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Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal

at the evolving dislocations pile-up have been studied utilizing phase field approach (PFA).

The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and

mechanics at large strains is presented and solved using finite element method (FEM). The

nucleation pressure for high pressure phase (HPP) under hydrostatic condition near single

dislocation was determined to be 15.9 GPa. Under shear, a dislocations pile-up that appears

in the left grain creates strong stress concentration near its tip and significantly increases the

local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pres-

sure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP.

When dislocations are considered in the transforming grain as well, they relax stresses and

lead to a slightly smaller stationary HPP region than without dislocations. However, they

strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary

HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which

do not contain contributions from plasticity and surface energy. These equilibrium conditions

are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of

stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity

of stress fields. The major part of the driving force for PT in the stationary state is due to

deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to

nucleate HPP linearly decreases with increasing the applied pressure, the least corresponding

shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coeffi-

cients for PT and dislocations affect stationary solution and nanostructure. Consequently,

there are multiple stationary solutions under the same applied load and PT and deformation

processes are path dependent. With an increase in the size of the sample by a factor of two,
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no effect was found on the average pressure and shear stress and HPP nanostructure, despite

the different number of dislocations in a pile-up. Obtained results represent a nanoscale basis

for understanding and description of PTs under compression and shear in rotational diamond

anvil cell and high pressure torsion.

I. INTRODUCTION

A. Interaction between PTs and plasticity at the microscale

Understanding of interaction between martensitic PTs and plasticity is one of the most funda-

mental problems in solid-solid PTs, see [1] and reviews [2, 3, 4, 5, 6, 7]. Dislocational plasticity

significantly changes PT thermodynamics, nucleation and growth kinetics, microstructure, and

even type of PT. For example, from one side dislocations relax elastic stresses that appear due

to heterogeneous distribution of the transformation strain, which promotes PT [2, 4, 6, 8]. From

the other side, dislocations produce an athermal threshold for interface propagation and can

arrest growth of martensite and lead to morphological transition from plate to lath martensite

[1, 2, 9]. This interaction is the basis for many applications in material science and technology.

In particular, the transformation-induced plasticity phenomenon (see review [10]) can be used

to obtain a desired combination of high strength and ductility in steels and ceramics [1]. Heat

and thermomechanical treatments of materials are used for obtaining proper microstructure

and physical properties.

At the microscale, PTs in elastoplastic materials were investigated in [3, 11, 12, 13, 14] using

the principle of the minimum of Gibbs free energy (similar to PT in elastic materials) and sharp

interfaces, while plasticity was described within continuum flow theory for an isotropic material.

However, due to plastic dissipation and athermal interface friction, this principle cannot be

applied to elastoplastic materials; interfaces are arrested before the energy minimum is reached.

This problem was resolved in [15, 16, 17, 18, 19]. Utilizing the postulate of realizability [18,

19, 20, 21], an extremum principle for determination of all nucleus parameters (like position,

orientation, shape, and internal structure) was derived, which is applicable for elastoplastic

materials and takes into account athermal interface friction. For thermally activated nucleation

obeying Arrhenius-type kinetics, the principle of minimum of transformation time follows from

the postulate of realizability [22].
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Two different approaches were applied for determination of the driving force for the interface

propagation. The Eshelby driving force (again, like for elastic materials) was utilized in [10, 23,

24, 25]. Alternatively, in [9, 19, 26, 27, 28] the driving force was the dissipation increment due

to PT only, which excludes plastic dissipation. Some contradictions of the first approach, which

are not present in the second one, were found in [29]. Here, we will also address the problem of

the driving force for interface propagation based on a nanoscale PFA. Since both transformation

and plastic strains are quite large for many PTs, large strain formulation has been developed

in [17, 19] and applied to numerical solutions of various problems, including nucleation and

growth of martensite for thermally-induced PT in steel [9], nucleation of martensite at the

shear-band intersection for strain-induced PT in TRIP steel [30], and some other problems

[27, 28, 29].

B. Phase field approach to interaction between PT and discrete dislocations at

the nanoscale

For many problems, continuum plasticity is not an adequate model, and discrete dislocation

plasticity should be included in consideration. Thus, nucleation of the product phase occurs

at stress concentrators caused by a group of dislocations, in particular, dislocation pile-up or

tilt boundary [2, 4], which is a typical nanoscale problem that cannot be described within con-

tinuum plasticity. Other dislocation configurations, like dislocation forest, produce athermal

resistance to an interface motion. Also, while within continuum theory, plasticity does not

violate coherency (i.e., continuity of displacements) of interfaces, at the nanoscale, nucleation

of discrete dislocations leads to the loss of coherency of an interface, which changes its kinetics.

In addition, with the development of nano science and technology, PT and plasticity are stud-

ied in nano particles, films, and wires, and discrete dislocation plasticity is required. While

there are some publications (e.g., [31]), which study interaction between sharp interfaces and

dislocations, most of the efforts are within PFA.

PFA describes the nucleation and evolution of phase interfaces and dislocations with the

help of the corresponding order parameters: ηi for PT from the austenite A (ηi = 0) to

martensitic variant Mi (ηi = 1) and ξα for dislocations in the α slip system, where an integer

part of ξα equals the number of complete dislocations. After choosing a proper thermodynamic

potential, evolution of phase and dislocation nanostructure is described by solution of the
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Ginzburg-Landau evolution equations for the order parameters. Both phase interfaces and

dislocation cores have finite width, which is determined by the corresponding term in the

potential related to the gradient of the order parameters.

In the paper, we will use the most advanced, from a mechanics point of view, PFA to

multivariant martensitic PTs [32] and will apply it to a single martensitic variant. This theory

is based on transformation strain related order parameters ηi and satisfies special conditions

formulated in [33, 34, 35] for the description of typical experimental features of stress-strain

curves for steels and shape memory alloys. In particular, ηi = 0 and ηi = 1 are the thermody-

namically equilibrium values of the order parameters for any stresses and temperature. This

allows one to use a consistent approximation of all material properties as functions of the order

parameters, which for ηi = 0 and ηi = 1 coincide with known properties of A and martensitic

variant Mi. This was not the case in the previous theories [36, 37, 38, 39]. Also, PT criteria,

which follow from the crystal lattice instability conditions, have a desired form in terms of

the stress tensor and do not involve zero elastic moduli. The theory was generalized for large

strains [32, 40] and was applied for finite element solutions of various physical problems at

small [41, 42, 43, 44] and large strains [40, 45].

PFA to dislocations [46, 47, 48, 49, 50, 51, 52, 53] is based on the representation of dislo-

cation loops as thin martensitic inclusions (according to Nabarro [54]) and application (with

some modifications) of PFA to martensite [46, 36, 37, 47]. The PFA has appeared as a gener-

alization of the Peierls-Nabarro dislocation model [55, 56]. Transformation strain in this case

is substituted with plastic strain, which represents a combination of simple shears along slip

systems, characterized by the Burgers vector and normal to the slip planes. The order param-

eter for each slip system is related to the magnitude of the Burgers vector. Thus, the order

parameter for dislocation varies from n − 1 to n when n − 1 complete dislocations exist and

the nth dislocation appears. The order parameter continuously describes the shear of one part

of the crystal with respect to another by n Burgers vectors. In the classical discrete disloca-

tion theory (sharp dislocations) [57, 58], dislocation is defined as a boundary which separates

perfect lattice (or, in continuum formulation, material) and lattice (material) slipped by an

interatomic spacing (Burgers vector) along the slip plane. This definition is sufficient to derive

all properties of dislocations and their interactions with external stresses and stress fields of
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other dislocations and other defects (e.g., point defects), including conservation of the Burgers

vector and finding interaction forces between dislocations using solutions of the linear elasticity

theory. In the PFA to dislocations [46, 47, 48, 49, 50, 51, 52, 53], dislocations are introduced

exactly in the same way as in traditional theory [57, 58], i.e., by slipping part of the crystal

with respect to another by Burgers vector within some region along the slip plane. Thus, all

main properties of dislocations (including conservation of the Burgers vector and stress field

away from the dislocation lines which determine long-range interaction between dislocations

and between external stresses and dislocations) are the same as in traditional theory [57, 58].

In addition, finite-width dislocation height and width of the dislocation core eliminate stress

singularity and divergence of dislocation energy (like in the Peierls-Nabarro model [55, 56]).

This allows one, after proper calibration [47], to obtain reasonable results within dislocation

core and describe short range dislocation interaction. Instead of analytical solutions in tradi-

tional theory for stresses due to dislocations, which allow one to find forces between dislocations

for some simple configurations [57, 58], stresses in the PFA are found by numerical solution

of problems for arbitrary distribution of the plastic strain, i.e., dislocations. In particular,

these theories use spectral methods and the Khachaturyan microelasticity theory for effec-

tive determination of the stress field and dislocation evolution for various physical problems

[46, 47, 48, 49, 50, 51, 52, 53]. These approaches are applicable for small strain linear elasticity

only. Geometry of the dislocation lines is determined by solution of the Ginzburg-Landau

equations for the order parameters coupled to mechanics, similar to the geometry of the inter-

faces in the PFA for PTs. That is why specific geometric parameters of the dislocations (e.g.,

vector tangent to the dislocation line) are not explicitly present in the kinematic equation (2)

and the expression for energy at each point (5)-(9). Similarly, geometric parameters of phase

interfaces are not explicitly present in the expressions for transformation deformation gradient

and energy. Geometric parameters are the functionals of the entire solution.

These PFA formulations have the same deficiencies (and some others) as those for PFA

for martensitic PTs. Most of these deficiencies have been eliminated in [35, 59, 60] using ap-

proaches similar to that in [32, 35] for martensitic PT, as well as some other methods. In

particular, large strain formulation was developed based on the multiplicative decomposition

of the deformation gradient into elastic and plastic parts (Eq.(1)). The relationship between
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plastic strain and order parameters in small strain theory was substituted with the more gen-

eral relationship (2) between the rate of the plastic deformation gradient and rates of the order

parameters, which is consistent with the phenomenological crystal plasticity. Implementation

of the thermodynamic equilibrium and stability conditions for homogeneous states led to the

proper choice of the free energy (Eq.(8)) and the Burgers vector (Eq.(2)) versus the order pa-

rameters. This allowed us to reproduce a desired stress - order parameter curve and obtain a

stress-independent equilibrium Burgers vector, as well as to eliminate nonphysical energy dissi-

pation during elastic deformation. Also, a magnitude of the crystalline energy was defined as a

periodic step-wise function of the coordinate along the normal to the slip plane (Eq.(8)), which

determines the desired computational mesh-independent height of the dislocation bands. The

gradient energy (Eq.(9)) includes an extra term, which prohibits the localization of the order

parameter within a height smaller than the prescribed dislocation height, without producing

an artificial interfacial energy. Non-periodic boundary conditions for the order parameters are

derived which include the change of the surface energy due to the exit of dislocations from

the crystal (Eq.(21)). The most complete theory for large strains and nonlinear elasticity was

formulated in [60]. Nonlinear FEM procedure was developed and applied to various problems

in [59, 61].

A thermodynamically consistent PFA for the coupled PT and dislocation evolution at the

nanoscale was developed in [62] as a synergistic combination of PFA for multivariant marten-

sitic PTs [32] and dislocations [60] with nontrivial interactions. The interaction between PT

and dislocations includes: (a) the multiplicative kinematic decomposition of the deformation

gradient into elastic, transformational, and plastic parts; (b) the inheritance of dislocations of

A in M during martensitic PT and dislocations of M in A during reverse PT, as well as their fur-

ther evolution along the nontraditional slip systems; (c) dependence of all material parameters

for dislocations on the order parameters that describe PT and additional contributions to the

driving force for PT due to this dependence. An additional interaction between dislocations

and PT occurs through stress fields generated by their eigen strains and is determined by a

solution of coupled PFA and mechanical problems. This theory was applied in [8, 59, 63, 64]

to solutions of some material problems, including revealing an athermal hysteresis which de-

pends on the ratio of the phase interface width and the magnitude of the Burgers vector of a
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dislocation, finding a mechanism of semicoherent interface motion, dislocation inheritance by

propagating phase interface, and the temperature-induced nucleation, growth, and arrest of

M plate in an A bicrystal. Some earlier PFAs on interaction of PTs and discrete dislocations

include analytical [65] and numerical [66, 67] solutions for M nucleation on dislocations, which

were introduced through their stationary stress fields, or which belong to the moving phase

interface only [68] and consequently do not involve phase field equations for dislocations and

their inheritance during PT.

C. PTs under high pressure and compression and shear

Application of high pressure to materials is a well-known way to discover new HPPs and

phenomena. For example, high pressure leads to ionic boron [69], calcium carbides [70], highly

energetic polymeric nitrogen [71] and CO2 [72], as well as new superhard phases of carbon

[73, 74], BC5[75], B−BN [76], and BC2N [77, 78]. Multiple phases were predicted using first

principle simulation [79, 80, 81, 82, 83] but have not yet been confirmed experimentally. Some

of these phases transform back during pressure release [71, 72], which does not allow one to

study their properties and use them in engineering applications. Transformation pressure for

these phases is too high, which prevents their large-scale synthesis for engineering purposes.

It is known from numerous experiments that superposition of large plastic shear in rotational

Bridgman anvils [84] or rotational diamond anvil cell (RDAC) [85, 86, 87, 88, 89, 90, 92,

93, 95, 96], can lead to new phases that were not obtained under hydrostatic conditions and

significantly reduces PT pressure. For example, a superhard phase IV of fullerene C60 [89, 90]

and single wall carbon nanotube [92] as well as highly energetic phases of nitrogen and sodium

azide [86, 87] were discovered under compression and shear in RDAC. A new high-density

amorphous phase of SiC was observed in situ under pressure of 30 GPa and large shear [88]

but no PTs were obtained under hydrostatic pressure up to 130 GPa. There are many examples

that show that application of shear reduces PT pressure by a factor of 2 to 10 for some PTs

[6, 85, 90, 93, 95, 96, 97, 98, 99, 103], including PTs to superhard phases of BN [90, 95], PTs

in Si and Ge [85, 96], and Zr and Zr-Nb alloys [97, 98]. An important point is that some

of these discoveries at relatively low pressure can be scaled up using high pressure torsion

[97, 98, 100, 101, 102, 99, 103] and ball milling [104, 105, 106, 107, 108, 109, 110].

A fundamental understanding of the physics responsible for such drastic reduction in PT
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pressure is far from being complete. Thus, it was demonstrated [6, 64, 93] that a simple

addition of the work of shear stress along the transformation shear strain to the macroscopic

mechanical driving force (which is minus pressure times volumetric transformation strain) does

not change transformation pressure significantly. This is because macroscopic shear stress is

limited by the yield strength in shear (∼ 1GPa), which is small in comparison to the applied

pressure, e.g., 10− 50GPa.

The fundamental difference between the plastic strain-induced PTs under high pressure

and pressure-induced or stress-induced PTs was first formulated in [6, 93]. Pressure-induced

or stress-induced PTs initiate at pre-existing defects at stress below the yield strength, while

plastic strain-induced PTs occur by nucleation at new defects (e.g., dislocation pile-ups) pro-

duced during plastic straining, which cause stronger stress concentrations than the pre-existing

defects. That is why plastic strain-induced PTs require completely different thermodynamic

and kinetic treatment and experimental characterization, which is coupled to generation of

defects and stress concentrators.

Despite numerous important and interesting experimental phenomena, the only analytical

attempt to describe strain-induced PTs under high pressure at the nanoscale has been a simple

model of nucleation at the tip of a dislocation pile-up in infinite space [6, 93]. Despite the

simplicity and effective 1D treatment, this model explained many experimental results on PTs

in DAC and RDAC and developed our intuition on the interaction between PTs and plasticity

at the nanoscale. Due to the generic character of the model, qualitative conclusions from its

application have been used by other groups to interpret their experimental findings in high

pressure torsion [99, 103], mechanochemistry and ball milling [108, 109, 110] and shock-induced

amorphization in Si [111].

It took ten years and multiple theoretical and algorithmic developments [32, 40, 41, 42,

43, 44, 45, 59, 63], as described above, before the PFA was prepared to be applied to the

similar problem in [64]. A PFA was implemented to study PT at a dislocation pile-up in a

nanograined bicrystal under uniaxial compression and shear with periodic boundary conditions

at the lateral sides of a bicrystal [64]. The choice of a nanograined material is caused by the

experimental observation that large plastic deformations under pressure lead to a nanograined

structure [97, 98, 100, 101, 102], with a significant dislocation activity in grains. The study in
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[64] revealed some additional features which could not be obtained within an analytical model

[6, 93]. However, this was an exploratory study, and periodic boundary conditions are just one

of the possibilities. Problem formulation in [64] considers the superposition of shear strain on

a constrained uniaxial compression, even though the main discussion is on how shear reduces

the PT pressure. In fact, the uniaxial compression reduces the PT pressure in comparison

with hydrostatic conditions without shear, see, e.g., [91, 94, 96, 99]. Alternative boundary

conditions– free lateral surfaces–, have been applied for an exploratory study of the shear-

induced PT at zero pressure in [8]. Still, results obtained in [64], again due to their generic

character, were applied in [103] for the interpretation of experiments on high pressure torsion,

in [112] on PTs in nanomaterials under mechanical loading, and in [111] on shock-induced

amorphization in Si.

In the current paper, the general PFA for the interaction between PT and dislocation

evolution developed in [62] is applied for comprehensive FEM simulations of the pressure and

shear strain-induced PT to a HPP coupled to dislocation plasticity in a nanograin bicrystal.

In contrast to [64], shear was superposed on equiaxial compression, which lead to results

essentially different than in [64]. The main goal is to understand some generic features of how

dislocations and PT compete with and assist each other and what coarse-grained parameters

can characterize the overall behavior and allow to scale-up results for microscale. In particular,

how under prescribed shear strain, does a system relax stresses in terms of the number of

dislocations in each grain and the concentration and morphology of the transformed region?

Are dislocations generated in a low (weaker) or high (stronger) pressure phase or both, do they

pass through phase interfaces and are they inherited by an alternative phase? What determines

the stationary nanostructure and are unique or multiple nanostructures possible under the same

conditions? Does back stress from PTs and plasticity in the right grain reduce the number

of dislocations in the left grain? Answer to these questions and the comparison with results

in [64] for different boundary conditions will develop a deeper understanding and intuition for

predicting the interaction between PTs and plasticity than we had based on previous papers

[6, 64, 93]. While the main results are summarized in abstract and conclusions, here we

mention the most unexpected findings. Thus, despite the very complex and heterogeneous

stress distribution, plastic straining and small sizes, stationary morphology corresponds to the



10

fulfillment of the simplest phase equilibrium condition Eq. (22) for almost each point of the

interface, which does not contain information about plasticity and interface energy. Moreover,

the same phase equilibrium condition is approximately met in terms of stresses averaged over

the entire grain or martensitic region. This is a conceptually important result due to two

reasons: (1) it can be utilized for the development of a microscale description of strain-induced

PTs and (2) it challenges previous wisdom [6, 93] that phase equilibrium conditions do not

enter the macroscopic (averaged) description of strain-induced PTs and cannot be determined

from experiments for strain-induced PTs. Also, the major contribution to the transformation

work is due to deviatoric stresses rather than pressure, while in previous works [6, 93] the

contribution of applied shear stresses to the transformation work was negligible.

The paper is organized as follows. In Section II, a complete system of the fully geomet-

rically nonlinear equations for coupled PFA for single-variant PT, dislocation evolution, and

continuum mechanics is formulated in the reference configuration and also simplified for a ge-

ometrically linear approximation. Problem formulation, material parameters, and numerical

method are presented in Section III. Phase transformation under hydrostatic pressure is stud-

ied in Section IV. In Section V, PT and dislocation evolution in a nanograin bicrystal under

several applied pressures and shear strains are studied with and without plasticity in the trans-

forming grain. In Section VI, it is shown that the stationary high pressure phase morphology

and concentration can be described utilizing the local and averaged transformation work. The

minimum shear and number of dislocations in a pile-up required for HPP nucleation were

determined in Section VII. The effect of the ratio of the kinetic coefficients for PT and disloca-

tion evolution on the intermediate and stationary nanostructure was discussed in Section VIII.

Lack of the sample size effect in the interaction between phase transformation and dislocations

was demonstrated in Section IX. Section X contains concluding remarks. Note that studies in

Sections VI-IX do not have a counterpart in [64] under periodic boundary conditions.

We designate vectors and tensors with boldface symbols and designate contractions of ten-

sors AAA = {Aij} and BBB = {Bji} over one and two indices as AAA···BBB = {AijBjk} and AAA:::BBB = AijBji.

The transpose ofAAA isAAAT , III is the unit tensor; subscripts s and a mean symmetric and antisym-

metric parts of a second-rank tensor, ∇ is the gradient operator with respect to an undeformed

state and ⊗ designates a dyadic product. Summation is assumed over the repeated indices.
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II. COMPLETE SYSTEM OF EQUATIONS

In this paper, PTs between body centric cubic and body centric tetragonal lattices are

considered in the examples. In this case, slip systems of A (low-pressure phase, LPP) trans-

forms to the slip system of M (high-pressure phase, HPP) during PT. Since all equations are

considered in the reference configuration, and slip systems of HPP are mapped back to LPP

and coincide with slip system of LPP, only a single set of the order parameters ξα is required,

which characterizes slip along any slip systems of LPP and HPP, occurring either in LPP or

HPP. Body forces are neglected and surface energy is independent of phase and dislocations.

We will utilize a theory for interaction between PTs and dislocations developed in [62] and

corresponding numerical approach presented in [8]. This theory synergistically combines fully

geometrically nonlinear theory for martensitic PTs [32] and dislocations [60] and corresponding

numerical approaches presented in [45, 61]. The complete system of equations from [8, 62] is

presented in Box 1. Also, for those who need to solve similar problems for infinitesimal strains,

a simplified small strain version is presented as well.

Box 1

1. Kinematics

I. Large strains

1.1. Multiplicative decomposition of the deformation gradient FFF

FFF = FFF e···UUU t···FFF p, (1)

where FFF e is the elastic, UUU t is the symmetric transformation, and FFF p is plastic contributions. In

addition to the undeformed reference configuration Ω0 and the deformed current configuration

Ω, two intermediate stress-free configurations are introduced: Ωt after elastic unloading from

Ω to zero stresses and Ωp after elastic unloading and reverse PT, respectively.
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1.2. Rate of plastic deformation gradient

lllp = ḞFF pFFF
−1
p =

p∑
α=1

1

Hα
bbbα ⊗ nnnαΦ̇(ξα) =

p∑
α=1

γαmmm
α ⊗ nnnαΦ̇(ξα), (2)

Φ(ξα) = φ(ξ̄α) + Int(ξα); φ(ξ̄α) = ξ̄2α(3− 2ξ̄α); ξ̄α = ξα − Int(ξα),

where bbbα andmmmα are the Burgers vector of a dislocation in the αth slip system and corresponding

unit vector, nnnα is the unit normal to the slip plane, ξα is the order parameter for a dislocation in

the αth slip system, Int(ξα) and ξ̄α are the integer and fractional parts of ξα, and γα = |bbbα|/Hα

is the plastic shear for one dislocation within a dislocation band with the height Hα.

II. Small strains

εεε = (∇∇∇uuu)s = εεεe + εεεt + εεεp; εεεt = ε̄εεtϕ(a, ηk);

ωωω = (∇∇∇uuu)a = ωωωe +ωωωt +ωωωp; εεεp +ωωωp =

p∑
α=1

1

Hα
bbbα ⊗ nnnαΦ(ξα), (3)

where uuu is the displacement vector, εεε and ωωω are the small strain and rotations, respectively.

1.3. Transformation-deformation gradient

UUU t = III + ε̄εεtϕ(a, η) ϕ(a, η) = aη2k(1− η)2 + (4η3 − 3η4); 0 < a < 6, (4)

where η is the order parameter that describes PT from LPP (η = 0) to HPP (η = 1), ε̄εεt is the

transformation strain of a HPP after complete PT, and a is a material parameter.

2. Helmholtz free energy per unit mass

ψ = Jtψ
e + ψθη + ψcξ + ψ∇η + ψ∇ξ ; Jt = detUUU t. (5)

2.1. Elastic energy

ρ0ψ
e =

1

2
EEEe:::CCC:::EEEe; EEEe = 0.5(FFF T

e ·FFF e − III), (6)

where ρ0 is the mass density in the reference state, EEEe is the elastic Lagrangian strain, and CCC

is the forth-rank tensor of elastic moduli, which for simplicity is assumed to be equal for both

phases.

2.2. Thermal energy

ψθη = Aη2(1− η)2 + ∆Gθ(4η3 − 3η4);

∆Gθ = −∆s (θ − θe) , A = A0 (θ − θc) , A0 > 0, (7)
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where A and A0 characterize the magnitude of the double-well barrier between LPP and HPP;

∆Gθ and ∆s are the differences between the thermal part of the energy and entropy for HPP

and LPP, respectively; θe is the phase equilibrium temperature for LPP and HPP for stress-

free case; and θc is the critical temperature at which stress-free LPP loses its thermodynamic

stability.

2.3. Crystalline energy

ψcξ =

p∑
α=1

Āα(η, ȳα)(ξ̄α)2(1− ξ̄α)2; Āα(η, ȳα) = AAα + (AMα − AAα )η2(3− 2η);

AA,Mα (yα) =

{
ĀA,Mα ȳα ≤ Hα;

kĀA,Mα ȳα > Hα.
ȳα = yα − Int( yα

Hα + wα
)(Hα + wα); k � 1,(8)

where AAα and AMα are the magnitudes of the barriers in multi-well crystalline energy in LPP

and HPP, respectively; yα is the coordinate along the normal to the αth slip plane; wα is the

width of the thin layer between dislocation bands, which is introduced with a much larger

barrier than in a dislocation band (k � 1) in order to prevent spreading of a dislocation in

the normal to slip plane direction; superscripts in AA,Mα and similar terms means that this

parameter is defined either for A (LPP) or for M (HPP).

Eq.(8) for the magnitude of the crystalline energy AA,Mα (yα) is defined as a periodic step-

wise function of the coordinate along the normal to the slip plane, which determines the desired

height of the dislocation bands, Hα.

2.4. Gradient energies for PTs and dislocations

ψ∇η =
βη

2
|∇∇∇η|2; ψ∇ξ = 0.5βξ(η)

p∑
α=1

(
(∇mξα)2 + Z(1− ξ̄α)2(∇nξα)2

)
; (9)

βξ(η) = βAξ + (βMξ − βAξ )η2(3− 2η); ∇mξα =∇∇∇ξα ·mmmα; ∇nξα =∇∇∇ξα · nnnα, (10)

where the gradient energy coefficient βη is for PT and βAξ and βMξ are for dislocations in A

(LPP) and M (HPP), respectively; Z is the ratio of the coefficients for the gradient energy

normal to and along the slip plane; and superscripts m and n stand for the along mmm and nnn,

respectively. While for complete dislocation (ξ̄α → 1), contribution of ∇nξα disappears (as it

should, because the crystal lattice is perfect after the dislocation passed, and it should not be

penalized), presence of this term introduces characteristic length along the normal to the slip

system and eliminates ill-possedness of the problem and mesh-dependence of the numerical
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solution during formation of dislocation.

3. First Piola-Kirchhoff PPP and Cauchy σσσ stress tensor

I. Large strains

PPP = ρ0JtFFF e···
∂ψe

∂EEEe

···UUU−1t ···FFF
T−1
p = JtFFF e···CCC:::EEEe···UUU−1t ···FFF

T−1
p ; (11)

σσσ = J−1PPP ···FFF T = ρJtFFF e···
∂ψe

∂EEEe

···FFF T
e =

1

Je
FFF e···CCC:::EEEe···FFF T

e ; (12)

J = detFFF ; Je = detFFF e; J = JeJt; Jp = detFFF p = 1, (13)

where ρ is the mass density in the current configuration, and Jp = 1 due to plastic incompress-

ibility. The equation for σσσ demonstrates why it was necessary to include Jt as a multiplier for

the elastic energy in Eq.(5): it is based on tensors defined through geometry of the current and

elastically unloaded configurations only and does not contain info about Ωp and Ω0. Otherwise,

the elasticity rule for M would depend on volumetric transformation strain for LPP→HPP PT,

i.e., on crystal lattice of LPP, which is contradictory.

II. Small strains and linear elasticity

σσσ = ρ
∂ψ

∂εεεe
= CCC:::εεεe. (14)

4. Ginzburg–Landau equations

4.1. The compact form in the reference configuration at large strains

η̇ = LηXη = Lη
(

1

ρ0
PPP T···FFF e:::

∂UUU t

∂η
···FFF p +∇∇∇ ·

(
∂ψ

∂∇∇∇η

)
− ∂ψ

∂η

)
;

ξ̇α = Lα(η)Xξ
α = Lα(η)

(
1

ρ0
ταγα

∂Φ

∂ξα
+∇∇∇ ·

(
∂ψ

∂∇∇∇ξα

)
− ∂ψ

∂ξα

)
;

Lα(η) = LAα + (LMα − LAα )η2(3− 2η); τα = nnnα···FFF p···PPP T···FFF e···UUU t···mmmα, (15)

where Lη is the kinetics coefficient for PT; LAα and LMα are the kinetics coefficients for disloca-

tions in A and M, respectively; Xη and Xξ are the thermodynamic driving forces conjugate to

η̇ and ξ̇α, respectively; and τα is the resolved shear stress on the slip plane and in slip direction

for a dislocation.
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4.2. Detailed form at large strains

η̇ = Lη{( 1

ρ0
PPP T···FFF e:::

∂UUU t

∂η
···FFF p − JtUUU−1t :::

∂UUU t

∂η
ψe(EEEe, η)− Jt

∂ψe(EEEe, η)

∂η
+

−[2Aη(1− η)(1− 2η) + 12∆Gθη2(1− η)]−
p∑

α=1

∂Aα(η, ȳα)

∂η
(ξ̄α)2(1− ξ̄α)2 −

p∑
α,k=1

∂Aαk(η)

∂η
(ξ̄α)2(1− ξ̄α)2(ξ̄k)

2(1− ξ̄k)2

−0.5
∂βξ(η)

∂η

p∑
α=1

(
(∇mξα)2 + Z(1− ξ̄α)2(∇nξα)2

)
+ βη∇2η}. (16)

ξ̇α = Lα(η){ 6

ρ0
ταγαξ̄α(1− ξ̄α) +

1

2
∇∇∇βξ(η)···∇∇∇ξ̄α +

1

2
[Z(1− ξ̄α)2 − 1](∇∇∇ξ̄α···nnnα)(∇∇∇βξ(η)···nnnα)

+
1

2
βξ(η)[∇2ξ̄α + (Z(1− ξ̄α)2 − 1)(∇∇∇···nnnα)(∇∇∇ξ̄α···nnnα)]

−2Z(1− ξ̄α)(∇∇∇ξ̄α···nnnα)2 + [Z(1− ξ̄α)2 − 1]∇∇∇(∇∇∇ξ̄α···nnnα)·nnnα − 2Aα(η, ȳα)ξ̄α(1− ξ̄α)(1− 2ξ̄α)

−2Aαk(η)ξ̄α(1− ξ̄α)(1− 2ξ̄α)(ξ̄k)
2(1− ξ̄k)2 + βξ(η)Z(1− ξ̄α)(∇nξα)2}. (17)

4.3. Small strains, linear elasticity

η̇ = Lη{(
1

ρ0
σσσ:::
∂εεεεεεεεεt
∂η
− Jt

2ρ0
(III:::
∂εεεεεεεεεt
∂η

)εεεεεεεεεe:::CCC:::εεεεεεεεεe

−[2Aη(1− η)(1− 2η) + 12∆Gθη2(1− η)]−
p∑

α=1

∂Aα(η, ȳα)

∂η
(ξ̄α)2(1− ξ̄α)2 −

p∑
α,k=1

∂Aαk(η)

∂η
(ξ̄α)2(1− ξ̄α)2(ξ̄k)

2(1− ξ̄k)2

−0.5
∂βξ(η)

∂η

p∑
α=1

(
(∇mξα)2 + Z(1− ξ̄α)2(∇nξα)2

)
+ βη∇2η}. (18)

Ginzburg-Landau equations for dislocations for geometrically linear case do not differ from

Eq.(17) but expression for τα simplifies to τα = nnnα···σσσ···mmmα.

5. Equilibrium equations

I. Large strains

∇∇∇···PPP = 000. (19)

II. Small strains

∇∇∇···σσσσσσσσσ = 000. (20)



16

6. Boundary conditions for the order parameters

nnn0 · ∇∇∇η = 0, ∇∇∇ξ̄α · bbbα = 0, (21)

where nnn0 is the normal to the external surface in the reference configuration Ω0. These condi-

tions mean that during PT and when dislocations exit at the external surface, surface energy

does not change.

Since all material parameters for dislocations are different in LPP and HPP and change

during the PT, they are interpolated with the same function φ(η) = η2(3− 2η), which satisfies

the formulated in [32, 35] properties: φ(0) = 0, φ(1) = 1, and φ′(0) = φ′(1) = 0. The η-

dependence of dislocation parameters produces extra terms in the Ginzburg-Landau equation

(16) for PT.

Comparison of the fully geometrically nonlinear and linearized small strain theories in Box

1 demonstrates the main differences between these two theories. Namely, geometrically nonlin-

ear formulation uses exact multiplicative kinematic decomposition (Eq.(1)) and more general

relationship (2) between the rate of the plastic deformation gradient and rates of the order pa-

rameters, which is consistent with the phenomenological crystal plasticity; Lagrangian elastic

strain measure in the elastic energy (Eq.(6)) and elasticity rule (Eqs.(11)-(13)), and different

stress measures in the elasticity rule Eqs.(11)-(13). It also uses more complex expression for the

mechanical driving force in the Ginzburg-Landau equation for PT and dislocations (Eq.(15)),

in particular, through more complex expression for the resolved shear stress τα. Our approach

utilizes all equations in the reference (underformed) configuration, including equilibrium equa-

tion (19) and all gradient operators. I addition, large displacements and change in geometry

is taken into account, which is important for the problem under study.

III. PROBLEM FORMULATION AND COMPUTATIONAL APPROACH

A. Material parameters

The following parameters for PT and all slip systems have been used [8]: Aα = 0.894GPa for

LPP, Aα = 2.68GPa for HPP, Lξ = 104(Pa · s)−1, Lη = 2600(Pa · s)−1, βξ = 4.36 · 10−10N ,
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Z = 0.05, Hα = 1.4nm, |bbb| = 0.35nm, γ = 0.25, a = 3, θe = 215K, θc = −183K, θ = 298K;

k = 100, and wα = 0.1Hα. Parameters A0 = 22MPaK−1 and βη = 25.92 · 10−10N correspond

to the phase interface energy of 1.12J/m2 and width of 1.0nm. For simplicity, the isotropic

elasticity is utilized in Eq.(11) with shear modulus µ = 71.5GPa and bulk modulus K =

112.6GPa for both phases. The above parameters correspond to the yield strength of LPP

τ cA = AAα/(aγ) = 1.2GPa and of HPP τ cM = AMα /(aγ) = 3.6GPa, phase equilibrium pressure

pe = 3GPa, and critical pressure for instability of the LPP pcl = 17.6GPa. Transformation

strains are εtx = εty = −0.1; εtxy = 0.15. We normalize size, time, and stress parameters by

1nm, 1ps, and 1GPa, respectively.

B. Geometry

Complete formulation should include consideration of a representative polycrystalline volume,

which is approximately 1000 grains with different orientations, with at least 20-30 nm grain

size. The PT from a cubic to tetragonal lattice contains 3 crystallographically equivalent

variants of tetragonal lattice, each should be described with a separate order parameter. The

body centric cubic lattice may have 48 (or a minimum of 12) crystallographically equivalent slip

systems, each should also be described with a separate order parameter. This formulation is

computationally prohibitive due to taking into account the complexity and strong nonlinearity

of the system of equations under study and the necessity to resolve nanometer size interface

width and dislocation core with at least five-six finite elements required for an accurate solution

of the problem. We assume the threshold for twinning in the tetragonal lattice is much higher

than for slip and only one of the preferred crystallographic variants appears, but this is a

small computational saving for a 3D formulation. Considering a 2D idealization in [64], which

is similar to the accepted one below (Fig. 1), the minimum 3D configuration would include

the same two grains but with the similar size in the third direction orthogonal to the shear.

Additional dimension and inclusion of all the slip systems increase the number of degrees

of freedom by two orders of magnitude as opposed to the 2D formulation used in [64] and

below, which makes the parametric study impossible. In addition, increasing the number of

slip systems makes it much more problematic to achieve convergence of solution due to the

additional nonlinearities and their interactions. Still, a physical formulation for such a two-

grain structure is not realistic in the third direction because of one grain in this direction. Since
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shear stresses in the direction orthogonal to the applied shear are much lower than those in

the shear direction, the plastic strain in the third direction should be much smaller than that

within the 2D plane. New nucleation sites are not expected because of this. Thus, as the best

compromise between a physically adequate formulation and a computationally effective one,

we consider a 2D formulation described below. It will allow us to focus on the main generic

features of the interaction between PT and plasticity under pressure and shear.

We treat a square 60× 60 sample, which is divided in the following regions (Fig. 1).

(a) Left grain, a rectangular 30 × 40 region with a horizontal dislocation system in the

middle, in which the mechanical and dislocation problems are solved but not the PT problem.

(b) Right grain, a rectangular 20×40 region inside the sample with two dislocation systems,

in which either all equations are solved or dislocation activity is excluded.

(c) Two rectangular 60× 10 regions at the top and the bottom, and a rectangular 10× 40

region at the right side of the sample, in which only the mechanical problem is solved. They

model elastic accommodation of the surrounding grains.

Figure 1: (color online) Schematics of the sample loaded by normal stresses and shear.

C. Boundary and initial conditions

In addition to Eq.(21) for order parameters for the interaction of PT and dislocations un-

der plastic shear and pressure, the following boundary conditions are used for the mechanical
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problem: the lower side is fixed; the lateral and upper sides are subjected to normal homoge-

neous stress σn in the deformed state; and the upper side is also subjected to the homogeneous

horizontal displacement u which is given in terms of prescribed macroscopic shear γ = u/h,

where h = 20 is the height of grains. As initial conditions, we accept perturbations η = 0.01

everywhere in the right grain, and ξi = 0.01 within each of slip systems; without perturbations

evolution cannot start because Xη = 0 for η = 0 and Xξ
α = 0 for ξ = 0.

D. Numerical approach

We employed FEM and implemented the above system of equations in the COMSOL Mul-

tiphysics code for solution of the coupled system of phase field and elasticity equations for

cubic to tetragonal PT. Plane strain formulation and straight edge dislocations are used. All

simulations are performed in the undeformed reference configuration; however, all results are

mapped to and presented in the deformed state. As is usually assumed in 2D simulations

[113, 31] for cubic lattices, slip directions are under 600 to each other. The backward time

differentiation scheme is used for time integration with time step of 10−2fs. To reduce the

number of the degrees of freedom and the computation time in comparison with linear finite

elements, and also for improving convergence, quadrilateral finite elements with the quadratic

polynomial for the shape function are utilized. Due to large geometric changes and to avoid

mesh inversion and divergence of the solution, remeshing is applied automatically at some time

steps. The time range during which remeshing is produced and the range of element sizes can

be prescribed. Remeshing is performed only in local regions with strongly distorted elements,

mostly near places with strong stress concentration and at the boundaries between different

types of meshes. Accuracy of numerical solutions is confirmed in a number of ways summarized

in [8].

IV. PHASE TRANSFORMATION UNDER HYDROSTATIC PRESSURE

To estimate the effect of shear on PT, first, it is necessary to determine the lowest pressure at

which a HPP nucleus appears under hydrostatic condition. Since, even for heavily deformed

material, the averaged distance between dislocations exceeds size of the sample, we consider
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just one dislocation per two nanograins. First, we create one dislocation in the left grain by

applying shear displacement u = 1.4 at the upper edge without any pressure on either side,

and we arrest it at the grain boundary by stopping to solve the Ginzburg-Landau equation

for dislocations. Then, the applied shear stress is reduced to zero, producing a stress-free

sample with a single dislocation. After this, all mechanical boundary conditions are substituted

with homogeneous stresses (pressure) normal to the deformed surface. It was found that the

lowest pressure at which the nucleus appears is ph = 15.9, after which it grows and fills

major part of the grain (Fig. 2). This is reasonable, because 15.9 is significantly higher than

pe = 3, which determines the local interface propagation pressure. Still, PT is not completed

because the pressure in the transformed region and at the interface reduces below pe due to

the transformation volume reduction. Thus, one dislocation reduces the pressure required to

nucleate HPP from pcl = 17.6 by 10%, but it is still much higher than pe.

Figure 2: (color online) Evolution of high pressure phase under the hydrostatic pressure of
15.9 in the presence of a single dislocation.

V. PHASE TRANSFORMATION IN A NANOGRAINED MATERIAL UNDER

COMPRESSION AND SHEAR

A. Dislocation evolution

We consider three different external pressures p = σn = 0, 1.59 (10% of ph), and 5 (32% of

ph). This will allow us to elucidate the significant effect of stress concentration created by

dislocations on nucleation of HPP at pressures much below ph. First, we apply the chosen nor-

mal stresses at the lateral and upper sides of the sample and then the homogeneous horizontal

displacement u at the upper side. Initially, we solve the mechanical problem in the entire the

sample and dislocation evolution problem in the left grain only. Under prescribed pressure and
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shear, several dislocations nucleate from the grain boundary one after another and move to

the left side. Some of these dislocations leave the sample at the free surface, creating a step.

Other dislocations densely pile-up at the grain boundary, creating a strong concentration of

the stress tensor near the pile-up tip.

Fig. 3 presents the evolution of dislocations in the left grain. As it is customary, a dislo-

cation sign indicates the slip plane and the extra half plane of atoms creating a dislocation.

Under prescribed γ = 0.35, 6 dislocations appear in the left grain. As can be seen, a couple of

the first positive and negative dislocations nucleate near the grain boundary creating a step.

Then, a negative dislocation propagates to the left to the sample surface. The next dislocation

couples nucleate near the grain boundary or in the middle of the dislocation band. Positive

dislocations propagate to the right, 4 of which create a step at the grain boundary, and 2 of

which are piled up near the grain boundary. Negative dislocations move to the left, 5 of which

create a step at the left sample surface and only one piles up near the sample surface. A

dislocation pile-up creates stress concentration near its tip. This leads to the increase in the

local thermodynamic driving force for PT to HPP in the region near the dislocations tip in the

right grain which causes HPP nucleation. We will determine, for each applied pressure, the

least number of dislocations in the left grain required for nucleation of HPP. In fact, the initial

perturbation η = 0.01 in the right grain will disappear for less than the specified number of

dislocations in the left grain.

Equal distance between a number of dislocations in a pile up near the grain boundary

in Fig. 3 and in most of figures below looks contradictory at first glance, because known

analytical solution gives increasing spacing for dislocations away from the head dislocation

[57]. However, the analytical solution is valid for small strains (and, consequently, stresses)

and distance between dislocations exceeding dislocation core width, as well as for infinite space,

i.e., our results are well beyond of the applicability of this solution. The main reasons for the

difference between our solution and the analytical one are: (a) Geometric changes leading to

appearance of steps at the grain boundaries, in which distance between dislocations must be

equal to the Burgers vector. Steps should be excluded from comparison with analytical solution

completely. (b) At small spacing, repulsion force between dislocations grows drastically due

to interaction of dislocation cores through the gradient energy. Stresses acting on dislocations
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Figure 3: (color online) Evolution of dislocations in the left grain under prescribed shear
γ = 0.35 and σn = 0.

are so high that dislocations can be equilibrated by strong core interactions only. This leads

to (almost) the same spacing between dislocations. (c) Large strains ( = 0.35) are inconsistent

with the small strain and linear elastic solution. (d) Stress relaxation outside the double pile

up due to small size of the sample and relaxation processes in the right grain. Note that due

to some of the deviations of reality from the conditions for the analytical solution, even for

much smaller stresses and larger grains, spacing between first dozen of dislocations near an

obstacle is approximately the same, see e.g., Fig. 21-3 in [57] and numerous micrographs at

the internet.

Next, we allow PTs and plasticity (two ±30o inclined dislocations) in the right grain. The

reason why we first create some dislocations in the left grain before allowing PTs and plasticity

in the right grain is the same as above: if the stress concentration is not large enough at the

pile-up tip, the initial perturbations η = 0.01 and ξi = 0.01 disappear and do not grow for

any larger shear. Moreover, due to the competition between PTs and dislocations, stresses

could be relaxed by nucleation of dislocations, and initial HPP would disappear, so a further

increase in shear will promote plasticity only and increase the number of dislocations, while

PTs will not start due to the zero initial conditions. For each pressure, we increase the shear

by increasing applied displacement until we obtain the first nucleation of HPP. This reveals the
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least number of dislocations required to nucleate HPP under the prescribed pressure and shear

with plasticity in the right grain. Also, the evolution of dislocations and HPP and stationary

nanostructure will be presented.

B. Phase transformation at zero applied pressure

For zero pressure, the first nucleation of HPP and dislocation in the right grain occur for shear

γ = 0.3, creating 8 dislocations in the left grain. Their evolution is presented in Fig. 4 for some

initial stages. While the dislocations and HPP nucleus evolve in the right side, the number of

dislocations in the left grain does not change. For the lower shear γ = 0.2, 4 dislocations are

generated in the left grain and induce dislocations in the right grain, but no HPP appears.

Figure 4: (color online) Evolution of the high-pressure phase and dislocations for some initial
stages under p = 0 and γ = 0.3 with plasticity in the right grain. Evolution of dislocations in
the left grain is shown at the top.

The main impressive result here that in a nanograined material PT to HPP with ph = 15.9

and pe = 3 can occur without external pressure, just under shear stresses and internal stresses

due to dislocation pile-up.

C. Phase transformation at p = 1.59

1. Evolution of dislocation and phase structures

For the pressure p = 1.59, the first HPP nucleation occurs for shear 0.35, which creates 7

dislocations in the left grain. The evolution of the HPP phase and dislocations is presented in

Fig. 5 until the stationary solution is reached. In contrast to the problem without pressure,

while the HPP nucleus in the right grain grows, the number of dislocations increases in both

grains. For the lower shear γ = 0.3, 7 dislocations are generated in the left grain, which
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induce dislocations in the right grain without HPP at the left grain boundary but with a small

HPP nucleus at the intersection of the dislocations and the right grain boundary (Fig. 6a).

Note that if plasticity is disallowed in the right grain, HPP nucleation happens at much lower

shear of γ = 0.21 resulting in 3 dislocations in the left grain (Fig. 6b). This emphasizes the

significant role of plasticity in the transforming grain for stress relaxation, which competes

with PT and nucleation of HPP. The evolution of the HPP phase and dislocations in the left

grain for the shear γ = 0.35 but without plasticity in the right grain is represented in Fig.

7. The HPP growth is faster without plasticity in the right grain, because PT is the only

stress relaxation mechanism. Also, at intermediate transformation stages, HPP nucleates in

the lower right corner of the right grain but later disappears. The number of dislocations in

the left grain for the problem with PT and plasticity increases faster than without plasticity.

Figure 5: (color online) Evolution of the high-pressure phase and dislocations under p = 1.59
and γ = 0.35 with plasticity in the right grain.

2. Concentration of the high pressure phase

The concentration of the HPP, c, is defined as the ratio of the transformed area to the grain

area S0 in the undeformed state as c =
∫
ηdV0/V0 =

∫
ηdS0/S0. The plot of the concentration

of HPP c vs. time in Fig. 8 demonstrates that concentration is higher for the case without

plasticity than with plasticity in the right grain. This is because plasticity in the right grain
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Figure 6: (color online) High-pressure phase morphology and dislocation structure at t = 10.75
for p = 1.59 and γ = 0.3 with (a) and without plasticity (b).

Figure 7: (color online) Evolution of the high-pressure phase under p = 1.59 and γ = 0.35
without plasticity in the right grain for dislocation structure in the left grain shown on the
top.

competes with PT as the stress relaxation mechanism. Plasticity reduces stress concentrators

due to dislocation pile-up in the left grain. While stress concentration is still sufficient for

nucleation, stresses away from it reduce, which suppresses PT. However, the effect of plasticity

in the transforming grain on stationary concentration c is much weaker than on nucleation.

Thus, without plasticity, the stationary value c = 0.8 is 5% higher than with plasticity. During

evolution after the concentration reaches some small value, it linearly increases with time until

it reaches c = 0.5 with plasticity and c = 0.6 without plasticity. For larger time, c increases

gradually until it reaches the stationary solution. The difference between concentrations for
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both cases reduces after t = 11.5 (as will be seen later, this time corresponds to the maximum

transformation work) and becomes almost constant. The reason is that, due to the larger

kinetic coefficient for dislocation evolution, dislocations are generated and reach stationary

configuration faster than the HPP, so they suppress PT stronger at the initial stages. However,

the stationary dislocations, which did not reach the surface and stay inside the grain, in

particular dislocations belonging to the −30o inclined slip system, still suppress PT and result

in almost constant difference in concentrations of HPP.

Figure 8: (color online) Phase concentration vs. time for p = 1.59 and γ = 0.35 with and
without plasticity in the right grain.

3. Averaged pressure and shear stress

The averaged pressure p̄ = −0.5(σ̄x+ σ̄y) and shear stress τ̄ over the right grain are plotted vs.

time and also vs. concentration in Figs. 9 and 10, respectively. After the concentration reaches

some small value, p̄ linearly decreases in time until t = 11.5, and then gradually decreases until

it reaches the stationary value. Pressure p̄ at each time step for the case without plasticity

is lower than that of the case with plasticity, and their difference increases with times. This

is due to the larger transformed region, which causes a larger reduction in volume, resulting

in lower pressure. However, p̄ for the case without plasticity is higher than that of the case

with plasticity for the same concentration of HPP (Fig. 10). This is reasonable because even

though the same concentration of HPP corresponds to the same reduction in volume, there is

additional relaxation due to dislocation generation, which reduces pressure as well. For both

cases, p̄ linearly decreases with concentration with almost the same slope.

Averaged shear stress τ̄ , after the concentration reaches some small value, linearly decreases

vs. time until t = 11.5, and then it gradually decreases until it reaches the stationary value,
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Figure 9: (color online) Pressure averaged over right grain vs. time and the concentration of
high-pressure phase under p = 1.59 and γ = 0.35 in the right grain with and without plasticity.
With plasticity, pressure is higher for the same time but lower for the same concentration of
high-pressure phase.

Figure 10: (color online) Shear stress averaged over right grain vs. time and concentration of
high-pressure phase under p = 1.59 and γ = 0.35 in the right grain with plasticity and without
it.

similar to the averaged pressure. Shear stresses τ̄ with and without plasticity in the right grain

are practically the same for t < 11.5; later, their difference increases with time. In contrast to p̄,

stress τ̄ without plasticity is higher than with plasticity for the same time and concentration.

This is because of additional relaxation of shear stresses with dislocations appearance and

motion in the right grain while additional volume reduction does not affect shear stresses

significantly. Similar to p̄, shear stress τ̄ linearly decreases with concentration with almost the

same slope for both cases.

The key points in these results are:

(a) Before PT, due to dislocation pile-up as well as the small size of the grains, not only

local but also an averaged pressure over the right grain drastically increase from the average
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pressure over the entire sample p̄ = 1.59 to 4.46. Similarly, the average shear stress over the

grain increases from the average shear stress over the entire sample τ̄ = 5.83 to 7.85.

(b) During PT, pressure drops to zero and then become tensile with the maximum mag-

nitude of −1.43. The reason is the large volume reduction due to PT. While shear stress

relaxes due dislocation activity and PT, its stationary value is 3, i.e., is quite large. This is

a manifestation of the grain-size dependence of the yield strength due to the limited number

of dislocations that can appear within small grains. Also, the yield strength increase from

τ cA = 1.2 in LPP to τ cM = 3.6 in HPP, which occupies the major part of the transforming grain.

D. Phase transformation at p = 5

1. Dislocation and phase structures

For the pressure p = 5, the first HPP nucleation occurs near the tip of the dislocation pile-up at

shear γ = 0.3 creating 6 dislocations. The evolution of the HPP and dislocations is presented

in Fig. 11 until the stationary solution is reached. During growth of HPP region, the number

of dislocations in both grains increases. Nucleation starts from two places. However, the HPP

region at the intersection of dislocations and the right grain boundary disappears (similar to

the problem at p = 1.59), but in contrast to the case at p = 1.59, dislocations move back from

the right boundary and one pair of dislocations disappears. In the absence of plasticity in the

right grain, the nucleation and evolution occur from a single place; however, the stationary

nanostructure is not much different from that with plasticity (Fig. 12). Also, for the lower

shear γ = 0.25, 4 dislocations in the left grain are generated, causing dislocation nucleation

within the ±300 inclined slip systems in the right grain, but HPP appears at the intersection

of the dislocations within the −300 inclined slip system and right grain boundary only, similar

to Fig. 6a for p = 1.59.

2. Concentration of the high pressure phase

The concentration of HPP c vs. time is presented in Fig. 13. The concentration for the

case without plasticity is higher than that with plasticity in the right grain during evolution;

however, in contrast to that for p = 1.59, their difference disappears for larger times, resulting
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Figure 11: (color online) Evolution of the high pressure phase and dislocations under p = 5
and γ = 0.3 with plasticity in the right grain.

Figure 12: (color online) Evolution of the phase and dislocations under p = 5 and γ = 0.3
without plasticity in the right grain.

in a similar stationary concentration 0.8 for both cases. Also, after the concentration reaches

some initial small value, similar to that for p = 1.59, it linearly increases in time until it reaches

c = 0.5 with plasticity and c = 0.6 without plasticity. For larger time, c increases gradually
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for both cases with plasticity and without it toward the stationary value.

Figure 13: (color online) Phase concentration vs. time p = 5 and γ = 0.3 with and without
plasticity.

Figure 14: (color online) Average pressure vs. time and the high pressure phase concentration
under p = 5 and γ = 0.3 in the right grain with and without plasticity.

Figure 15: (color online) Average shear vs. time and the high pressure phase concentration
under p = 5 and γ = 0.3 in the right grain with and without plasticity.

3. Averaged pressure and shear stress
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The averaged pressure p̄ and shear stress τ̄ are plotted vs. time and also concentration in Figs.

14 and 15, respectively. After the concentration reaches some small initial value, both p̄ and τ̄

linearly decrease with time until t = 11, and then they gradually decrease until they reach the

stationary value. The difference between p̄ and τ̄ for the cases with and without plasticity is

very small for t < 11.5, but then, it increases in time. Both p̄ and τ̄ almost linearly decrease

with HPP concentration for cases both with and without plasticity.

In contrast to the problem with p = 1.59, p̄ for the case without plasticity vs. time is higher

than with plasticity. However, similar to the problem with p = 1.59, p̄ vs. concentration for

the case without plasticity is higher than that of the case with plasticity.

In contrast to p̄, τ̄ for the case without plasticity is lower than with plasticity for the same

time. However, similar to the problem with p = 1.59, τ̄ for the case without plasticity is higher

than with plasticity for the same concentration. Both p̄ and τ̄ vs. HPP concentration are

almost the same for zero and stationary c for cases with and without plasticity in the right

grain, but for intermediate c both stresses with plasticity are lower due to additional stress

relaxation.

The stationary pressure is larger for p = 5 than for p = 1.59 and is compressive. The curve

for shear stress vs. time and HPP concentration is slightly lower for p = 5 than for p = 1.59

due to smaller shear.

VI. TRANSFORMATION WORK BASED ANALYSIS

Here, the stationary geometry of the HPP region and HPP concentration will be interpreted

utilizing approximate thermodynamic equilibrium conditions across a stationary phase inter-

face and values of the transformation work averaged over HPP region and entire transformed

grain. The interface energy will be neglected, and transformation work will be evaluated based

on small-strain theory. This is done for simplicity, and validity of these assumptions will be

justified by obtained results. The local phase equilibrium condition for each interface point of

the plastically deformed material in the deformed state, when elastic properties do not change,

is based on the transformation work, as it was justified in [18, 19, 22, 29]:

σσσ:::εεεt = ∆Gθ(θ) = A0(θ − θe)/3. (22)
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An alternative approach based on utilizing the Eshelby driving force (i.e., total work, including

plastic work) [10, 23, 24, 25], was criticized in [29]. Distribution of the transformation work

σσσ:::εεεt is determined with the help of stress and transformation strain tensor fields. Then, for

the chosen temperature θ = 298K, Eq. (22) defines the contour lines along which the phase

equilibrium criterion is met. Also, to check possibility of description of phase equilibrium

conditions in terms of the transformation work averaged over the transformed grain area,

< ... >M= 1
VM

∫
...dVM , and total grain area, < ... >0=

1
V0

∫
...dV0, we define

Wt =
1

V0

∫
σσσ:::εεεt(η)dV0 '

1

V0

∫
σσσ:::εεεtdVM =< σσσ:::εεεt >M c =< σσσ >M :::εεεtc; (23)

W ∗
t =

1

V0

∫
σσσ:::εεεtdV0 =< σσσ:::εεεt >0'< σσσ >0 :::εεεt. (24)

We used that the phase interface thickness is much smaller than the size of the HPP region

(which is true for relatively large c) and that εεεt(η) is homogeneous in the HPP region and

equal to zero outside of it. In the definition of W ∗
t , we used the same stress distribution and

assumed that transformation strain is homogeneous in the entire grain. In contrast to Wt, the

definition of W ∗
t does not require knowledge of the transformed regions, just resultant stress

fields.

Figure 16: (color online) Stationary phase state and contour lines of the equilibrium transfor-
mation work (σσσ:::εεεt = ∆θG(θ) = 0.608) for case 1 without (a) and with plasticity (b), and for
case 2 without (c) and with plasticity (d).

The stationary distribution of HPP and contour line of the equilibrium value of PT work

are plotted in the right grain for problems with and without plasticity for two different cases:

one under p = 1.59 and γ = 0.35 (case 1) and the other under p = 5 and γ = 0.3 (case 2)
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Table 1
Without plasticity With plasticity
case 1 case 2 case 1 case 2

c 0.797 0.824 0.762 0.813
∆θG(θ) 0.608 0.608 0.608 0.608
< σσσ >M :::εεεt 0.665 0.757 0.591 0.723
< σσσ >0 :::εεεt 0.661 0.733 0.608 0.707
Wt 0.531 0.625 0.451 0.588
W ∗
t 0.663 0.731 0.609 0.706

Wt/ < σσσ >M :::εεεt 0.798 0.826 0.763 0.813
< σσσ >0 :::εεεt/∆

θG(θ) 1.087 1.205 1 1.163
Wt/W

∗
t 0.799 0.855 0.741 0.833

(< σσσ >0 :::εεεt)vol -0.286 -0.247 0.202 0.239
(< σσσ >0 :::εεεt)dev 0.949 0.856 0.53 0.459

(Fig. 16). Also, the parameters ∆Gθ(θ), c, Wt, W
∗
t , < σσσ >0 :::εεεt, < σσσ >M :::εεεt, the volumetric

and deviatoric parts of < σσσ >0 :::εεεt, as well as normalized parameters Wt/ < σσσ >M :::εεεt and

< σσσ >0 :::εεεt/∆G
θ(θ), calculated for the problems without and with plasticity for both cases 1

and 2, are presented in Table 1.

Figure 17: (color online) Comparison of the time dependence of the HPP concentration c and
the ratio Wt/W

∗
t in the right grain without plasticity (a) and with plasticity (b) under the

pressure p = 1.59 and the shear γ = 0.35.

The following noteworthy results are obtained.

(a) The concentration of HPP c is approximately equal to the parameter Wt/W
∗
t , see Table

1 for stationary values, Fig. 17 for time evolution, and Fig. 18 for different concentrations c

for pressure p = 1.59 and the shear γ = 0.35. The values of these parameters are closer when
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Figure 18: (color online) The ratio Wt/W
∗
t vs. the HPP concentration c in the right grain

with and without plasticity under the pressure p = 1.59 and the shear γ = 0.35. The line
Wt/W

∗
t = c is plotted for comparison.

plasticity in the right grain is neglected.

(b) Consequently, averaged transformation works, < σσσ >M :::εεεt and < σσσ >0 :::εεεt, are quite

close as well. This means the approximate equality of two averaged stress tensors, < σσσ >M'<

σσσ >0. This is surprising because of the very heterogeneous stress field, but it is in agreement

with the results obtained for the shear-induced PT without pressure [8].

(c) As can be seen from Fig. 16, the contour lines corresponding to σσσ:::εεεt = ∆θG(θ) are close

to the phase interfaces almost everywhere, both with and without plasticity. This was quite

an unexpected result taking into account strong heterogeneity of all fields, significant internal

stresses, and strong stress concentrators. All deviations are near intersections of the phase

interface with the grain boundaries and phase interfaces coinciding with the grain boundaries,

which creates an additional driving force for moving the triple junctions.

(d) While generally < σσσ >0 :::εεεt is not equal to ∆θG(θ), the difference is within 9% for

case 1 and within 20% for case 2. The perfect coincidence is for case 1 with plasticity in the

transforming grain. Transformation work < σσσ >M :::εεεt has a larger deviation from ∆θG(θ)

than < σσσ >0 :::εεεt. This approximate equality will allow us to develop in future approximate

methods of nano- to microscale coarse graining approach and microscale averaged description
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of strain-induced PTs in terms of microscale phase equilibrium criterion < σσσ >0 :::εεεt ' ∆θG(θ)

and concentration c. Current microscale description [6, 93, 115] do not include detailed nano-

to macroscale transition and can definitely benefit from the current results. Note that the

difference between < σσσ >0 :::εεεt and ∆θG(θ) increases with pressure and was very small for zero

pressure in [8].

(e) Stationary phase interfaces contain no dislocations or only a single dislocation, despite

large plastic deformation in the transforming grain. This, however, corresponds to some ex-

periments [101, 102] where the major part of the interfaces was dislocation-free (i.e., coherent)

after large plastic deformations utilizing high pressure torsion.

(f) Decomposing transformation work < σσσ >0 :::εεεt = − < p >0 ε0t+ < SSS >0 :::eeet into

work of pressure and deviatoric stress < SSS >0, where ε0t = −0.1 and eeet is the volumetric

and deviatoric parts of the transformation strain, we can analyse their relative contributions

(Table 1). In all cases, the contribution of the deviatoric transformation work is significantly

larger than the work of pressure. In fact, for p = 1.59 without plasticity in the transforming

grain, the contribution of pressure is even negative due to its drop to negative values caused by

volumetric transformation strain (Figs. 9). Thus, in contrast to earlier statements in [6, 93],

where contribution of applied shear stresses to the transformation work was negligible, for the

given PT and nanograined material, the effect of the averaged shear stresses is the major one.

This is because of relatively low applied pressure, a large transformed region and corresponding

local pressure drop, and higher yield strength due to grain size effect and relatively high yield

strength of the HPP.

Figure 19: (color online) Transformation work vs. time and the high pressure phase concen-
tration under p = 1.59 and γ = 0.35 in the right grain with and without plasticity.
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Figure 20: (color online) Transformation work vs. time and the high pressure phase concen-
tration under p = 5 and γ = 0.3 in the right grain with and without plasticity in the right
grain.

Figure 21: (color online) W ∗
t vs. time for p = 1.59 and γ = 0.35 (a) and for p = 5 and γ = 0.3

(b) in the right grain with and without plasticity.

The transformation work Wt vs. time and concentration is presented in Fig. 19 for p = 1.59

and in Fig. 20 for p = 5, for both cases with and without plasticity in the right grain. As

can be seen, for p = 1.59 Wt increases almost linearly in time until t = 11 when it reaches the

concentration c = 0.49 without plasticity and c = 0.4 with plasticity. Then, it grows slower

until reaches its maximum value at t = 11.25 with Wt = 0.7 without plasticity and Wt = 0.6

with it at the same concentration c ' 0.6. In the following, transformation work gradually

decreases until it reaches the stationary value Wt = 0.52 without plasticity and Wt = 0.45

with plasticity. The transformation work Wt also initially increases with concentration for

both cases, with reduced rate, until it reaches its maximum value at c ' 0.6 and decreases

toward its stationary solution. It is evident that plasticity in the transforming grain reduces

transformation work due to stress relaxation. The difference between values Wt for cases

without and with plasticity increases until it reaches maximum at t = 11.25, and then it
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becomes almost constant until the stationary solutions are reached. The same plots in Fig. 20

for p = 5 are qualitatively similar but with slightly larger maximum and stationary values of

transformation work. Interestingly, the maximum of Wt is reached at the same time and HPP

concentration as for both applied pressures.

The transformation work W ∗
t is plotted vs. time in Fig. 21 for p = 1.59 and γ = 0.35 (a)

and for p = 5 and γ = 0.3 (b) based on results for average stresses in Figs. 9, 10, 14, and

15. As can be seen, the plot W ∗
t vs. time repeats the character of plots for averaged pressure

and shear stress vs. time, i.e., it has a maximum at the beginning when stress concentration

due to dislocation pile-up and applied stresses did not start relaxing, at reduces in time due

to stress relaxation due to PT and dislocations. The transformation work W ∗
t is very close for

both cases with and without plasticity in the right grain. Thus, the difference between Wt for

both cases is proportional to the difference between corresponding HPP concentrations at the

same time. As shown in Fig. 8, the difference between the concentrations with and without

plasticity initially increases until the maximum transformation work is reached then decreases

and becomes constant; the same is observed for Wt vs. time (Fig. 19).

VII. MINIMUM SHEAR AND NUMBER OF DISLOCATIONS IN A PILE-UP

FOR HPP NUCLEATION

As it was shown above, the least number of dislocations in a pile-up in the left grain re-

quired to nucleate HPP in the presence of ±30o inclined dislocations in the right grain, and

corresponding applied shear, were found for three pressures 0, 1.59, and 5. Also, under the

hydrostatic conditions, we accepted one dislocation per two nanograins and obtained ph = 15.9

for HPP nucleation. The required number of dislocations in the left grain for HPP nucleation

and corresponding applied shear are plotted vs. the applied normal stress in Figs. 22 and 23,

respectively. The number of dislocations required for HPP nucleation linearly decreases with

increasing pressure, which is in agreement with our analytical estimates in [6, 93]. However,

the required shear first surprisingly increases when pressure increases from 0 to 1.59, and then

it linearly decreases, as expected. Note that if for p = 1.59 we take into account that at γ = 0.3

HPP nucleation does occur in the right grain (while not at the tip of dislocation pile-up lo-

cated in the left grain, see Section 5.3), we obtain that critical shear strain for HPP of 0.3 is
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the same in the pressure range from 0 till 5. Due to complex interaction between plasticity

in both grains and PT, it is difficult to give a simple interpretation of this nonmonotonous

dependence or independence of the critical shear for HPP nucleation on pressure. Note that

the stationary concentration of HPP, after fulfilling the nucleation condition, increases with

increasing pressure in the pressure range from 0 till 5.

Figure 22: (color online) The least number of dislocations piled up in the left grain vs the
applied pressure to nucleate HPP in the right grain.

Figure 23: (color online) The minimum applied shear strain vs. the applied pressure to nucleate
HPP in the right grain: (a) HPP nucleation only at the tip of dislocation pile-up located in
the left grain, (b) HPP nucleation at any place in the right grain.

VIII. THE EFFECT OF THE RATIO OF KINETIC COEFFICIENTS FOR

PHASE TRANSFORMATION AND DISLOCATION EVOLUTION ON THE
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NANOSTRUCTURE EVOLUTION

Figure 24: (color online) The phase and dislocations solution at t = 0.75 under p = 5 and
γ = 0.3 with 5 times larger Lξ = 5× 104(Pa · s)−1 (Lη/Lξ = 0.052). High pressure phase does
not nucleate.

Figure 25: (color online) Evolution of the dislocations under p = 5 and γ = 0.3 with plasticity
in the right grain for smaller Lξ = 2600 (Lη/Lξ = 1).

It is qualitatively clear that the ratio of kinetic coefficients for PT and dislocations Lη/Lξ
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determine the relative rate of these two competing processes and consequently affects the nanos-

tructure evolution. However, does Lη/Lξ affect the stationary solution and nanostructure? A

priori guess would be does not, because stationary Ginzburg-Landau equations for PT and dis-

locations do not even include Lη and Lξ. To elucidate this effect, the same interaction problem

at p = 5 and γ = 0.3 and the same PT kinetics coefficient but with different kinetics coefficients

for dislocations are solved. In addition to solutions in Fig. 11 with Lη/Lξ = 2600/10000 = 0.26,

we considered 5 times larger kinetics coefficient for dislocations, i.e. Lη/Lξ = 0.052, and an-

other one with the same kinetics coefficients for both PTs and dislocations, Lη/Lξ = 1. For

the smaller ratio Lη/Lξ = 0.052, in contrast to the previous solution with Lη/Lξ = 0.26 (Fig.

11), HPP does not nucleate, and only dislocations are generated and evolve. Fig. 24 shows the

corresponding nanostructure at t = 0.75. As can be seen, the number of dislocations is larger

than that in the problem with a lower kinetics coefficient, stresses in the right grain relax much

faster by dislocation generation, and they are not sufficient to nucleate the HPP. For the larger

Lη/Lξ = 1 (Fig. 25), growth of HPP is faster in comparison to that at Lη/Lξ = 0.26 (Fig. 11)

resulting in a larger concentration c and a smaller number of dislocations. For example, the

stationary solution for Lη/Lξ = 0.26 contains 9 dislocations in the left grain, 4 dislocations

in the +30o inclined slip plane, and 2 dislocations in the −30o inclined slip plane in the right

side, while for Lη/Lξ = 1, it contains 7 dislocations in the left grain, 4 dislocations in the +30o

inclined slip plane, and 1 dislocation in the −30o inclined slip plane in the right side. Also,

no HPP appears near the tip of the −30o inclined slip plane at its right end because a −30o

inclined dislocation cannot reach the right end due to the smaller kinetic coefficient and cannot

create any stress concentration before it reaches the stationary solution.

Thus, an increase in the ratio Lη/Lξ, first allows HPP to nucleate and, second, it allows PT

to take over dislocations in the stress relaxation process, reducing the number of dislocations

and increasing the HPP zone. Surprisingly, in contrast to our natural guess, the stationary

solution does depend on Lη/Lξ. That means that there are multiple stationary solutions for

the same p, γ and transformation and plastic deformation processes are path-dependent.

IX. LACK OF THE SAMPLE SIZE EFFECT IN THE INTERACTION

BETWEEN PHASE TRANSFORMATION AND DISLOCATIONS
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To study the effect of the sample size, we considered the same sample with two times larger

sizes, i.e. 120× 120, and with all subdomains proportionally enlarged. To be able to compare

with an analytical solution [6, 93] for nucleation of HPP at the tip of dislocation pile-up in an

infinite space, we solved the same problem as above for only PT (no plasticity inside the right

grain) under pressure 1.59 and two different values of shear, γ = 0.2 and γ = 0.35. Fig. 26

presents the corresponding stationary solutions for both sizes and two different applied shears.

As can be seen, for γ = 0.2, the number of dislocations for the smaller and larger samples

reach 6 and 8, respectively. In the analytical solution [6, 93], local stresses at the tip of the

dislocation pile-up are proportional to the number of dislocations, and we observed the same

in our simulations. However, the average pressure and shear stress, and the concentration

of HPP are very close for both sizes. For the smaller size, p̄ = 3.16 and τ̄ = 4.53 before

HPP nucleation, and p̄ = −0.01, τ̄ = 1.93, and c = 0.48 for the stationary solution. For the

larger size, p̄ = 3.22 and τ̄ = 4.48 before HPP nucleation, and p̄ = −0.07, τ̄ = 1.89, and

c = 0.47 for the stationary solution. Thus, the larger grain size results in more dislocations

and, consequently, higher stress concentration, but due to the larger area of the transforming

grain and larger distance from the tip of dislocation pile-up, the results do not change. The

same is observed for γ = 0.35. Here, the number of dislocations for the smaller and larger

samples reached 9 and 14, respectively. For the smaller size, p̄ = 4.46 and τ̄ = 7.84 before

HPP nucleation, and p̄ = −1.43, τ̄ = 3.16, and c = 0.80 for the stationary solution. For the

larger size, p̄ = 4.52 and τ̄ = 7.86 before HPP nucleation, and p̄ = −1.3, τ̄ = 3.2, and c = 0.79

for the stationary solution. Thus, obtained results are independent of the size of the sample.

Let us compare some results with an analytical solution [6, 93]. One of the points of solution

for stresses is that at fixed applied (averaged) shear stress τ̄ , the ratio N/l of the number of

piled up dislocations to the dislocation pile-up length is constant. Since N changes with

the sample size, the length of the pile-up should change proportionally, i.e., N l/N s = l l/l s,

where superscripts s and l stand for smaller and larger sizes, respectively. For γ = 0.35,

l s = 13.2 (determined in the undeformed configuration), N s = 9, l l = 17.6, and N l = 13.

Thus, l l/l s = 1.3 and N l/N s = 1.4, which are quite close. However, for γ = 0.2, we obtained

l s = 8.2, N s = 6, l l = 18.2, and N l = 8, which gives l l/l s = 2.2 and N l/N s = 1.3. These

results do not correspond to analytical predictions for an infinite space.
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Also, according to the analytical solution, the combination N/(l τ̄) should be a constant

independent of the applied shear stress τ̄ . In our simulations, for γ = 0.35, N s/(l sτ̄ s) ' 0.19

and N l/(l lτ̄ l) = 0.2, which is close, but for γ = 0.2 one has N s/(l sτ̄ s) ' 0.36, N l/(l lτ̄ l) = 0.21,

which is not.

In addition, in analytical solution [6, 93], the same transformation pressure for the same

applied shear stress τ̄ is obtained when the ratio l/R is constant, where R is the largest size of

the box-shape HPP nucleus with large aspect ratio. In our simulations, due to finite grain size,

the largest size of nucleus is fully determined by the grain size, and stationary nucleus geometry

is not determined by the dislocation pile-up (like in [6, 93]), but by a constraint imposed by

the grain size and shape. One may assume that the same transformation pressure for the

same applied shear stress τ̄ should correspond to the same ratio l as the grain or sample size.

However, while sample size changed by a factor of 2, l l/l s = 1.57, i.e., there is no geometric

similarity. This means that due to significant difference between problem formulation in [6, 93]

and here, not all quantitative conclusions can be transferred. Nevertheless, our results show

the lack of the sample-size effect on the averaged stresses, concentration of HPP and geometry

of the HPP, which is unexpected and therefore quite valuable.

Figure 26: (color online) Stationary solutions for two different sample sizes of 120 × 120 (a)
and 60× 60 (b), and two different applied shears γ = 0.2 (1) and γ = 0.35 (2).

X. CONCLUDING REMARKS
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In the paper, the general PFA for the interaction between PT and dislocation evolution de-

veloped in [62] is applied for FEM simulations of the pressure and shear strain-induced phase

transformation coupled with plasticity in a bicrystal at the evolving dislocations pile-up in

the left grain. The slip system of the LPP (or HPP) transformed during a PT to HPP (or

LPP) coincide with slip systems of HPP (or LPP). The lowest pressure at which HPP nucleus

appears under hydrostatic conditions was determined to be 15.9 GPa. To study the pressure

and shear-induced PTs, three different pressures (0, 1.59 GPa, 5 GPa) were considered. Due

to applied shear, dislocations nucleate in the left grain, after which they pile-up near grain

boundaries and produce a strong stress tensor concentrator, which leads to the increase in

the local thermodynamic driving force for PT in the region near the dislocation pile-up tip

and causes barrierless HPP nucleation in the right grain. Surprisingly, a HPP nucleus appears

even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain

transforms to HPP. This conceptually proves that the dislocation pile-up mechanism is able

to reduce PT pressure due to applied shear by an order of magnitude, as it was observed in

experiments [6, 93, 96, 114]. When dislocations in the right grain are included, they relax

stress concentration, which reduces stresses, the driving force for PT and, consequently, HPP

concentration. Plasticity in the right grain not only slightly suppresses PT but also increases

the number of dislocations in the pile-up in the left grain. Generally, the effect of plasticity in

the transforming grain on the growth stage and stationary solution under current boundary

conditions at the lateral surface (applied normal stress) is less pronounced than for periodic

boundary conditions in [64]. However, plasticity in the transforming grain strongly increases

the number of dislocations in the pile-up required for nucleation of the HPP and corresponding

shear.

For each applied pressure, the least number of dislocations and corresponding applied shear

required to cause nucleation were found. The least number of dislocations in a pile-up to

nucleate HPP linearly decreases with increasing applied pressure. However, the minimum

applied shear to nucleate HPP changes nonmonotonously with increased applied pressure. The

final stationary HPP morphology and concentration for cases both with and without plasticity

in the transforming grain are found to be governed by the simplest local thermodynamic

equilibrium at the interfaces, i.e., by local transformation work (see Eq. (22)). Plastic work
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does not contribute to the phase equilibrium, which corroborates macroscale approaches in

[9, 18, 19, 22, 26, 27, 28, 29] and contradicts the approach based on the Eshelby driving force

[10, 24]. Also, stationary nanostructure can be approximately described by the thermodynamic

equilibrium conditions in terms of stresses averaged over the HPP region or the entire grain.

This means, in particular, the equality of the transformation work at the points of phase

interface and in terms of averaged stresses over the HPP and over the entire grain, which is

very nontrivial considering the high stress concentration and heterogeneity.

These results are very unexpected also because we neglected interface energy and athermal

interface friction. They give exactly the opposite picture in comparison with the previous stud-

ies [6, 93], where it was stated that phase equilibrium conditions do not enter the macroscopic

(averaged) description of strain-induced PTs. The reason is in consideration of much smaller

scale here than in the microscale and macroscale treatments in [6, 93].

In particular, we found that, in a stationary state, the major part of the interface is

dislocation-free (i.e., coherent), which is in accordance with some experiments [101, 102]. Since

here dislocations near the interface provide the only source of the athermal interface friction,

this explains lack of the athermal friction in the obtained phase equilibrium conditions.

It was also found that the contribution of the deviatoric transformation work is significantly

larger than the work of pressure. In fact, for p = 1.59, an averaged pressure and its contribution

to the transformation work are even negative due to compressive volumetric transformation

strain. This is in contrast to earlier statements in [6, 93], where the contribution of applied

shear stresses to the transformation work was negligible. This is caused by a relatively low

applied pressure and higher yield strength due to grain size effect and due to stronger HPP

than the LPP.

Also, in the nanograin material, the region with a strong stress concentrator is comparable

with the entire grain, which leads to a large transformed region, relaxing stress concentration.

With allowed plasticity in the transformed grain, stresses further relax and become more

homogeneous.

Surprisingly, the ratio of kinetic coefficients for PT and dislocations affects the stationary

solution and nanostructure despite the fact that they do not explicitly participate in the formu-

lation of the stationary problem. Consequently, there are multiple stationary solutions under
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the same applied load and PT, and deformation processes are path dependent. The faster the

dislocations are in comparison with PT, the larger number of dislocations appears and stress

relaxation causes reduction in the HPP region. In particular, at p = 5 and γ = 0.3 with 5

times larger Lξ = 5×104(Pa ·s)−1 (Lη/Lξ = 0.052), the HPP does not nucleate. By increasing

the size of the sample by a factor of two, no effect was found on the averaged pressure and

shear stress and HPP nanostructure, despite the larger number of dislocations in a pile-up for

a larger sample and, consequently, larger local stresses.

Obtained results represent a nanoscale basis for understanding and description of PTs under

compression and shear in rotational diamond anvil cell and high pressure torsion. It will be

used for developing microscale kinetics as a result of a nano- to microtransition. Since the

main results of the current nanoscale treatment are quite different from those in [6, 93, 115],

microscale equations will be different as well. New microscale equations will substitute the

current model in the macroscale studies of the behavior of a sample in RDAC, see [116, 117,

118, 119]. Also, a similar approach for the interaction between PT and plasticity is important

and can be applied for studying friction, indentation, surface treatment, ball milling, and

projectile penetration.

It is clear that some quantitative results obtained here (e.g., evolution of concentration of

the HPP) will be changed when a more precise 3D formulation is used. However, we believe

the following main important qualitative findings will remain the same: (a) fulfilment of the

simplest local thermodynamic equilibrium condition Eq. (22) for most of the points of the

interface; (b) approximate fulfilment of the same thermodynamic equilibrium condition with

the stresses averaged over the transformed region or the entire grain and possibility of utilizing

these criterion for coarse graining at the microscale; (c) prevailing the deviatoric contribution

to the transformation work over the contribution due to the hydrostatic pressure; (d) possibility

of reducing the transformation pressure by an order of magnitude and in some cases down to

zero; (e) the presence of multiple stationary dislocation and phase structures under the same

conditions that depend on the ratio of the kinetic coefficients for dislocation evolution and

PTs; (f) lack of the scale effect for the interaction between PTs and plasticity. Five of the

six results were not reported in [64], and the sixth one was reported partially (without zero

pressure).
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