second-harmonic generation (SHG), to very large values [1,2,4–7]. In 

addition, ultrathin metasurfaces significantly alleviate phase matching constraints, which are of 

critical importance for efficient nonlinear processes [1,8]. Several attempts have been recently 

pursued to apply phase control techniques, which have been originally developed in linear optics, 

to nonlinear systems, aiming to provide a much-needed control over generated fields at 

subwavelength scales  [3,4,9–11]. Such nonlinear systems with wavefront engineering 

capabilities are paving the way towards a new paradigm in nonlinear optics, based on which 

advanced functionalities such as pencil beam steering, focusing, generation of vortex beams, 

holographic imaging, etc., are realized using ultrathin nonlinear metasurfaces, eliminating the 

need for bulky optical lenses and filters and mitigating the challenges associated with phase-

matching. 
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Recently, we introduced a novel platform for nonlinear metasurfaces, able to provide giant SHG 

efficiencies and simultaneously manipulate the emerging wavefront at will [9,12]. Specifically, 

we applied the Pancharatnam-Berry (PB) geometrical phase approach to nonlinear metasurfaces 

consisting of engineered split-ring plasmonic resonators loaded with nonlinear multiquantum 

wells (MQWs). The basic functionality of this approach consists in realizing metasurfaces 

formed by polarization-sensitive elements with spatially varying orientation. Under circularly 

polarized (CP) illumination, such elements generate local, nonlinear fields of equal magnitudes 

and controlled phases of CP components (see Appendix A for a detailed discussion) [13–15]. 

Similar techniques are used in linear optics to realize beam steering [13,16,17], focusing and 

defocusing of CP waves in reflection and transmission [15,16,18,19], polarization 

transformations [20], as well as to produce elaborated phase profiles, such as for Airy [21–23] 

and vortex beams [24–28]. In [9,12] we applied the geometrical phase approach to nonlinear 

metasurfaces, adiabatically rotating subwavelength plasmonic resonators in order to tailor right-

handed and left-handed circularly polarized (RCP and LCP) second harmonic (SH) wavefront 

profiles. Due to the lack of efficient methods to model nonlinear systems of large size and 

complexity, our previous work applied this paradigm only to simple structures made of elements 

rotated following a 1D phase gradient scheme. Yet, simulation of nonlinear metasurfaces 

composed of just a dozen of unit-cells already requires tremendous computational resources and 

cannot be performed on compact desktop computers. In order to circumvent this issue, in [9] we 

introduced a semi-analytical technique able to approximate the far field response of those 

nonlinear metasurfaces whose elements are rotated adiabatically along one direction, under the 

assumption of normally impinging pump beams.  
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In this contribution, we propose, design and analyze 2D nonlinear PB metasurfaces able to 

simultaneously provide high nonlinear conversion efficiency and advanced wave front shaping 

functionalities. Some examples of such functionalities include steering nonlinear pencil beams in 

arbitrary directions and the generation of vortex beams with different orbital angular momentum 

for RCP and LCP components. We also extend these ideas to various nonlinear processes such as 

SHG, third harmonic generation (THG), and sum-frequency generation (SFG), and we describe 

how our wavefront tailoring approach can be applied to such processes. To this purpose, we 

develop a general theoretical framework for modelling and predicting far-field radiation patterns 

of large-scale 2D nonlinear PB metasurfaces operating both in reflection and transmission, and 

illuminated at arbitrary directions. This framework is inspired to the linear phased array theory 

for radio-frequency applications [29], but it is developed here in the realm of nonlinear 

metasurfaces with wavefront shaping capabilities implemented using the PB phase approach. 

Importantly, our technique relies on modeling the surface as an effective nonlinear susceptibility 

tensor, and therefore it can be applied to metasurfaces composed of any material undergoing 

arbitrary nonlinear processes. We do remark that generated fields significantly weaker than the 

pump field(s) and other common assumptions underlying in the development of our theory, as 

detailed below, are expected to be fulfilled in the common operation of these mtetsurfaces. In the 

following, we show how using this framework one may easily design and analyze 1D and 2D 

nonlinear metasurfaces, eliminating the need for extensive nonlinear numerical simulations and 

focusing instead on the design of unit-cells with the highest possible nonlinear conversion 

efficiency. 

The rest of the paper is organized as follows: in Section II, we derive a general theoretical 

framework to characterize the far-field response of nonlinear PB metasurfaces. We show how 
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this framework can be applied to metasurfaces aimed at second-, third-, and sum-frequency 

generation, and discuss the assumptions and restrictions of our approach. In Section III, we 

rigorously validate our theory by comparing it against full-wave numerical results obtained using 

COMSOL [30]. For comparison purposes, we design and analyze a set of realistic SHG and 

THG nonlinear metasurfaces with 1D gradient based on highly-efficient plasmonic resonators 

printed on MQWs. In addition, we determine under which conditions our proposed theory is 

accurate. Then, in Section IV we demonstrate advanced nonlinear PB metasurfaces with 2D 

gradients made of hundreds of elements and able to simultaneously provide high conversion 

efficiency and enhanced functionalities, such as shaping and steering nonlinear pencil-beams in 

arbitrary directions and polarization-dependent vortex beam generation. 

II. GENERAL THEORETICAL FRAMEWORK 

In this section, we present a theoretical method to characterize the far-field response of ultrathin 

metasurfaces composed of subwavelength unit-cells loaded with a nonlinear material. 

Specifically, we introduce a nonlinear phased array framework based on an effective nonlinear 

susceptibility model. In this approach, valid for conversion efficiencies below ~5-10% [1,31], the 

collective far-field response of the nonlinear PB metasurface is analytically predicted from the 

effective nonlinear susceptibility tensor of a single unit cell.  This technique is first introduced 

for SHG and then extended to other nonlinear processes. 

Our main goal is to design and analyze nonlinear PB metasurfaces able to manipulate the 

wavefront of the generated signal at will. For this purpose, the structure must fulfill several 

requirements imposed by the PB phase approach [9] that we briefly list here. First, in order to 

provide phase control of the generated nonlinear field, the unit-cells must be substantially 
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smaller than the wavelength of the pump and nonlinear signals of interest. This imposes certain 

restrictions on the size and spacing between neighboring elements. Second, each cell must 

contain a specifically designed polarization-sensitive Pancharatnam-Berry phase element (PB 

element) that responds only to certain field polarizations at the fundamental or generated 

harmonic frequency, or both. Third, the orientation of PB elements must change adiabatically, so 

that each element is surrounded by alike neighbors. Fourth, these PB elements must be designed 

in such a way that the cross-coupling between neighboring elements is minimized, so that they 

can be rotated independently from each other without largely affecting their individual response. 

Unlike phased arrays operating in the linear regime, the cross-coupling between nonlinear PB 

elements may introduce large phase and amplitude corrections that are difficult to model 

analytically. However, if the coupling between neighboring unit-cells is weak, such metasurfaces 

become an ideal platform for tailoring the nonlinear wavefront in a straightforward fashion.  

We begin our analysis by considering a 2D array of unit-cells located at ( , ,0)n n nx y=r , where n  

is the index number. Under the assumptions given above, we can describe their second-order 

nonlinear response with an effective nonlinear susceptibility tensor (2)χ ( ;2 : , )n ω ω ωrt  (see 

Appendix B and Refs. [1,31] for a detailed procedure), which relates the nonlinear polarization 

density 2
n

ωP  induced in the n-th unit-cell averaged over its volume and oscillating at the SH 

frequency 2ω  with the impinging (pump) plane wave ωE  oscillating at the fundamental 

frequency (FF) ω : 

 2 (2)
0 χ ( ;2 : , ) : ( ) ( )n n n n

ω ω ωε ω ω ω=P r E r E rt
, (1) 
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where the colon denotes a double-dot dyadic product. We stress that the effective susceptibility 

encapsulates all linear scattering effects and relates the average induced nonlinear polarization 

density in every cell to the incident field. This technique assumes the generation of weak 

nonlinear fields (compared to the pump), thus avoiding the need for solving the electromagnetic 

problem self-consistently at both pump and generated frequencies. This is a valid assumption, as 

typical efficiency levels achieved in the most efficient nonlinear metasurfaces reported to date 

are below a few percent.  

Following this approach, first, we compute the effective nonlinear susceptibility tensor (2)χt  in 

Cartesian coordinates assuming close to normal incidence. Taking advantage of the weak cross-

coupling between adjacent cells and the fact that they differ from each other only by the PB 

elements’ orientations nψ  (see Fig. 1), the local effective susceptibility tensor of the n-th cell can 

be obtained as 

 (2) (2) (2)χ ( ) χ ( ) ( ) χ : ( ) ( )n n n n nψ ψ ψ ψ≡ = ⋅ − −r R R Rt t t
,  (2) 

where R  is a rotation matrix around the z-axis (see Fig. 1), 

 
cos sin 0

( ) sin cos 0
0 0 1

ψ ψ
ψ ψ ψ

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

R .  (3) 

The SH electric field 2 ( )ωE r  generated by the entire metasurface can be found as a sum of 

radiation from independent effective dipole moments of each cell, 2 2
UCn nVω ω=d P  with  UCV  

denoting the unit-cell volume, 
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2

2 22

0

( ) ( , )n n
n

k Gω ω

ε
= ⋅∑E r r r d

t
,  (4) 

where 2 2 /k cω=  with c  denoting the speed of light in free-space, and ( , )nG r r
t

 is a dyadic 

Green’s function that takes into account the influence of the media surrounding the metasurface. 

Without loss of generality, we assume here that the metasurfaces under study are suspended in 

free space, allowing us to employ the well-known far-field free-space Green’s function, 

 
2

2 ˆ
FF ˆ ˆ( , ) [ ]

4
n

ik r
ik

n
eG I e

r

ω
ω

π
− ⋅= − r rr r rr

t t
,  (5) 

with ˆr=r r  [32]. More complex scenarios, including the presence of substrates and ground planes, can 

easily be modelled considering a modified Green’s function.  

To easily account for the physical rotation of different PB elements, it is convenient to write Eqs. (1)-(5) 

in CP basis. Let , ,u u u ua R L r=  denotes a CP polarization state corresponding to RCP, LCP, and 

longitudinal (radial) polarization components of incoming and radiated waves, where the subscript u  is 

the index of a wave (for the SHG case, 1u =  corresponds to the input pump wave and 2u =  denotes the 

output SH wave). Each of the bases can be defined uniquely by a pair of polar angles ( , )u uθ ϕ  in 

spherical coordinates that correspond to the propagation direction of the wave, with [0, ]uθ π∈  and 

[0,2 ]uϕ π∈ , 

 ( ) ( )1 1ˆ ˆ ˆ, ,
2 2u u u u u u u uR i L i z= − = + =θ φ θ φ r ,  (6) 

where ˆ ˆ( , )u u uθ ϕ≡θ θ , ˆ ˆ ( , )u u uθ ϕ≡φ φ , ˆ ˆ( , )u u uθ ϕ≡r r  are basis unit-vectors of the spherical 

coordinate system. We also introduce a circular polarization basis 0 , ,a a R L z≡ =  associated 
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with the metasurface itself and corresponding to CP waves propagating perpendicularly to the 

metasurface in the z+  direction ( 0θ ϕ= = ), see Fig. 1(a): 

 ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ, ,
2 2

R i L i z= − = + =x y x y z . (7) 

All CP bases, a  and ua , can be related to a Cartesian polarization basis , ,i x y z=  through 

the coordinate transformation u ua i= Λ , where ( , )u u uθ ϕ=Λ Λ  is a unitary coordinate 

transformation matrix given by 

 
cos cos sin cos sin cos sin

1( , ) cos cos sin cos sin cos sin
2

2 sin cos 2 sin sin 2 cos

i i
i i

θ ϕ ϕ θ ϕ ϕ θ
θ ϕ θ ϕ ϕ θ ϕ ϕ θ

θ ϕ θ ϕ θ

⎛ ⎞+ − −
⎜ ⎟

= − + −⎜ ⎟
⎜ ⎟
⎝ ⎠

Λ .  (8) 

In the CP basis a , the nonlinear susceptibility tensor elements can be found by performing the 

coordinate transformation 

 (2) (2) 1 1
0 0 0χ [ ] χ [ ] [ ]abc ai ijk jb kc

i j k

− −=∑ Λ Λ Λ ,  (9) 

  with , , { , , }i j k x y z= , , , { , , }a b c R L z= , and 

 0 0
0

1 0
1 1 0
2

0 0 2

i
iθ

ϕ
=
=

⎛ ⎞−
⎜ ⎟

≡ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

Λ Λ .  (10) 

 Using a similar transformation, the rotation matrix in the CP basis a  can be found from (3) as 
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 1
0 0

0 0
[ ] [ ] 0 0

0 0 1

i

i
ab ai ij jb

i j

e
R R e

ψ

ψ

−

−

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ Λ Λ .  (11) 

Since the matrix is diagonal, substituting (11) into (2) it is easy to see that 

 ( )(2) (2)χ ( ) χ ni a b c
abc n abc eψψ − −= ,  (12) 

where each of the indexes a , b , and c  in the exponential factor should be replaced according to 

(11) as follows: 1R = − , 1L = + , and 0z = .  

The phase factor ( )ni a b ce ψ − −  is only due to the local element orientation and, thus, it is of a purely 

geometrical nature. The emergence of this geometrical phase can be intuitively understood by 

noting that the adiabatic rotation of adjacent resonators by an angle ψ  provides [9]: i) an extra 

phase factor of ie ψm  to the RCP/LCP components of the surface currents induced in the 

metasurface, and ii) an additional factor ie ψ±  to the RCP/LCP components of the beam reflected 

in the structure.  Despite its apparent simplicity, the emergence of this phase is a manifestation of 

the celebrated Pancharatnam-Berry geometrical phase (see Appendix A), which is of profound 

importance in optics and quantum mechanics. In metasurfaces, geometrical phase gradients 

break the inversion symmetry → −r r  by imprinting a transverse momentum ( )ψ∇ r  that leads 

to a splitting of the dispersion relation of states with opposite optical helicity [33]. This effect is 

similar to Rashba spin-band splitting in 2D electronic systems subjected to a transverse potential 

gradient [34,35]. 

Using (6), an arbitrary polarized plane wave ωE  with wavenumber 1 1 1̂k=k r , where 1 /k cω=  ( c  

is the speed of light in free space), obliquely impinging onto a metasurface, can be described as 
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 1

1

1

1( ) i
n a

a
a E eω ω ⋅=∑ k rE r .  (13) 

Projecting it onto the basis a , we obtain the corresponding amplitudes 

 1 1

1

1

1( ) i i
a a

a a a
a a a E e a E eω ω ω⋅ ⋅= =∑ ∑ ∑k r k rE r ,  (14) 

where 
1

1

1a a
a

E a a Eω ω=∑ , and †a a=  is the standard bra-ket notation used in Quantum 

Mechanics with the dagger denoting the Hermitian adjoint. The inner product 1a a  is given as 

(see Appendix C) 

 

1 1 1

1 1 1

1

1 1 1

1 1 1 1

1 1 1 ,

(cos 1) (cos 1) 2 sin
1 (cos 1) (cos 1) 2 sin
2

2 sin 2 sin 2cos

i i i

i i i

a a

e e e

a a e e e

ϕ ϕ ϕ

ϕ ϕ ϕ

θ θ θ
θ θ θ

θ θ θ

− − −

⎡ ⎤+ −
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 . (15) 

In the same basis, a , the dipole moment is 2
,n n aa

a dω ω=∑d  with  

 [ ]12 ( )2 (2)
, UC .ni a b c

n a abc b c
b c

d V E E e ψω ω ωχ ⋅ + − −= ∑ k r   (16) 

Performing a projection onto the CP basis 2a  associated with the observation direction, we find 

 [ ]1

2

2 ( )2 (2)
, UC 2

ni a b c
n a abc b c

ab c

d V a a E E e ψω ω ωχ ⋅ + − −= ∑ k r ,  (17) 

where  
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2 2

2 2

2 2

2

2 2 2

2 2 2 2

2 2 2 ,

(cos 1) (cos 1) 2 sin
1 (cos 1) (cos 1) 2 sin
2

2 sin 2 sin 2cos

i i

i i

i i

a a

e e

a a e e

e e

ϕ ϕ

ϕ ϕ

ϕ ϕ

θ θ θ
θ θ θ

θ θ θ

−

−

−

⎡ ⎤+ − −
⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , (18) 

(see Appendix C). We want to stress that, differently from [9], where we defined the RCP and 

LCP components of the polarization density with respect to z±  directions (transmission and 

reflection regions, respectively), here all CP components in a  are defined uniquely with respect 

to the z+ -direction. Thus, due to the coordinate transformation (18), if 2 0θ =  (propagation 

along z+ ), we have 
2

2 2
, ,n R n Rd dω ω= , but if 2θ π=  (propagation along z− ), we obtain 

2

2 2
, ,n L n Rd dω ω= , 

i.e. the RCP nonlinear polarization density becomes a source for the LCP component of SH 

radiation in the reflection region. Combining Eqs. (14)-(18) we obtain 

 
2

2

2 2
2 ,n n a

a
a dω ω=∑d  , (19) 

with 

 1

2

2 ( )2 (2)
, 0 UC 2

ni i a b c
n a abc b c

ab c
d V a a A A e ψω ω ωε χ ⋅ + − −= ∑ k r ,  (20) 

where all summations are performed over all three polarization components. In addition, it can 

be easily shown that in the CP basis 2a  the free-space dyadic Green’s function (5) can be 

written as 

 
2

2 2

2 2 2 2
ˆ

FF 2 2 2 2( , )
4

0

n

ik r
ik

n

R R r r
eG e L L r r

rπ
− ⋅

⎛ − ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

r rr r
t

. (21) 
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Substituting (19)-(21) into (4), and taking into account that 2 2 0a b =  if 2 2a b≠ , we finally 

obtain 

 
2

2

2 2
2( ) ( )a

a
a Eω ω=∑E r r ,  (22) 

 
2

2

2 2 (2) SHG
UC 2 2( ) AF

4

ik r

a abc abc b c
abc

eE V k a a E E
r

ω ω ωχ
π

= ∑r , (23) 

where the index 2 2 2{ , }a R L=  and the third (radial) component is strictly zero. The tensor SHGAFabc  

is a nonlinear array-factor for the SHG process, given as 

 [ ]1 2 2ˆ(2 ) ( )SHGAF n ni k a b c
abc

n
e ψ− ⋅ + − −=∑ k r r . (24) 

From Eqs. (23) and (24) it is evident that the SH radiation in the far-field is composed of the sum 

of all array factors weighted by the corresponding nonlinear susceptibility tensor element in the 

CP basis.  

This result can be generalized to other nonlinear processes. In particular, for THG processes in 

which the generated field oscillates at frequency 3ω , we can write 

 
2

2

2
3 (3) THG2

UC 2( ) AF
4

ik r

a abcd b c d abcd
abc

k eE V a a E E E
r

ω ω ω ωχ
π

= ∑r ,  (25) 

with 2 2 2{ , }a R L= , 2 3 /k cω= , and a THG array factor  

 [ ]1 2 2ˆ(3 ) ( )THGAF n ni k a b c d
abcd

n
e ψ− ⋅ + − − −=∑ k r r . (26) 
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For sum-frequency generation (SFG) with two pump waves 1ωE and 2ωE oscillating at 1ω  and 2ω

, respectively, the radiated wave will oscillate at frequency 3 1 2ω ω ω= + ,  

 
3

3 1 2

3

2
(2) SFG3

UC 3( ) AF
4

ik r

a abc b c abc
abc

k eE V a a E E
r

ω ω ωχ
π

= ∑r ,  (27) 

with 3 3 3{ , }a R L= , 3 3 /k cω= , 1 1

11
1b bb

E b b Eω ω=∑ , 2 2

22
2c cc

E c c Eω ω=∑ , and 

 [ ]1 2 3 3̂( ) ( )SFGAF n ni k a b c
abc

n
e ψ+ − ⋅ + − −=∑ k k r r .   (28) 

This formulation allows fast computation of the field radiated by ultrathin nonlinear 

metasurfaces, and it explicitly accounts for the fact that the pump signals can impinge obliquely. 

In addition to the restrictions already imposed by the PB phase approach on the nonlinear 

metasurface design, this framework relies on the accurate evaluation of the effective nonlinear 

susceptibility tensor of a single unit-cell in a periodic environment. This tensor encapsulates all 

scattering effects at the fundamental and generated frequencies, and thus, its components also 

depend on the illumination and observation angle, showing significantly different values in 

endfire/backfire directions compared to broadside. Here we imply that the effective nonlinear 

susceptibility tensor has been numerically evaluated assuming close-to-normal incidence and 

radiation directions. As a result, the accuracy of our theoretical analysis is expected to decrease 

for incident and generated beams propagating at large angles with respect to the normal to the 

metasurface, especially if the unit cell is not too small compared to the wavelength. 

III. 1D GRADIENT NONLINEAR METASURFACES: THEORY AND SIMULATIONS 
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In this section, we validate the accuracy of the formulation derived in the previous section by 

performing a direct comparison with numerical simulations. To this purpose, we present, study 

and discuss specific nonlinear metasurfaces composed of PB elements with a linear orientation 

gradient along one direction, able to provide 1D beam-scanning functionalities.  
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We consider a host nonlinear metasurface aimed at highly efficient SHG process [9]: an array of 

gold split-ring resonators (SRR) placed on top of MQW substrates etched around the SRRs in 

order to reduce the cross-coupling, see Fig. 1(a). Here we assume that the elements are 

suspended in free-space, thus allowing them to radiate both in reflection and transmission. We 

also assume that MQWs provide a large second-order intrinsic response at the pump frequency 

of 30 THz. The SRR dimensions are accordingly chosen to provide resonant field enhancement 

 

Fig. 1. (a) Schematic of a nonlinear metasurface consisting of Pancharatnam-Berry optical elements 

designed for efficient SHG. Each element contains a nonlinear material, in this case a 400nm-thick 

MQW semiconductor heterostructure stack with semiconductor layers in x-y plane, with gold 

plasmonic resonators placed on top. The MQW is etched around the resonator in order to minimize the 

cross-coupling between the cells. The orientation of optical elements, ψ , varies linearly along the x -

axis. The metasurface is illuminated at an incident angle 1θ  ( 1 0ϕ = ). (b) zE  field distribution for a 

reference (not rotated) unit-cell at the fundamental and second harmonic frequency, ω  and 2ω , 

respectively. The dimensions of the unit-cell are specified in nm. The shape of the resonator is chosen 

so that it responds to y-polarized field at ω   and x-polarization at 2ω , at the same time ensuring a 

subwavelength square footprint.  
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at FF frequency 30THz and SH frequency 60THz, see Fig. 1(b). It is important to mention that 

MQWs present a nonlinear response only for electric field components orthogonal to the 

semiconductor layers [36–42], i.e., they respond only to z-polarized components of FF fields, and 

generate z-polarized nonlinear polarization SH currents. Doubly-resonant SRRs provide a large 

overlap integral (as discussed in Appendix B and in Refs. [1,7]) between the z-components of FF 

and SH fields, see Fig. 1(b), ensuring a SH nonlinear response of the metasurface many orders of 

magnitude larger than the one typically obtained in bulk nonlinear crystals [1,4]. As a result, 

SHG conversion efficiencies of nearly 0.1% were demonstrated experimentally in mid-infrared 

spectral range ( 3..15μmλ = ) using metasurfaces only 400-600nm thick [4,7]. Moreover, the 

conversion efficiency can be boosted to values above 4% using high-quality MQWs 

heterostructures and optimized plasmonic resonators, as discussed in Refs. [7,29,31]. 

Full-wave numerical simulations of nonlinear metasurfaces were performed using 

COMSOL [30]. Specifically, each structure was simulated in frequency domain in two steps: 

first, the entire metasurface consisting of 24N =  unit-cells along the x-direction and infinitely 

periodic along y was tested at ω ;  then, the nonlinear polarization currents driven by the local 

field at ω  were impressed in MQW volumes, and the structure was simulated at the generated 

frequency. As long as the nonlinear field remains significantly weaker than the pump, this 

numerical approach is rigorous and applicable to nonlinear metasurfaces with any desired 

functionality. In practice, such numerical simulations take long time and require large 

computational resources, thus limiting their applicability to the analysis of metasurfaces 

composed of even a few unit-cells, hindering the fast design of realistic structures. A full-wave 

numerical analysis of one of the nonlinear metasurfaces described below in this section requires 

many computational hours of a powerful dedicated workstation. 



18 
 

On the contrary, the framework developed in the previous section can be efficiently applied to 

the analysis and design of these nonlinear metasurfaces, while providing physical insight into the 

metasurface operation. For example, in the specific case of 1D nonlinear metasurfaces with a 

linear orientation gradient only along the x-direction, we can particularize and further simplify 

the proposed theoretical formalism. Specifically, consider a 1D array of N  unit-cells with 

coordinates ˆn xnd=r , where d  is the length of the unit-cell along x . A linear gradient allows us 

to write the local PB element orientation as n nψ ψ= Δ , where ψΔ  is the orientation variation 

step along x. Assuming the incident wave impinging in the x-z plane, i.e.  1 1 1 1(sin ,0,cos )k θ θ=k

, from Eq. (24) we obtain 

 ( )1 1 2 2 22 sin sin cos ( )SHG

1

AF
N

in k k d a b c
abc

n

e θ θ ϕ ψ− +Δ − −⎡ ⎤⎣ ⎦

=

=∑ . (29) 

Introducing the notation 

 1 1 2 2 2(2 sin sin cos )mX k k d mθ θ ϕ ψ= − + Δ , (30) 

 the summation in (29) can be performed explicitly, leading to an expression which is similar to 

the array factor in the linear regime, 

 ( 1)/2SHG
sin

2AF
1sin
2

a b c

a b c
iX N

abc

a b c

N X
e

X

− −

− −
−

− −

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 . (31) 

Unlike the case of linear phased arrays, here we cannot drop the exponential phase pre-factor 

because the far-field expression (23) contains a summation over all indexes of the tensor and we 

should keep the accurate phase difference between all terms. From (31) it follows that in a 
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nonlinear PB metasurface with a linear orientation gradient, all components of the nonlinear 

susceptibility tensor (2)
abcχ  contribute to the radiation in specific directions defined by maxima of 

Eq. (31). The direction of the main lobes in reflection and transmission domains from each term, 

R
mθ  and T

mθ , can be found from the condition 0mX = , which yields 

 T 1 2
1sin sin

2m m
d

ωλψθ θ
π

− Δ⎛ ⎞= ± +⎜ ⎟
⎝ ⎠

, (32) 

 R T
m mθ π θ= −  . (33) 

The choice between ‘+’ and ‘-’ corresponding to 2 0ϕ =  and 2ϕ π= , respectively, is made so 

that T
mθ  is positive. Inspecting Eq. (32), we conclude that in the transmission region a normally 

incident RCP pump wave at ω  produces a RCP SH wave ( 1m = + ) at 2ω  steered closer to z+  

direction than the LCP component ( 3m = + ). In ‘reflection’ the situation is reversed, the RCP 

wave will be steered at a larger angle with the z−  direction; in turn, the LCP wave will 

propagate closer to the broadside.  

Fig. 2 shows beam steering capabilities of SHG metasurfaces, computed by the proposed theory 

and numerical simulations. Fig. 2(a) and Fig. 2(b) show the second harmonic far-field response 

with orientation step 15ψΔ = o  for normally-impinging RCP and LCP beams, respectively. Our 

results confirm the expected separation of directions for RCP and LCP components of the 

second-harmonic signal [9]. Importantly, an excellent agreement between theoretically and 

numerically computed directivities is obtained. According to Eq. (32), the two main lobes for 

RCP and LCP components in ‘transmission’ occur at T
1 7θ+ ≈ o  and T

3 18θ+ ≈ o , respectively, and in 

the reflection region the main lobes occur at R
3 162θ+ ≈ o  for RCP and T

1 173θ+ ≈ o  for LCP 
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component (see arrows in Fig. 2(a)).  We emphasize that these directions can be controlled 

nearly arbitrarily (though, not independently from each other) following the simple equations 

provided above. Figures 2(c,d) show similar results, but considering now a nonlinear 

metasurface with the orientation step 30ψΔ = o . As expected, the RCP and LCP generated 

  

Fig. 2. Far-field directivity patterns (in dBi) for RCP and LCP components of second-harmonic 

radiation generated by a nonlinear metasurface illuminated by a Gaussian beam of 12μm FWHM. 

The directivity plots are shown in the x-z plane. Theoretical results are shown with dashed lines, and 

solid lines show results from full-wave simulations. (a) A RCP polarized beam is impinging at 

normal incidence, 1 0θ =  on the metasurface with the rotation step 15ψΔ = o  (see the inset). The 

dotted lines with arrow tips show theoretically predicted highest partial directivities. (b) LCP 

incidence, 1 0θ = , 15ψΔ = o . (c), (d) the same as (a), (b) but for 30ψΔ = o . 
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beams are now directed towards a larger angle with respect to the z-axis. One can see that the 

discrepancies between numerical results and theory away from broadside slightly increase. As 

discussed in Section II, such differences arise because the effective susceptibility tensor is 

evaluated at normal incidence in a periodic environment, and it becomes less accurate for larger 

gradient step. Nevertheless, it is seen that the theoretical directivities still accurately predict 

directions and magnitudes of the two main lobes both in transmission and reflection. 
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We would like to emphasize that the proposed nonlinear metasurface provides beam steering 

capabilities also when illuminated by the pump at oblique incidence. A tangential momentum of 

the impinging wave is added to the momentum produced by the phase gradient imprinted in the 

metasurface, enabling continuous SHG beam-scanning functionality. In Fig. 3, we show 

theoretical and numerical results for the RCP and LCP polarized Gaussian beams impinging in 

the direction 1 20θ = o , 1 0ϕ = , on a PB metasurface with 15ψΔ = o . For RCP incidence (Fig. 

3(a)), the momentum from the gradient is added to the logitudinal momentum of the impinging 

beam, increasing the steering angles. In turn, for a LCP beam, the imprinted phase variation 

tends to compensate for the logitudinal impinging wave’s momentum and restore a steering 

direction closer to the broadside.  

 

Fig. 4. Far-field partial directivity patterns (in dBi) for third-harmonic radiation from the same 

metasurface as in Fig. 2(a,b), with third-order nonlinearity described by an effective nonlinear 

susceptibility tensor (3)χt . (a) RCP pump Gaussian beam at the frequency ω  impinging 

normally. (b) LCP pump beam. 

 

Fig. 3. Far-field partial directivity patterns (in dBi) for RCP and LCP components of second-harmonic 

radiation from the metasurface orientation step 15ψΔ =  but at oblique incidence, 1 20θ = o . 

Directivity plots are shown in the x-z plane. (a) RCP incident beam. (b) LCP incident beam. 
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Finally, we show that the proposed concept can also be applied to other nonlinear processes, 

such as third-harmonic generation. In practice, constructing a THG metasurface with phase 

control is a challenging task that requires designing a plasmonic PB element able to provide 

sufficiently strong field enhancement at ω  and 3ω  in a subwavelength footprint, which goes 

beyond the focus of this paper. However, since here we are primarily interested in far-field 

directivity, we can take advantage of the fact that the unit-cell design used for SHG is 

polarization sensitive at ω , and that the phase of the FF field in MQW still depends on the 

SRRs’ orientation. Additionally, even at the angular frequency 3ω  some polarization selectivity 

is present thanks to the asymmetrical shape of the resonator and the fact that periodicity is still 

smaller than the third-harmonic wavelength ( 3 0.6d ωλ ≈ ). Consequently, the metasurface 

designed for SHG is also able to provide third-harmonic generation (90THz for a 30THz pump), 

but with much lower conversion efficiency. Figure 4 confirms third-harmonic generation and 

beam-steering capabilities for a nonlinear metasurface with 15ψΔ = o  under normal incidence, 

computed by our proposed theory and validated using full-wave simulations in COMSOL. Our 

results confirm i) the presence of THG and the capability to manipulate the radiated beam, and 

ii) the accuracy of the proposed theory to model metasurfaces employing various nonlinear 

phenomena. The discrepancy between analytical and numerical results comes from the fact that 

the unit-cell is larger than half-wavelength at the third harmonic, so that the effective 

susceptibility model loses part of its accuracy. Still, the proposed theory provides a reasonably 

accurate general picture of the two main CP lobes of the THG signal steered away from the 

normal. 
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IV. METASURFACES WITH 2D PHASE PATTERNS: ADVANCED 

FUNCTIONALITIES 

In this section, we apply the theoretical framework developed in previous sections to propose 

and demonstrate advanced 2D nonlinear metasurfaces with interesting functionalities, such as the 

generation of pencil beams directed towards arbitrary directions in space and vortex-beams with 

different angular momentum for RCP and LCP polarizations. We stress that we were unable to 

perform the simulation of such metasurfaces using commercial full-wave software, due to the 

required amount of computational resources, so we limit our results to designs and calculations 

based on our analytical model validated in the previous section.  
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The first example that we consider is a SH nonlinear metasurface with a 2D gradient profile, as 

illustrated in Fig. 5(a), providing beam-steering capabilities. In general, beam steering in 

arbitrary directions can be achieved by adjusting the orientation steps along the x and y 

directions, xψΔ  and yψΔ , respectively. Following the procedure introduced in the previous 

section, the 2D array factor of this metasurface is 

  

Fig. 5. (a) Schematic of a  80 80×  cells SHG metasurface with a linear variation of elements’ 

orientation in x-y direction (shown with an arrow). The metasurface is illuminated by a RCP Gaussian 

beam with FWHM of 23µm at normal incidence. (b) 3D partial directivity patterns for RCP and LCP 

polarized components of second-harmonic radiation. (c) Spatial phase profiles of RCP and LCP 

polarized components of the second-harmonic field near 0z = .  
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 ( 1)/2( 1)/2SHG

sinsin 22AF
1 1sin sin
2 2

a b c ya b c x

yx
a b ca b c

iY NiX N
abc

a b c a b c

NN YX
e e

X Y

− −− −

− −− −
−−

− − − −

⎡ ⎤⎛ ⎞⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥
⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦

 , (34)  

where xN , yN  are the number of unit cells along the x- and y-direction, and 

 1 1 1 2 2 2(2 sin cos sin cos ) ,m xX k k d mθ φ θ ϕ ψ= − + Δ   (35) 

  

Fig. 6. (a) Schematic of a 80 80×  SHG metasurface with a helical variation of elements’ orientation 

( , ) ( , )x y x yψ ϕ=  (shown with a purple arrow), where ϕ  is the polar angle. The metasurface is 

illuminated by a RCP Gaussian beam with FWHM of 30µm at normal incidence. Partial directivity 

patterns for RCP and LCP polarized SH components are shown in (b) and (c), respectively. The insets 

show spatial phase profiles of ‘transmitted’ beams at 0z = . The RCP beam carries orbital angular 

momentum 1l = − , and for LCP beam it is 3l = − . 
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 1 1 1 2 2 2(2 sin sin sin sin ) .m yY k k d mθ φ θ ϕ ψ= − + Δ    (36) 

The direction of the main lobes for each polarization combination in transmission, ( , )T
m mθ ϕ , and 

reflection ( , )R
m mθ ϕ  can be approximately found from Eq. (34)-(36) by simultaneously setting 

0m mX Y= = , which yields 

 

1/222
1 2 2

1 1 1 1sin sin cos sin sin
2 2

yT x
m m m

d d
ω ωψψ λ λθ θ ϕ θ ϕ

π π
−
⎡ ⎤Δ⎛ ⎞Δ⎛ ⎞⎢ ⎥= + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

,  (37) 

  

Fig. 7. The same metasurface with orientation profile ( , ) ( , )x y x yψ ϕ= , as in Fig. 6, but illuminated 

by an obliquely incident incidence. (a) Schematic of the setup. (b,c) show partial directivities for RCP 

and LCP SH radiation, respectively. The insets show the corresponding phase profiles for ‘transmitted’ 

beams. 
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 R T
m mθ π θ= −  , (38) 

 

2
1 1

1

2
1 1

sin sin
2tan

sin cos
2

y

m
x

m
d

m
d

ω

ω

ψ λθ ϕ
πϕ ψ λθ ϕ
π

−

Δ⎛ ⎞
+⎜ ⎟

= ⎜ ⎟Δ⎜ ⎟+⎜ ⎟
⎝ ⎠

 . (39) 

In Fig. 5 we show the results for a metasurface with linear gradient steps along x and y-directions 

of  15xψΔ = o  and 5yψΔ = o , respectively.  The phase profiles for the LCP and RCP components 

of the second-harmonic field in each cell at 0z =  are depicted in Fig. 5(b). Figure 5(b) shows 

theoretically computed partial directivity patterns for the RCP and LCP components of the SH 

radiation. Results confirm a high degree of control over the generated beams even for small 

gradients, and the possibility of continuous steering of the RCP and LCP beams towards almost 

any direction that is not too far away from the broadside.  

In the second example, we show a nonlinear PB metasurface generating SH helical beams with 

non-zero orbital angular momentum (OAM), l  . Differently from the linear case, where only one 

of the CP components of the transmitted or reflected SH field acquires geometrical phase, in case 

of SHG both CP components are subject to geometrical phase patterning. As a result, using a 

fixed elements’ orientation pattern in a nonlinear metasurface we obtain two oppositely polarized 

helical beams with different OAM. Fig. 6(a) illustrates a SHG metasurface with spatial 

orientation dependence ( , ) ( , )x y x yψ ϕ= , where ( , )x yϕ  is an azimuthal angle in x-y plane. Fig. 

6 (b) and (c) show the RCP and LCP polarization components of the SH far-field, clearly 

showing a doughnut shape cross-section profiles (the field is instantaneous). The RCP 

component possesses 1l = − , and for the LCP component 3l = − . The radius of the doughnut 
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increases for larger | |l , as expected in this type of beams [43]. The corresponding phase profiles 

of RCP and LCP components at 0z =  are shown in the insets of Fig. 6 (b,c). 

Finally, we would like to demonstrate that the same metasurface can also work at oblique 

incidence, effectively steering the SH helical beams in different directions away from normal. In 

Fig. 7, we show the same metasurface with orientation pattern ( , ) ( , )x y x yψ ϕ= , but illuminated 

by an obliquely impinging beam 1 1( 15 , 30 )θ ϕ °= =o . The resulting longitudinal momentum 

1 1 1 1sin (cos ,sin ,0)t k θ ϕ ϕ=k  adds up to the momentum generated by the phase gradient, 

resulting in a well-known fork-shaped phase profiles [10,44]. Note that this phase profiles can be 

readily imprinted in the metasurface itself. If such metasurface is illuminated by a linearly 

polarized wave, the SH radiation will be shaped into helical beams, and opposite polarizations 

will be steered in opposite side of the z-axis. Similar responses  have been successfully observed 

in the past using the quasi-periodic polling technique [10,44], which enforces substantial 

constraints on the size of the beam because the illuminated spot necessarily has to cover a large 

number of polling periods. In contrast, our approach provides a continuous phase shaping from 

ultrathin nonlinear metasurfaces with giant conversion efficiencies. 

V. CONCLUSION 

In this work, we have presented a rigorous and efficient theoretical framework to characterize the 

far-field response of large-scale ultrathin nonlinear metasurfaces with phase shaping 

functionalities, implemented using the Pancharatnam-Berry approach. Our formulation, validated 

using detailed comparison with results from full-wave commercial software, can be applied to 

various nonlinear processes such as second- and third-harmonic generation and permits the rapid 
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analysis and design of nonlinear PB metasurfaces with advanced functionalities. Specifically, we 

have demonstrated the concept of highly efficient nonlinear metasurfaces based on plasmonic 

resonators printed on top of multi-quantum wells, able to provide exciting features such as the 

generation of pencil-beam directed to any desired direction in space and vortex beams with 

polarization-dependent angular momentum. Our approach can be easily applied to the design of 

large-scale, highly-efficient and advanced metasurfaces – composed of any nonlinear material – 

able to manipulate the generated beams at will.  
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Appendix A. Pancharatnam-Berry geometrical phase 

In classical optics, the Pancharatnam-Berry geometrical phase is usually introduced for a beam 

whose polarization state undergoes a cyclic sequence of polarization transformations (i.e., the 

state is returned back to the initial one) that yields an extra phase factor in addition to a 

dynamical phase factor associated with the beam propagation [45,46]. Specifically, it has been 

shown that if the polarization state history of a beam when plotted on the Poincaré sphere closes 

a loop, the geometrical phase will be equal to a half of the geodesic area encompassed by this 

loop. A linear PB element performs a single transformation of an incident beam’s polarization 

and thus no geometrical phase is induced in the co-polarized component because the 

encompassed geodesic area is zero. However, it can be shown that the geometric phase emerges 

in the polarization component orthogonal to the polarization state of the impinging beam, so the 
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resulting state of the beam will be different at various orientations of the PB element. For 

example, for a right-handed circularly polarized (RCP) wave impinging on two similar PB 

elements at different orientations, the RCP component of the transmitted wave will have no 

geometrical phase difference whilst the left-hand circular polarized (LCP) component will 

develop a phase difference. In linear optics, this result has been extensively used to tailor the 

phase of the cross-polarized component of the transmitted beam [13–15,19,26,27,33]. As we 

demonstrated in [9], in the nonlinear case, both CP components of the generated field can be 

subject to geometrical phase change, thus allowing an extra degree of freedom. 

Appendix B. Effective nonlinear susceptibility tensor retrieval 

Consider an arbitrary polarized plane wave inc inc, inc,ˆ ˆx yE x E yω ω ω= +E  oscillating at frequency ω  and 

impinging normally from one side of a thin metasurface consisting from identical unit-cells 

which have a local intrinsic second-order susceptibility tensor (2)( )χ rt
 that can vary from point to 

point across the volume of each cell. Since the polarization components of the impinging wave 

are orthogonal to each other, each of them will independently induce its own portion of the local 

electric field inside a unit-cell, UC UC( ) UC( )( ) ( ) ( )x yE r E r E rω ω ω= + , each of which can be found from 

full-wave simulations. Here we focus on second harmonic generation (SHG), so that in what 

follows we imply (2) (2)( ) ( ,2 : , )ω ω ω≡χ r χ rt t
, and later we explain how this method can be 

extended to other nonlinear processes. For SHG, the total local second-order polarization density 

oscillating at 2ω  can be found as 

 2 (2)
UC 0 UC UC UC( ) ( ) : ( ) ( ), VP r χ r E r E r rω ω ωε= ∈t

.  (A1) 



32 
 

where UCV  denotes the volume of the unit-cell. Since the metasurface is infinite and the unit-cells 

are identical, in the far field it will emit a plane wave 2
FF

ωE  of yet unknown amplitude sustained 

by a nonlinear polarization current density 2 2
UC UC2iJ Pω ωω= − . In order to obtain the amplitude of 

this wave we can apply Lorentz reciprocity theorem to relate 2
FF

ωE  radiated by 2
UCJ ω  and the field 

inside the unit cell UCEω  sustained by an imaginary uniform current in the far field, 2
FFK ω , emitting 

a plane wave 2
incE ω . Similarly to the field at ω  we can separate the portions excited by the x - and 

y -polarized incident field components, 2
FF( )xE ω  and 2

FF( )yE ω , respectively. Applying the reciprocity 

theorem, we obtain, 

 
UC UC

2 2 2 2
FF FF UC UC2 ( ) ( )

S V
dS i dVE K E r P rω ω ω ωω⋅ = − ⋅∫ ∫ , (A2) 

where UCS  is the area of the unit-cell. From quasi-statics we find that 2 1 2
FF 0 inc2K Eω ωη −= , where 

0 0 0η μ ε=  is a free-space impedance. Substituting Eq. (A1) into (A2) and performing the 

integration in the r.h.s. we obtain 

 
UC

1
2 2 2 (2)
inc FF UC UC UC

UC

( ) ( ) : ( ) ( )
V

i c dV
S

E E E r χ r E r E rω ω ω ω ωω −−⋅ = ⋅∫
t

.  (A3) 

where c  is the speed of light in free space. Now we argue that in the quasi-static approximation, 

instead of 2
UCJ ω , radiated SH field 2

FF
ωE  can be sustained by an effective nonlinear polarization 

current 2 2
eff eff2iJ Pω ωω= − . It is up to our choice how we define this effective nonlinear 

susceptibility density 2
eff

ωP . We assume it is uniform across a thin layer of the same thickness as 

the metasurface, cellh , but we would like to avoid solving the homogeneous scattering problem so 
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we assume that it has (1) 0=χt , i.e. the layer is transparent at ω , and the whole scattering 

phenomena are now contained within (2)
effχt . In this case the problem is greatly simplified, and we 

may now simply write 2 (2)
eff 0 eff inc inc:ω ω ωε=P χ E Et , and consequently 

 2 1 (2)
FF UC eff inc inc:i c hω ω ωω −= −E χ E Et

, (A4) 

where UCh  is the unit-cell height. Substituting Eq. (A4) into (A3) we obtain, 

 
UC

2 (2) 2 (2)
inc eff inc inc UC UC UC

UC

1: ( ) ( ) : ( ) ( )
V

dV
V

ω ω ω ω ω ω⋅ = ⋅∫E χ E E E r χ r E r E rt t .  (A5) 

Expanding the left-hand side of Eq. (A5) in x - and y - polarization components and separating 

the corresponding fields in the right-hand side, we obtain, 

 
UC

2 (2) 2 (2)
inc, eff , inc, inc, UC ( ) UC ( ) UC ( )

UC

1 ( ) ( ) : ( ) ( )i ijk j k i j kV
j k j k

E E E dV
V

ω ω ω ω ω ωχ = ⋅∑ ∑∫ E r χ r E r E rt .  (A6) 

where , , { , }i j k x y= . Finally, equating the terms with the same indexes we obtain an elegant yet 

very powerful expression 

 
UC

UC( ) UC( ) UC( )(2) (2)
eff ,

UC inc, inc, inc,

( ) ( ) ( )1 ( ) :i j k
ijk V

i j k

dV
V E E E

ω ω ω

ω ω ωχ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫
E r E r E r

χ rt
. (A7) 

From Eq. (A7) it is evident that the each component of the nonlinear susceptibility tensor is 

equal to an overlap integral between the fields induced in a unit-cell by an i -polarized plane 

wave at 2ω  and a jk -polarization combination of the field at ω , weighted by a local value of 

the intrinsic susceptibility of the nonlinear medium and averaged over the unit-cell volume. By 
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altering the overlap integral we can engineer virtually any component (2)
eff , ijkχ  from any (2)

ijkχ . For 

instance, for a MQW-loaded unit cell, with only (2)
zzzχ  non-zero tensor element, we find that 

 
UC

2
UC( ), UC( ) , UC( ),(2) (2)

eff , 2
UC inc, inc, inc,

( ) ( ) ( )1 ( ) x z y z z z
xyz zzzV

x y z

E E E
dV

V E E E

ω ω ω

ω ω ωχ χ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫
r r r

r   (A8) 

Note that the indexes of the effective susceptibility tensor’s elements do not span over the z-

polarization. This is a consequence of the fact that in the derivation of (A7) we assumed normal 

incidence and radiation. In order to evaluate all the components of the (2)
effχt  tensor we need non-

zero inc,zEω  and 2
inc,zE ω  that can be achieved by allowing the impinging and radiated waves to 

propagate at small angles with respect to the z -axis and subtracting the field contribution of x- 

and y-components of the incident field. Finally, Eq. (A8) holds not only when the pump and 

generated signal come from the same side of the metasurface, but also for any particular 

configuration of incidence and radiation beams, as long as they are not too far from the z-axis. 

Appendix C. Transformation matrices calculation 

The inner product 1a a  appearing in transformations of amplitudes from the polarization basis 

1a  to the basis a  can be found by presenting each of these states through a Cartesian basis i  

with { , , }i x y z= , 

 0 1 1,a i a i= =Λ Λ , (C1) 

where 0Λ  and 1Λ  are corresponding transformation matrixes, 
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 0

1 0
1 1 0
2

0 0 2

i
i

⎡ ⎤−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ ,  (C2) 

 
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

cos cos sin cos sin cos sin
1 cos cos sin cos sin cos sin
2

2 sin cos 2 sin sin 2 cos

i i
i i

θ ϕ ϕ θ ϕ ϕ θ
θ ϕ ϕ θ ϕ ϕ θ

θ ϕ θ ϕ θ

⎡ ⎤+ − −
⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ .  (C3) 

Using (C1) we can write 

 
1 1

1 1 1 1

†

†
1 0 , 1 , 0 , 1 ,

† † †
0 , 1 , 0 , 1 , 1 0 , 0 1 ,

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] .

a j a i a j a i
j i i j

T
a j a i a j a i ij a a a a

i j i j

a a j i j i

j i δ ∗

⎛ ⎞
= = =⎜ ⎟
⎝ ⎠

= = = =

∑ ∑ ∑

∑ ∑

Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ Λ Λ
  (C4) 

Substituting (C2) and (C3) into (C4), we obtain 

 

1 1 1

1 1 1

1

1 1 1

1 1 1 1

1 1 1 ,

(cos 1) (cos 1) 2 sin
1 (cos 1) (cos 1) 2 sin
2

2 sin 2 sin 2cos

i i i

i i i

a a

e e e

a a e e e

ϕ ϕ ϕ

ϕ ϕ ϕ

θ θ θ
θ θ θ

θ θ θ

− − −

⎡ ⎤+ −
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 . (C5) 

Using a similar procedure, we can obtain the transformation matrix 2a a . However, since 1a  

and 2a  are defined in similar fashion, the matrix 2a a  can be obtained by taking the 

Hermitian adjoint of 1a a  and replacing “1” with “2”, 

 

2 2

2 2

2 2

2

2 2 2

2 2 2 2

2 2 2 ,

(cos 1) (cos 1) 2 sin
1 (cos 1) (cos 1) 2 sin
2

2 sin 2 sin 2cos

i i

i i

i i

a a

e e

a a e e

e e

ϕ ϕ

ϕ ϕ

ϕ ϕ

θ θ θ

θ θ θ
θ θ θ

−

−

−

⎡ ⎤+ − −
⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  (C6) 
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