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For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature
martensite phase to a high-temperature austenite phase. Despite considerable experimental and
computational work, basic questions regarding the stability of the phases and the martensitic phase
transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab ini-

tio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and
resolve several of these outstanding issues. Structural correlation functions and finite temperature
phonon spectra are evaluated to determine phase stability. We show that finite temperature, en-
tropic effects stabilize the experimentally observed martensite (B19’) and austenite (B2) phases
while destabilizing the theoretically predicted (B33) phase. Free energy computations based on
ab initio thermodynamic integration confirm these results and permit estimates of the transition
temperature between the phases. In addition to the martensitic phase transition, we predict a new
transition between the B33 and B19’ phases. The role of defects in suppressing phase transformation
temperatures is discussed.

I. INTRODUCTION

Shape memory alloys are materials that after defor-
mation recover their original shape upon heating. They
are technologically important for a wide range of appli-
cations, including actuators, shape-morphing wings and
next generation space suits, among others. Nickel Ti-
tanium (nitinol) is perhaps the best-known example in
this class of alloys and figures prominently in many com-
mercial applications. The shape memory effect in NiTi
is driven by a martensitic phase transition from a low
temperature martensite phase (B19’) to a high tempera-
ture austenite phase (B2).1,2 Many applications involving
shape memory alloys are tied to the specific value of the
martensitic phase transition temperature.3 Having the
ability to tune this transition temperature, for example,
through ternary additions in NiTi-based alloys,3–5 will
open the door to significantly more far-reaching applica-
tions. However, even for binary, equiatomic NiTi, which
is the simplest example in this class of materials, basic
questions regarding the stability of the phases and the
martensitic phase transition remain unclear. In this pa-
per, we resolve several of these important, outstanding
issues.

Experimentally, the high temperature austenite phase
of NiTi has the cubic B2 (Pm3̄m symmetry) structure.
The low temperature martensite phase has the mono-
clinic B19’ (P21/m symmetry) structure, with an exper-
imentally determined angle γ of 98◦.6,7 The transition
temperature between the two phases is reported to be
approximately 341 K.8 Relevant crystal structures are
shown in Fig. 1. Considerable computational work has

been performed to understand the phases of NiTi and
related materials. In particular, density functional the-
ory (DFT) studies9–22 have provided many insights into
the energetics and properties of NiTi; but they have
also generated new unanswered questions. For exam-
ple, DFT formation energies for B2 are in good agree-
ment with experiments;23–26 however, B2 is predicted to
be dynamically unstable at T = 0, i.e. certain phonons
modes have imaginary frequencies.27 Recent attempts us-
ing small systems to include finite temperatures effects
into B2 stability analyses have given contradictory re-
sults.28,29 On the other hand, B19’ at the experimental
monoclinic angle γ of 98◦ is dynamically stable at T = 0;
however, the computed structure is unstable to shear12.
Huang et al. determined the DFT ground state of NiTi
at T = 0 to be a new orthorhombic phase (B33) with an
angle of γ = 107.3◦.30 However, the B33 structure has
not been observed experimentally in NiTi and its crystal
symmetry (Cmcm) is incompatible with the shape mem-
ory effect, and therefore cannot represent the martensitic
phase of this material. Thus, after considerable compu-
tational analysis, we are in the unsatisfying position that
the two experimentally observed phases for NiTi have un-
determined stability; whereas the only computed stable
phase has never been observed and is incompatible with
the shape memory effect.

To address these discrepancies, we perform high accu-
racy, ab initio molecular dynamics (AIMD) simulations
based on density functional theory combined with ex-
tended thermodynamic integration methods to evaluate
the stability and relative free energies for the defect-free,
single crystal phases (B2, B19’, B33) of NiTi for a range
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FIG. 1. Phases of NiTi including B2 in its primitive, 2 atom cell as well as in a four atom cell that is analogous to the primitive
cells of B19’ and B33. The monoclinic angle, γ, is defined to be between the a and b lattice vectors.

of temperatures up to 900 K. These materials are strongly
anharmonic, and therefore, methods based primarily on
phonon analysis, even at finite temperatures, will not
capture the full behavior. This necessitates high accu-
racy computations of the free energy. We show that finite
temperature, entropic effects resolve many of the con-
troversies derived from previous studies, bringing com-
putation into much closer agreement with experiment.
Specifically, we show that entropic effects stabilize both
B2 and B19’ while destabilizing B33. Furthermore, the
martensitic transition temperature is estimated between
these stable phases. In addition, we also identify a new
phase transition between B33 and B19’.

II. METHODS

A. Finite Temperature Optimization

The free energy of the B33, B19’, and B2 phases were
optimized with respect to lattice parameters at tempera-
ture to produce structures having negligible stress. This
requires minimization of Helmholtz free energy, F , with
respect to the lattice vectors, Ω. For a generalized crys-
tal, Ω is given by

Ω =





ax bx cx
ay by cy
az bz cz



 , (1)

where the lattice vectors are a = (ax, ay, az), b =
(bx, by, bz), and c = (cx, cy, cz).

The value of ∂F
∂Ω can be written as in terms of Ω and

the stress tensor, σ. The free energy of the system in the
canonical ensemble is given by

F = −β−1ln(Z), (2)

where Z is the partition function and β−1 is equal
to the product of the Boltzmann constant and tem-
perature. The partition function is given by Z =
∫

ΠN
i=1dridpie

−βH, where
∫

ΠN
i=1dridpi... represents the

integral over phase space. The Hamiltonian, H, describ-
ing this system is

H =
N
∑

i=1

pi · pi

2mi

+ U({ri}), (3)

where pi and mi are the momentum and mass of particle
i, the summation in the first term is taken over the N
atoms in the system, and U is potential energy, which is
determined by the set of all atomic positions {ri}. The
derivative of F with respect to Ω is given by

∂F

∂Ω
= −β−1 1

Z

∂Z

∂Ω
. (4)

One may expand the derivative of Z with respect to
Ω by performing a canonical transformation on r and p,
such that

ri = Ωρi

pi = πiΩ
−1,

(5)

where ρi are reduced coordinates, πi are transformed mo-
mentum, and a superscript “-1” indicates the inverse ten-
sor. This transformation preserves the dynamics derived
from the Hamiltonian and leads to the partition function
being written as

∫

Πidπidρie
−βH({πi},{ρi}). The free en-

ergy expression in Eq. 4 then reduces to

∂F

∂Ω
=

〈

∂H({πi}, {ρi})

∂Ω

〉

, (6)

where 〈...〉 denotes the ensemble average. The trans-
formed Hamiltonian is given by

H =

N
∑

i=1

1

2mi

(πiΩ
−1) · (πiΩ

−1) + U({Ωρi}). (7)

The derivative of H with respect to Ω may then be writ-
ten as

∂H

∂Ω
=

N
∑

i=1

1

mi

(πiΩ
−1) ·

∂(πiΩ
−1)

∂Ω
+

N
∑

i=1

∂U

∂(Ωρi)
·
∂(Ωρi)

∂Ω
.

(8)
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Employing vector-matrix manipulations, one may rear-
range Eq. 8 as

∂H

∂Ω
= −

N
∑

i=1

1

m
(πiΩ

−1)⊗(πiΩ
−1)Ω−T −

N
∑

i=1

fi⊗ρi, (9)

where f is force, ⊗ is the outer product operation, and
“−T ” indicated the transpose of the inverse. Transform-
ing back to p and r leads to

∂H

∂Ω
= −

N
∑

i=1

1

mi

(pi ⊗ pi)Ω
−T −

N
∑

i=1

(fi ⊗ ri)Ω
−T . (10)

The quantity given by −
∑N

i=1{
1
m
(pi ⊗pi) + (fi ⊗ ri)} is

the product of the absolute value of the determinant of
ΩT , or volume, with the stress tensor, |detΩT |σ. Using
these relations with Eq. 6 leads to the final expression for
the derivative of free energy,

∂F

∂Ω
= |detΩT |(σΩ−T ). (11)

For the systems in the present work, the derivative
of free energy with respect to cell was minimized iter-
atively. This entailed performing AIMD simulations to
obtain average stresses and altering the cell according to
Ωk+1 = Ωk − α∂F

∂Ω , where k is an iteration index and α
is a constant parameter. The stresses employed for op-
timization were averaged over 3 ps AIMD simulations,
and a value of 2×10−4 was used for α. The optimization
procedure was iterated until all components of the stress
tensor were < 1 kbar.

B. Phonon Dispersions

Zero-temperature phonon dispersions were obtained
from the frozen phonon approach using displacements of
0.01 Å. We use the Phonopy software package to plot the
phonon dispersions along particular crystal directions.31

Imaginary frequencies are indicated with negative num-
bers.
To obtain phonon dispersions at finite temperature,

we applied the temperature dependent effective potential
(TDEP) technique developed by Hellman and cowork-
ers.32,33 The TDEP procedure fits the elements of the
force constant matrix (Dij) to the forces (fi) and dis-
placements (ui) generated from a MD simulation. The fit
is carried out by performing a least square minimization
of the difference between fi and the force as described in
the harmonic approximation.
The force as given by the harmonic approximation, f̃i,

is represented as

f̃i =
∑

j

Dijuj . (12)

The quantity that is minimized, S, is then given by

S =
∑

t,i

(f t
i − f̃ t

i )
2, (13)

where the summation is performed over all i atoms and t
timesteps. In the present work, temperature dependent
phonons were computed by fitting force data from 50 ps
AIMD simulations. The force constant matrix was then
symmetrized in accordance with the crystal structure.

C. Free Energy

1. Generalized Stress-Strain Method

If a transformation between two given phases can be
continuously and reversibly induced via changes in lat-
tice parameter, one may apply the principle of thermody-
namic integration to obtain changes in Helmholtz free en-
ergy with respect to changes in the lattice vectors. When
applicable, this powerful technique yields both the differ-
ence in Helmholtz free energy, ∆F , between the phases as
well as the profile of ∆F as a function of lattice param-
eter. An important case of such a procedure has been
described in detail for the case of the constant volume
bcc→fcc Bain path.34 We here generalize this formalism
to treat the variable volume deformation of any cell. In-
corporation of variable volume allows for a transforma-
tion path between two stable phases at a given temper-
ature but different volumes, which is the case for the
martensitic transformation.
This transformation between phases can be effected

by defining Ω to be dependent on a mixing parameter,
λ, that linearly changes Ω from an initial state to a final
state, or Ω(λ) = Ω0−λ(Ω0−Ω1). The values of Ω at λ =
0 and 1 correspond to structures of stable phases, Ω0 and
Ω1, respectively. Through the use of Eq. 4, the free en-
ergy change upon such a deformation may be represented
as

∆F = −β−1

∫ 1

0

1

Z

∂Z

∂λ
dλ = −β−1

∫ 1

0

1

Z

∂Z

∂Ω
:
∂Ω

∂λ
dλ,

(14)
where ∂Z

∂Ω and ∂Ω
∂λ

are both tensors and “:” denotes the

Frobenius inner product (i.e.,
∑

ij
∂Z
∂Ω ij

∂Ω
∂λ ij

). The free

energy expression in Eq. 14 further reduces to

∆F =

∫ 1

0

〈

∂H(π,ρ)

∂Ω

〉

:
∂Ω

∂λ
dλ. (15)

Using Eq. 10 with Eq. 15 leads to the final expression for
free energy,

∆F =

∫ 1

0

Vλ

[

(σΩ−T ) :
∂Ω

∂λ

]

dλ, (16)

where Vλ is defined as |detΩT |.
In terms of NiTi, both the B33→B19’ and the

B19’→B2 phase transformations can be reversibly ef-
fected through changes in lattice parameter alone. The
transformations as a function of Ω are furthermore con-
tinuous, as both atomic coordinates and the stress tensor
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vary smoothly. The generalized stress strain technique
was applied here as a function of temperature between
the B33 and B19’ phases as well as between the B19’
and B2 phases. The integral in Eq. 16 for each phase
transformation was taken over 11 values of λ, or a 0.1
spacing. The stresses needed for application of Eq. 16
were obtained from 5-10 ps AIMD simulations. Where
applicable, the procedure is applied between stress free
phases, which results in the difference of F between the
phases being equivalent to the Gibbs free energy (G) dif-
ference.

2. Einstein Crystal Method

One may use the principles of thermodynamic inte-
gration to obtain the total free energy of a phase repre-
sented with DFT. This requires the definition of a refer-
ence crystalline phase, similar in structure to the phase
as represented by DFT, with a known free energy. The
free energy difference between the reference and DFT
representations of the phase, FDFT − F ref , is given as

FDFT − F ref =

∫ 1

0

〈

∂U

∂λ

〉

λ

dλ. (17)

The potential energy, U , is given by U ref − λ(U ref −
UDFT) and the value of λ smoothly transitions the po-
tential from U ref at λ = 0 to UDFT at λ = 1. The ther-
modynamic average of ∂U

∂λ
for various values of λ may be

obtained with AIMD simulations using the mixed poten-
tial.

The prototypical example of a reference system is the
Einstein crystal, where atoms are anchored to fixed co-
ordinates with a single spring constant. However, as the
most desirable reference potential is one that closely ap-
proximates the DFT, the Einstein crystal, however, is
a generally poor choice for U ref .34 Alternatively, one
may improve the accuracy of the reference system by
employing the full force constant matrix, provided the
phonons are real. For NiTi, the B2 phase is unstable
at 0 K, resulting in negative vibrational modes, which
means the 0 K force constant matrix is not a suit-
able reference. To solve this problem, we employ the
temperature-dependent force constant matrix as deter-
mined from AIMD simulations and the TDEP procedure
previously described. Our reference system, then, takes
the form

U ref =
1

2

∑

i,j

uiDijuj, (18)

where the displacements, u, are referenced to the tem-
perature averaged atomic coordinates. This approach is
highly accurate and allows the integration in Eq. 17 to
be performed using a λ spacing of 0.25.

D. Density Functional Theory Simulations

Simulations are performed with the Vienna Ab Ini-

tio Simulation Package (VASP)35–38 using the frozen
core all-electron projector augmented wave method
(PAW)39,40 and the generalized gradient approximation
of Perdew, Burke, and Ernzerhof.41 All AIMD simula-
tions employ an energy cutoff of 269.5 eV, an electronic
energy convergence criteria of 1×10−7 eV, a time step of
3.0 fs, and∼3000 k-points per reciprocal atom (KPPRA).
Furthermore, electronic smearing is handled through the
Methfessel-Paxton scheme42 with a smearing width of
0.05 eV, and the computations are not spin polarized.
For both Ni and Ti the 3d94s1 and 3d34s1 electrons,
respectively, are included in the valence. This valence
configuration was found to produce free energy results
within 1 meV/atom agreement with simulations employ-
ing smaller cores that include the 3p6 electrons in the
Ni and Ti valences. Computations are performed on 144
atom supercells, using the four atom unit cell, which were
found to be free of vibrational size effects. Temperature
is controlled through the use of a Langevin thermostat
with a simulation-time equivalent friction factor of 100
fs.

E. Convergence Tests

We perform a thorough set of tests to ensure our results
are converged with respect to DFT parameters, pseu-
dopotential and simulation cell size. We consider the
convergence of both T=0 K DFT energies as well as fi-
nite temperature free energies with respect to increas-
ing KPPRA and Ec. Similarly, we assess the impact of
the pseudopotential valence configuration on the accu-
racy of the simulation by considering pseudopotentials of
decreasing core sizes, i.e. increasing number of valence
electrons. Finally, simulation cell size effects were evalu-
ated by examining the convergence of finite temperature
phonon spectra. We found that phonon spectra are espe-
cially sensitive to finite size effects and must be converged
carefully to obtain reliable results.
For DFT parameters, we consider convergence with

respect to the number of KPPRA and the value of Ec,
though energetic convergence with respect to additional
factors is examined in the Supplementary information
(Tables S1 and S2 and Figs. S1-S3). In particular, con-
vergence of the T=0 K potential energy difference be-
tween B2 and B19’ (∆E) with respect to these parame-
ters is provided in Fig. S1 of the Supplementary infor-
mation. The level of accuracy is varied from that em-
ployed in our AIMD simulations (∼3000 KPPRA and
Ec = 268.5 eV) to higher levels. We see that increasing
the number of KPPRA from 3000 to 42000 leads to a
1 meV/atom increase in ∆E. Conversely, increasing Ec

up to 700 eV leads to only a slight decrease in energy
between the B2 and B19’ phases.
To extend our DFT parameter tests to finite temper-
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FIG. 2. Free energy as a function of normalized monoclinic
angle (90-γ)/(90-γB19’) between B2 and B19’ as determined
by the stress-strain method for various levels of numerical
accuracy, given in brackets as (KPPRA,Ec) and different va-
lence configurations. The default configuration is a 3x2x2 su-
percell using the 4-atom unit cell representation (48 atoms),
the 3d84s2 valence for Ni and the 3p63d24s2 valence for Ti, a
plane-wave energy cutoff of 269.5 eV, and 10080 KPPRA.

ature systems, we have applied the generalized stress-
strain method to obtain the free energy profile as a func-
tion of γ between the B19’ and B2 phases at various val-
ues of KPPRA and Ec. These tests employ a small 3x2x2
supercell composed of 4 atom unit cells (48 atoms) and
are performed at 300 K, and the results are taken with re-
spect to the free energy of the B2 phase. The free energy
profiles, given in Fig. 2, show that varying the number
of KPPRA from 3072 to 16464 and Ec from 269.5 to 500
eV leads to a negligible change in the free energy differ-
ence between B2 and B19’ (∆F ), equivalent to the value

at γB19′ . In particular, the barrier between the phases
is more sensitive to these changes and varies by up to
2 meV/atom range depending on accuracy. Our results
suggest that ∆F is less sensitive to simulation accuracy
than the 0 K ∆E values.

The influence of pseudopotential valence configuration
on the energetics as a function of normalized γ (90◦ and
107.3◦ correspond to B2 and B33) are shown in Fig. S2
of the Supplementary information. The smallest valence
considered is the 3d84s2 for Ni and the 3d24s2 for Ti,
while the largest is the 3p63d84s2 for Ni and 3s23p63d24s2

for Ti. One may note the oscillatory approach to conver-
gence, where adding the 3p electrons to the Ni valence
leads to a 3.7 meV/atom decrease at B33, which is at-
tenuated by increasing number of Ti valence electrons.
The energy of B33 using the smallest valence deviates
from that of the largest valence by 2.4 meV/atom. It
appears that the systems are converged with respect to
the Ti valence, where the additional 3s electrons do not
further alter the energy. Though valence configurations

including Ni 3s electrons were not investigated, it is un-
likely that deeper electron states will significantly alter
the energetics. The smallest valence is also differentiated
from the others in that it yields a stable B19’ phase while
the others yield no energy minima aside from B33. This
result parallels the calculations shown in the Supplemen-
tary information (Table S1), where potentials with small
valences are shown to produce phases that are not stable
when calculated with larger valences.

Because of the computational expense, we use the
smallest valence configuration pseudopotential for the
MD simulations. To understand the influence of this
choice of valence on the free energy, we show the free
energy profile as a function of γ as obtained from our
small 48 atom supercell between the B2 and B19’ as a
function of normalized γ for different valence configura-
tions at 300 K in Fig 2. Three valence configurations
were tested: the smallest configuration with only 3d and
4s electrons, one including the 3p electrons of Ti, and
one including the 3p electrons of both Ni and Ti. As
with our assessment of numerical accuracy, we again find
only minor differences in ∆F between the B2 and B19’
phases. The largest differences in the free energy profiles
occur for intermediate interpolated cells, which vary in
free energy by up to 2.5 meV/atom at a given value of
γ, similar to the variation noted for changes in KPPRA
and Ec.

The primary outcome of the numerical and valence size
tolerance tests is that errors in 0 K ∆E values do not cor-
respond, necessarily, to errors in temperature dependent
∆F values. In fact, the ∆F appears to be relatively in-
sensitive to all tested changes in numerical accuracy. To
expand upon this, we have evaluated ∆E at finite tem-
perature between the B2 and B19’ phases employed to
generate the free energy curves in Figs. 2. We have found
for all cases that ∆E varies by less than 1 meV/atom for
each numerical or valence configuration. This implies
that the noted errors in ∆E at 0 K for a given level
of accuracy can be reduced through thermal effects. In
particular, anharmonicity, which leads to temperature-
dependent deviations in average potential energy from
harmonic expectations, could reduce the sensitivity of fi-
nite temperature ∆E and ∆F to simulation accuracy.

The noted anharmonic effects are largely a product of
phonon scattering. For AIMD simulations using small
systems with periodic boundaries, anomalous phonon
self-interactions can dramatically alter the nature of an-
harmonic effects on the system. It is thereby necessary
to ensure that such effects are sufficiently converged with
respect to system size. An evaluation of the depen-
dence of the phonon dispersion with respect to super-
cell size at 0 K was performed for all phases, as given in
Figs. S4-S6 of the Supplementary material. The result-
ing phonon dispersions are relatively insensitive to su-
percell size, though the B2 acoustic modes near Γ show
slight sensitivity along the M→ Γ direction. The vibra-
tional modes of B33 and B19’ are real, indicating that
the phases are stable at 0 K. On the other hand, the TA
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6x6x6 (432 atoms) supercells of B2 at 600 K.

mode of B2 exhibits several imaginary (given as negative)
frequencies both at M and along the Γ →R→X direction.
To examine the influence of size dependent anharmonic
effects on B2, we perform a limited set of AIMD simula-
tions on the 3x3x3 (54 atoms), 4x4x4 (128 atoms), and
6x6x6 (432 atoms) supercells of B2 at 600 K and use the
TDEP approach to characterize the vibrations, as given
in Fig. 3. At the 54 atom size, the imaginary modes
centered on the M-point are present, indicating instabil-
ity. For the larger 128 and 432 atom cells, the imaginary
modes are not present, and the B2 phase appears to be
stable. We therefore use systems similar in size to the
128 atom cell for our AIMD simulations to avoid error in
the vibrational dispersion. For the 4 atom unit cell, this
corresponds to a 4x3x3, or 144 atom, supercell, which
is employed in the majority of this work. Simulations
using this supercell size are computational tractable and
provide vibrational accuracy comparable to larger super-
cells.

III. RESULTS

A. Phase Stability

For B2, B19’, and B33, we consider phase stability
from several complementary viewpoints. For each case,
the lattice vectors of the AIMD simulation cells are op-
timized such that all finite temperature components of
the stress tensor are zero. This procedure not only ac-
counts for thermal expansion, but also places the sys-
tem at a critical point on the free energy surface, im-
plying elastic stability. We also examine deviations of
the crystalline structure from ideality during the course
of the simulations in these optimized cells. Structural
evolution is evaluated quantitatively with: (1) normal-
ized position correlation functions (NPCFs) 43 and (2)
atomic displacement scatter diagrams.44 The NPCF is
proportional to

∑

i〈(ri(t− t0)−R0
i ) · (ri(t0)−R0

i )〉 where

ri(t) are the atomic trajectories from the AIMD simula-
tion, R0

i is the ideal reference lattice vectors of interest
and the brackets are ensemble averages. For long times
(t → ∞), vibrational motion becomes uncorrelated, and
therefore, NPCF → 0 indicates stabilization with respect
to the reference lattice whereas nonzero values indicate
the converse. Atomic displacements are plotted relative
to the reference structures on scatter diagrams. Signif-
icant deviations from zero displacement signal an insta-
bility. Finally, the temperature dependent phonon dis-
persions are computed using the TDEP method. The
presence of imaginary modes indicate instability.

Concerning the temperature dependent structure op-
timization, the value of γ for B19’ and B33 is allowed to
change to produce negligible shear stress, while γ is held
90◦ for B2. The value of γ is sensitive to temperature for
B19’, while it remained near 107.3◦ for B33. Barrierless,
and spontaneous, B33→B19’ and B19’→B2 transitions
were found upon optimization at critical temperatures
of 400 K and 800 K, respectively, which represent up-
per temperature bounds to stability. For simulations on
these phases at and above the critical temperature, ge-
ometry optimization was performed with γ for B33 and
B19’ being held to the terminal values of 107.32◦ and
97◦, respectively.

Both NPCFs as well as atomic displacement scatter
plots are shown in Fig. 4 for 144 atom cells of B33, B19’,
and B2. Fig. 4a, b, and c, shows very different behavior
for the three phase at different temperatures. For B33,
the NPCFs indicate structural stability at lower temper-
atures, 50 K and 300 K, but instability for T > 300 K.
Convergence times at 300 K are almost two orders of
magnitude larger than at 50 K. This may indicate the
proximity of a stability transition for B33. Interestingly,
the B19’ phase loses its T = 0 non-zero shear stress
even at low T and maintains its ideal configuration up to
700 K. Perhaps most striking is that while the B2 struc-
ture is unstable at 50 K, it stabilizes for T ≥ 300 K.
Unlike B33, the NPCF convergence rates for B2 increase
with increasing temperature.

The atomic displacements scatter plots for B2, B19’,
and B33 are shown in the overlay plots in Fig. 4a, b, and
c, respectively. For each case, displacements are pro-
vided for 50 K (blue circles) and 600 K (red squares).
At low temperatures, B33 displacements are negligible;
however, at high temperatures, large displacements on
the order of 0.5 Å can be seen in the a direction. Dis-
placements in a result from thermally induced motion
along the [100](011) stacking fault, which previously has
been shown from DFT calculations to be important for
the martensitic transition.9,10 At low and high tempera-
tures, the B19’ phase exhibits only minor displacements,
∼ 0.05 Å. The B19’ displacements do not show any par-
ticular ordering and can most likely be attributed to vi-
brational motion, as indicated by the loss of correlation
in the NPCF. The B2 phase at low temperatures shows
large displacements ∼ 0.4 Å from ideality. At higher
temperatures, however, these displacements largely van-
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FIG. 4. Normalized position correlation function (NPCF) and
scatter plots of average atomic displacements from ideal po-
sitions along the a (∆ra) and b (∆rb) lattice vectors for (a)
B2, (b) B19’, and (c) B33. The NPCFs are given for the
144 supercell at 50, 300, and 600 K and differentiate between
stable (NPCF(∞) ∼ 0) and unstable (NPCF(∞) ∼ 1) struc-
tures. For all cells, scatter plots are given for the lowest tested
temperature of 50 K (blue circles) and 600 K (red squares).

ish, as seen in the tight clustering near the origin. Both
the NPCF and the atomic scatter plots indicate that for
T > 300 K, the high temperature phase of NiTi is very
closely approximated by ideal B2.

Phase stability is further investigated by explicit
computation of temperature-dependent phonons as de-
rived from the AIMD simulations.32,33 Imaginary phonon

modes (represented as negative numbers) indicate the
crystal structure is dynamically unstable, i.e. it is not
a local minima of the energy. Phonon spectra are shown
in Fig. 5 at both zero-temperature and at 600 K. It is
important to note that these results are very sensitive
to cell size, and as mentioned before, using sufficiently
large cells is crucial to obtain reliable results. The B33
phase, given in Fig. 5a, develops imaginary modes at
600 K through the lowering of the TA mode along the
Γ → A direction. The presence of imaginary frequencies
for long wavelength modes indicates loss of elastic sta-
bility, which drives B33→B19’. Phonon dispersions for
the B19’ phase show stability across the full temperature
range investigated, as given in Fig. 5b. Most dramati-
cally perhaps, the imaginary modes reported for the B2
T = 0 K phonon dispersion lift and become positive at
300 K, as shown in Fig. 5a, indicating stabilization of this
phase, consistent with the structure analysis of Fig. 4.
The stress tensor, structure, and phonon analyses pro-

vide a complementary picture of the temperature depen-
dent stability of the three phases that is consistent with
experiment. Namely, stable phases at a given tempera-
ture exhibit the following properties: all components of
the stress tensor (normal stresses and shears) are on av-
erage zero; the NPCF goes to zero in finite time; and
all phonon modes are positive. Though shown for a rep-
resentative set of temperatures here, these analysis were
performed for all cells between 50 K and 900 K is regular
intervals of 50 K. Our results along the entire temper-
ature range show that finite temperature, anharmonic
effects stabilize the high-temperature B2 phase at and
above 300 K. The low-temperature B33 phase is progres-
sively destabilized, fully losing stability near 200 K. The
B19’ phase, on the other hand, is unstable to shear at
T = 0 but exhibits full stability from 50 K up to 700 K.

B. Free Energy Computations

To obtain further insights into phase stability as well as
transitions between the phases, we compute the relative
free energies of the phases. Vibrational entropy is fre-
quently evaluated via the quasi-harmonic approximation
(QHA). However, stability issues at T = 0 invalidates
this approach for B2 due to the appearance of imaginary
phonon modes. Alternatively, stable, finite temperature
phonon spectra can be used with the QHA expressions
to obtain entropy estimates. However, for strongly an-
harmonic phases, such as B2 NiTi, this approach is not
expected to be a good approximation to the full anhar-
monic free energy. Strongly anharmonic systems warrant
the use of high accuracy methods for computing free ener-
gies. For this reason, we use two different methods based
on thermodynamic integration to compute the free ener-
gies.
Our first approach is a generalization of the stress-

strain methods developed previously for transition met-
als.34 Those methods based on Bain path integration are



8

0

2

4

6

8

10
B

2
 F

re
q
u
e
n
c
y
 (

T
H

z
)

    0 K

300 K

� X M � R X M R

-2

0

(a)

B ✁ Y A ✁ E Z ✁

0

2

4

6

8

10

B
1
9
’ 
F

re
q
u
e
n
c
y
 (

T
H

z
)

    0 K

900 K
(b)

B ✂ Y A ✂ E Z ✂

0

2

4

6

8

10

B
3
3
 F

re
q
u
e
n
c
y
 (

T
H

z
)

    0 K

600 K
(c)

FIG. 5. Phonons of the (a) B2, (b) B19’, and (c) B33 phases
of NiTi at 0 K (blue, dashed line) and 600 K (red, solid line).
Temperature-dependent phonons are extracted from simula-
tions using the 144 atom supercell.

necessarily volume conserving; however, many systems
of interest including NiTi do not conserve volume be-
tween the phases. As previously described, we gener-
alized that approach to account for arbitrary cell and
volume changes in an exact way. Our generalized stress-
strain method requires a well defined, continuous path in
lattice vector space between the two given phases. For
NiTi, the monoclinic angle, γ, provides a natural, con-

tinuous parameter to connect the three phases of interest
shown in Fig. 1. In general, multiple paths can be consid-
ered; however, the B33→B19’→B2 path was determined
to be the best behaved and is equivalent to motion along
the 〈100〉{110} generalized stacking faults. Spontaneous
motion along this fault was found in the high temper-
ature B33 phase during structural stability tests. The
B33→B19’ path is largely a transformation in γ-space,
as the lattice vectors are of comparable magnitude, while
the B19’→B2 path involves non-trivial changes to both
γ as well as the lattice vectors. Optimization of the sim-
ulation cells to obtain zero stress is required to ensure
the obtained free energy differences, which are Helmholtz
free energy differences, are equivalent to Gibbs free en-
ergy differences. We find the internal atomic coordinates
for the 144 atom cell for this path to transform contin-
uously and that the stresses converge rapidly (< 10 ps)
(see Supplemental Fig. S7). It should be noted that
while free energy differences between stable phases can
be rigorously computed, evaluation of free energies dif-
ferences involving unstable structures is still an area of
active investigation. Therefore, free energies involving
unstable structures may contain some systematic error
as discussed recently.45
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FIG. 6. Profile of 〈∂U/∂λ〉 at 300 K as a function of λ for B2,
B19’, and B33. Results are shown for 300 K and a 4x3x3, 144
atom supercell. Larger differences between derivative values
at λ = 0 and 1 signify more anharmonic character.

Our second approach uses the Einstein crystal method
to compute free energy differences at isolated points
along the transformation paths. These computations
were used to check the stress-strainmethod and were only
performed at free energy mimina along the transforma-
tion path. The reference harmonic free energy is obtained
from the force constants associated with the temperature
dependent phonon dispersions. This approach overcomes
difficulties in using T = 0 K phonon dispersions with
imaginary modes. For each stable crystal at a given tem-
perature, thermodynamic integration is performed from
the system described by the harmonic reference potential
to the one described by DFT.
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The strongly anharmonic nature of these materials can
be seen by considering the integrand for the Einstein
crystal integral, 〈∂U/∂λ〉, as a function of the potential
energy mixing parameter, λ. This quantity is provided
in Fig. 6 for all phases at 300 K. The harmonic nature
of B33 and B19’ can be seen from the minor variation
in ∂U/∂λ over the λ range, suggesting the major anhar-
monic correction to the harmonic free energy is simply
a constant shift. The large variation of ∂U/∂λ for B2,
on the other hand, results from its highly anharmonic
character. The anharmonic contribution to the free en-
ergy for B2 is on the order of 3− 5 meV/atom compared
to the harmonic reference free energy. These nontrivial
anharmonic contribution to the free energy can shift the
transition temperature by as much as 100 K and thus
confirms the need for high accuracy methods to study
these systems.

FIG. 7. Helmholtz free energy along the γ reaction coordi-
nate as a function of temperature. (a) The free energy profile
along the γ reaction coordinate for 0, 50, 300, and 600 K.
Filled symbols and lines are obtained through the general-
ized stress-strain method, while open symbols are provided
for free energy minima using the Einstein crystal approach.
Error bars for the Einstein crystal method are < 1 meV/atom
and not visible at the present scale. (b) Free energy color map
as a function of temperature and γ. Regions of low free energy
are given as blue, while regions of high free energy are given
as red. White lines describe stability basins and also indicates
the temperature dependence for the B19’ monoclinic angle.

Free energy results using the generalized stress-strain
method at 0, 50, 300, and 600 K are given in Fig. 7a as a

function of γ. Einstein crystal results are shown as open
symbols. Agreement between the methods is excellent
(≤ 1 meV/atom). The T = 0 curve reproduces previous
DFT results, and clearly shows that B2 and B19’ are not
energetic minima whereas B33 is a stable minimum, as
reported by Huang et al.30 We see that the free energy
surface changes considerably as a function of tempera-
ture. Between B33 and B19’, a small but distinguishable
barrier develops between the phases for T = 50K−300K.
Above 600 K, however, the free energy is monotonically
decreasing from B33 to B19’. Importantly, B19’ develops
a clearly defined free energy minima above 50 K. Thus,
B19’ is entropically stabilized and develops into a sepa-
rate phase distinct from B33. The B2 phase is unstable
to transitions to B19’ until 300 K, above which a free
energy barrier develops stabilizing this phase as a local
minima. These results are consistent with the structural
and phonon analysis.

Further detail is provided by Fig. 7b where free energy
differences relative to the most stable phase are mapped
as a function of T and γ. Blue and red represent small
and large free energy differences, respectively. The free
energies are again derived from the generalized stress-
strain method. The free energy map illustrates the sta-
bility regions associated with each of the phases: B33,
B19’, and B2. White circles indicate stable points of
each phase, i.e. all finite temperature stresses are zero
and all finite temperature phonons are real and positive.
Thus each white circle represents a stable, free energy
minimum for that phase and the white lines denote the
extent of the stable free energy basins. Free energy and
stability results are provided for 50 K as well as between
0 and 900 K in steps of 100 K. The regions of stabil-
ity for each phase are found to be 0 < T < 200 K for
B33, 50 < T < 700 K for B19’, and T ≥ 300 K for B2.
Interestingly, the B19’ angle is shown to be a function
of temperature, ranging from ∼ 100◦ at 50 K to ∼ 98◦

at 600 K. Furthermore, the stable basin of B19’ is rel-
atively shallow suggesting that γ values for this phase
might be fairly sensitive to small changes in stress. This
could be important as stress fields associated with de-
fects could potentially alter the value of γ quoted here.
The free energy results allow us to estimate the phase
transition temperatures. In particular from Fig. 7, the
transition between B33 and B19’ clearly occurs between
50 and 300 K. The B19’→B2 free energy path is uphill
until 600 K, indicating that a transition occurs between
300 and 600 K.

Differences in the Gibbs free energy (∆G), as derived
from the Helmholtz free energy differences between the
stress-free stable phases, are given in Fig. 8 as a func-
tion of T . A free energy difference of zero indicates the
phase transition temperature. For the B33 to B19’ tran-
sition, ∆G becomes zero at 75±26 K. For B19’ to B2,
∆G goes to zero at 500±14 K. The larger error for the
low-T transition is a function of the slope of ∆G and
the target accuracy of 1 meV/atom. The low values
for the B33→B19’ transition temperature explains the
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lack of experimental evidence for B33, despite being en-
ergetically favored at 0 K. If B33 becomes unstable at
low temperatures, it may be difficult to synthesize and,
therefore, to observe. The B19’→B2 transition temper-
ature is roughly 150 K above the experimental value of
341 K.8 However, the methods used to obtain this value,
based on ab initio thermodynamic integration, are nu-
merically exact to within the accuracy of DFT. There-
fore, we expect it to be a reliable estimate of the marten-
sitic transition temperature for defect-free, single crystal
NiTi. The non-trivial difference with experimental val-
ues is most likely due to defects that have been shown
to suppress transition temperatures in this and related
materials.46 This also suggests that improved processing
resulting in higher material quality could produce ma-
terials with higher measured transition temperatures. In
addition, it is also known that the transition temperature
is dependent on the heating and cooling rates with slower
rates giving higher transition temperatures. As we use
equilibrium methods to estimate this temperature, our
results correspond effectively to infinitely slow rates. For
that reason, we expect them to be an upper bound for

the experimental transition temperature.

IV. CONCLUSIONS

We have performed a comprehensive computational
analysis based on ab initio molecular dynamics of the sta-
bility and transitions between the major phases of NiTi:
B2, B19’, and B33. Considerable previous computational
analysis based mainly on T = 0 DFT resulted in signifi-
cant discrepancies between experiment and computation.
We have shown that by including temperature dependent
entropic effects into the computations, many of these dif-
ferences can be resolved. We show that B2 and B19’ are
stabilized due to these entropic effects, whereas B33 is
destabilized. These materials are shown to be highly an-
harmonic. Anharmonic contributions to the free energy
can shift the transition temperature by as much as 100K
and thus necessitates the need for high accuracy or exact
methods to study these systems. We develop a general-
ized stress-strain method to perform such computations.
The phase transition temperature between B2 and B19’
is computed to be approximately 500 K for defect-free,
single crystals which is about 150 K above experimental
results. Defects and non-equilibrium rate effects are ex-
pected to suppress the transition temperature and bring
it more into line with experiments.46 This also suggests
opportunities to obtain higher transition temperatures
with current materials by improved material processing.
A new phase transition in this material is identified be-
tween B33 and B19’ at a computed transition temper-
ature of 75 K. High temperature destabilization of B33
and the corresponding low transition temperature to B19’
could explain why B33 has not yet been observed exper-
imentally. Defects could affect this transition as well.
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