
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exact formulas for radiative heat transfer between planar
bodies under arbitrary temperature profiles: Modified

asymptotics and sign-flip transitions
Riccardo Messina, Weiliang Jin, and Alejandro W. Rodriguez
Phys. Rev. B 94, 205438 — Published 28 November 2016

DOI: 10.1103/PhysRevB.94.205438

http://dx.doi.org/10.1103/PhysRevB.94.205438


Exact formulas for radiative heat transfer between planar bodies under arbitrary
temperature profiles: modified asymptotics and sign-flip transitions

Riccardo Messina,1 Weiliang Jin,2 and Alejandro W. Rodriguez2

1Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F- 34095 Montpellier, France
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We derive exact analytical formulas for the radiative heat transfer between parallel slabs separated by vacuum
and subject to arbitrary temperature profiles. We show that, depending on the derivatives of the temperature at
points close to the slab–vacuum interfaces, the flux can exhibit one of several different asymptotic low-distance
(d) behaviors, obeying either 1/d2, 1/d, or logarithmic power laws, or approaching a constant. Tailoring the
temperature profile within the slabs could enable unprecedented tunability over heat exchange, leading for in-
stance to sign-flip transitions (where the flux reverses sign) at tunable distances. Our results are relevant to the
theoretical description of on-going experiments exploring near-field heat transfer at nanometric distances, where
the coupling between radiative and conductive heat transfer could be at the origin of temperature gradients.

I. INTRODUCTION

Two bodies held at different temperatures and separated by
vacuum can exchange energy radiatively. At distances dmuch
smaller than the thermal wavelength λT = ~c/kBT , such ra-
diative heat transfer (RHT) can be orders-of-magnitude larger
than the far-field theoretical limits predicted by Plancks law,
a consequence of evanescent tunneling [1]. This effect is fur-
ther enhanced in materials supporting polaritonic resonances,
leading to a well-known divergence ∼ 1/d2 of the flux with
decreasing vacuum gaps [2, 3]. Such a divergence has been
confirmed by experiments at sub-micron scales [4–15], but
has been observed and predicted to fail at sub-nanometric
distances [16, 17]. In particular, deviations from the 1/d2

power law have been predicted to arise in interleaved geome-
tries [18], as well as due to non-local damping [19, 20] or
acoustic phonon tunneling [21]. One unexplored mechanism
that could potentially modify RHT are temperature variations:
at nanometer gaps (now within experimental reach [13, 17]),
the interplay between RHT and conduction can produce tem-
perature gradients within objects [22, 23], requiring full ac-
count of such effects within the quantum-electrodynamics
framework [24].

In this work, we derive exact analytical formulas for the
RHT between two parallel slabs subject to arbitrary tempera-
ture profiles and demonstrate the existence of several asymp-
totic low-distance d behaviors: depending on the values and
derivatives of the temperature profile at points near the slab–
vacuum interfaces, the flux can diverge as 1/d2, 1/d, or loga-
rithmically, or approach a constant, as d → 0. We show that
the temperature profile of the slabs can be tailored so as to
modify and even reverse the direction of the flux over tunable
distances. As described in [22], such temperature gradients
can naturally arise due to the interplay of conduction and ra-
diation at nanometric scales, leading to constant (rather than
diverging) flux rates as d→ 0, even in the absence of phonon
or non-local tunneling effects [20, 21]. The impact of temper-
ature profile on the properties of RHT remains so far almost
unexplored. This tunability could be indeed relevant for the
design of thermal devices, such as for example memories [25]
and thermal rectifiers [26], where the ability to tune the flux
dependence on temperature and separation is very important.

FIG. 1. Schematic of two parallel slabs separated by a distance d
along the z direction. The two slabs are subject to a temperature
profile T (z). Panel (a) depicts the general case of an arbitrary T (z),
whereas (b) illustrates a configuration in which the temperatures in
the regions z ≤ −d/2 − a and z ≥ d/2 + b are held at TL and
TR, with Ta and Tb denoting the temperatures at the left and right
slab–vacuum interfaces, respectively.

II. GENERAL FORMULAS

Consider two semi-infinite co-planar slabs a distance d
apart and subject to a position-dependent temperature profile
T (z), represented in Fig. 1(a). The RHT between the slabs
is derived within the framework of the scattering-matrix for-
malism developed in [27, 28], used previously to describe the
Casimir force and RHT in presence of two and three bodies.
The first step in our derivation is to express the correlation
functions of the electric fields emitted by a single body at tem-
perature T in terms of the reflection and transmission opera-
tors of this body. In contrast to [27], our scenario requires
that we apply such a scheme to a film of infinitesimally small
thickness dz at a position z of one of the two slabs. The to-
tal field emitted by a slab can then be calculated as the sum
of these individual fields, including contributions of multiply
reflected and transmitted fields from the other portions of the
slab, following Refs. [27, 28]. Once the field emitted by each
slab is statistically characterized, the total field in the vacuum
gap can be deduced, allowing us to obtain the Poynting vector
or flux per unit area in the gap.

The first step in our derivation is the characterization of the
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fields emitted by each body, and their correlation functions.
Assuming local thermal equilibrium, the statistical properties
of the fields radiated by each body depend only on the local
temperature within the object. Given a source of thermal fluc-
tuations, the quantity of interest is the symmetrized average
〈Eφp (k, ω)Eφ

′†
p′ (k′, ω′)〉, where p denotes the polarization, φ

the propagation direction along the z axis, k the component of
the wavevector orthogonal to the z axis, and ω the frequency,
restricted here to positive values.

FIG. 2. In the upper part, schematic of one slab having a position-
dependent temperature T (z). The slab occupies the region [z1, z2]
and the element from z to z + dz produces the field E0. The total
field emitted by the slab on the left (right) side is E+ (E−). In the
lower part, two slabs having a temperature profile T (z) and placed at
distance d. The slab on the left (right) side produces a field E1 (E2),
while the total field inside the cavity has amplitudes E±

T .

Equations (45) and (46) of [27] characterize the correla-
tion function in terms of matrix elements of the reflection and
transmission operators at each object interface. In the case of
a slab, these matrix elements coincide with the well-known
Fresnel coefficients, modified to take into account the possi-
bility of finite slab thickness [28]. In order to incorporate the
possibility of varying temperature within a slab, we decom-
pose the slab in terms of infinitesimally thin films (see Fig. 2)
and apply these correlation formulas to an arbitrary film lo-
cated at z and having thickness dz. Specifically, given some
arbitrary position z, we replace the modified Fresnel coeffi-
cients with their first-order series expansion in terms of the

thickness dz of the corresponding film, given by:

ρφ ' −i2kzmr
1− r2

e−2iφkzzdz,

τφ ' 1− i
(
kz − kzm

1 + r2

1− r2
)
dz,

(1)

where kz (kzm) is the z component of the wavevector in vac-
uum (or the medium), and r is the ordinary Fresnel coefficient.
It follows that the correlation function of the field E0 emitted
by the film is given by:

〈Eφ0,p(k, ω)Eφ
′†

0,p′(k
′, ω′) =

ω dz

2ε0c2
N [ω, T (z)](2π)3δ(ω − ω′)

× δ(k− k′)δpp′Fφφ
′

0,p (k, ω).

(2)

More precisely, the field correlations involving waves travel-
ing in the same (φ′− = φ) or opposite (φ′ = −φ) directions
are given by:

Fφφ0,p(k, ω) = Θ(ω − ck)
2

kz
Im
(
kzm

1 + r2

1− r2
)

−Θ(ω − ck)
4

Im(kz)
Re
( kzmr

1− r2
)
e2φ Im(kz)z,

Fφ,−φ0,p (k, ω) = −Θ(ω − ck)
4

kz
Re
( kzmr

1− r2
)
e−2iφkzz

+ Θ(ω − ck)
2

Im(kz)
Re
(
kzm

1 + r2

1− r2
)
,

(3)

which are both diagonal with respect to ω, k, and p due to the
time- and translation-invariance characterizing the slab. Fur-
thermore, it is proportional to dz, and thus goes to zero in
absence of the film.

Equations (2) and (3) fully characterize the field E0 emit-
ted by the film. The counterpropagating components E± of
the total field can be expressed as the sum of the individual
contributions of each film, each of which experiences multiple
reflections and transmissions at slab interfaces. The contribu-
tion of a given film of thickness dz reads,E

+ = u(z)τ(z2 − z)
(
E+

0 + ρ(z − z1)e−2ikzzE−0

)
,

E− = u(z)τ(z − z1)
(
ρ(z2 − z)e2ikzzE+

0 + E−0

)
,

(4)
where ρ(δ) and τ(δ) are the reflection and transmission co-
efficients of a slab of thickness δ (defined as in [28]), and
u(z) = [1−ρ(z−z1)ρ(z2−z)]−1. In order to deduce the RHT
between the two slabs, we require the correlation functions for
co-propagating components 〈E+

1 E
+†
1 〉 and 〈E−2 E

−†
2 〉 emitted

by the two slabs (see Fig. 2). These can be easily obtained
from Eqs. (2), (3), and (4). Defining Fφφ

′

i,p (k, ω) for fields Ei
in each region (i = 1, 2), analogous to Eq. (2) for E0, we
obtain:



3

F++
1 =

∫ z2

z1

dz N [ω, T (z)]|τ(z2 − z)u(z)|2
[
F++

0 + ρ∗(z − z1)e2ikzzF+−
0 + ρ(z − z1)e−2ikzzF−+0 + |ρ(z − z1)|2F−−0

]
,

F−−2 =

∫ z4

z3

dz N [ω, T (z)]|τ(z − z3)u(z)|2
[
|ρ(z4 − z)|2F++

0 + ρ(z4 − z)e2ikzzF+−
0 + ρ∗(z4 − z)e−2ikzzF−+0 + F−−0

]
,

(5)

where for simplicity we have assumed that the two slabs are made of the same material.
Following Ref. [27], the flux through a unit area of the zz component of the Poynting vector in the vacuum region between

the two slabs can be expressed in terms of correlation functions of the total field ET between the two slabs as:

ϕ =
1

(2π)2

∑
p

∫ +∞

0

dω

[∫ ω
c

0

dk k
(
F++
T −F−−T

)
+

∫ +∞

ω
c

dk k
(
F+−
T −F−+T

)]
. (6)

with the total field ET itself written as the result of multiple reflections of E+
1 and E−2 as:E

+
T = u23

(
E+

1 ρ(z2 − z1)e−2ikzz2E−2

)
,

E−T = u23

(
ρ(z4 − z3)e2ikzz3E+

1 + E−2

)
,

(7)

being u23 = [1− ρ(z2 − z1)ρ(z4 − z3)e2ikzd]−1. The total correlation functions are therefore given by:

F++
T = |u23|2

(
F++

1 + |ρ(z2 − z1)e−2ikzz2 |2F−−2

)
,

F+−
T = |u23|2

(
ρ(z4 − z3)e2ikzz3F++

1 + ρ(z2 − z1)e−2ikzz2F−−2

)
,

F−+T = |u23|2
(
ρ(z4 − z3)e2ikzz3F++

1 + ρ(z2 − z1)e2ik
∗
zz2F−−2

)
,

F−−T = |u23|2
(
|ρ(z4 − z3)e2ikzz3 |2F++

1 + F−−2

)
,

(8)

The above expressions can be simplified in the case of two slabs of infinite thickness (z1 → −∞ and z4 → +∞), in which case
ρ(δ) becomes the ordinary Fresnel coefficient r. In Eq. (6) the flux is written as an integral ϕ =

∫ +∞
0

dω ϕ(ω), with the spectral
components at frequency ω = ck0 broken down into contributions from propagative waves (ω > ck) and evanescent (ω < ck)
waves. Using Eq. (8) and after algebraic manipulations we get the following results for propagative waves

ϕpw(ω) =
1

2π2

∫ k0

0

dk k
(1− |r|2)k′′zm
|1− r2e2ikzd|2

∫ +∞

0

dz e−2k
′′
zmz
{
N
[
ω, T

(
−d

2
− z
)]
−N

[
ω, T

(d
2

+ z
)]}

, (9)

and for evanescent waves

ϕew(ω) =
2

π2

∫ +∞

k0

dk k
(r′′)2e−2k

′′
z dk′′zm

|1− r2e−2k′′z d|2

∫ +∞

0

dz e−2k
′′
zmz
{
N
[
ω, T

(
−d

2
− z
)]
−N

[
ω, T

(d
2

+ z
)]}

, (10)

where N(ω, T ) = ~ω/[exp(~ω/kBT ) − 1] denotes the Planck energy of a thermal oscillator, and c′, c′′ denote the real and
imaginary parts of the complex number c. As expected, our expressions simplify in the limit of uniform temperature, reproducing
the typically derived formulas for RHT [1] (note that in addition to the spatial integral over the temperature profiles, our result
differs from the typical RHT formula by the extra factor k′′zm in the numerator).

III. ASYMPTOTIC BEHAVIOR

We are interested in studying the impact of temperature gra-
dients in the asymptotic limit d → 0, in which case RHT is
dominated by evanescent contributions from the transverse-
magnetic polarization. Taylor expanding the population func-

tions around the slab–vacuum interfaces,

N
[
ω, T

(
±d

2
± z
)]

=

+∞∑
n=0

α±n (ω)

n!
zn, (11)
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FIG. 3. (a) Heat flux (multiplied by d) between two SiC slabs, shown schematically in Fig. 1(b), separated by a distance d and sub-
ject to several temperature configurations. In all cases, a = b = 1µm and (TL, TR) = (600, 300)K. Top to bottom plots corre-
spond to (Ta, Tb) = (600, 300)K (blue), (460, 440)K (orange), (451, 449)K (red) and (450, 450)K (black). Also shown are the pre-
dictions (dot-dashed lines) of the asymptotic formulas given in (13) and (14). The inset compares the flux corresponding to the case
(TL, Ta, Tb, TR) = (600, 451, 449, 300)K against two uniform-temperature configurations (600, 600, 300, 300)K (solid blue line) and
(451, 451, 449, 449)K (dashed red line). (b) Same curves in (a) but plotted in a linear scale, with the addition of three configurations (dashed
lines): (Ta, Tb) = (449, 451)K (red), (440, 460)K (orange) and (300, 600)K (blue). (c) Heat flux associated with the temperature config-
uration (TL, Ta, Tb, TR) = (600, 450, 450, 300)K but under different temperature variations (top inset), described as polynomials of orders
n, corresponding to linear (n = 1, black), quadratic (n = 2, red), cubic (n = 3, orange), or quartic (n = 4, blue) polynomials. The black
dot-dashed line shows the asymptotic behavior predicted by (14). The bottom inset illustrates the asymptotic behavior of the n > 1 profiles,
with the red dot-dashed line corresponding to the prediction of (16).

we obtain the RHT ϕ(ω) =
∑
n ϕn(ω) in increasing orders

of the temperature away from the interface, with

ϕn(ω) =
α−n (ω)− α+

n (ω)

2nπ2

∫ +∞

k0

k dk

(k′′zm)n
(r′′)2e−2k

′′
z d

|1− r2e−2k′′z d|2
.

(12)

Since the integrand behaves as k1−n, it follows that terms
of order n ≥ 3 contribute finite RHT whereas those of or-
der n = 0, 1, 2 diverge in the limit d → 0. Such a diver-
gence is associated with the increasing contribution of large-
k states, allowing us to approximate the integral. In this
limit, k′′zm ' k, r approaches the k-independent quantity
(ε(ω) − 1)/(ε(ω) + 1), and it is possible to take the limit
k0 → 0, allowing us to perform the various k integrals
explicitly. Specifically, performing the change of variable
x = e−2kd, we obtain:

ϕ0(ω) ' 1

8π2d2
r′′

r′
Im[Li2(r2)][α−0 (ω)− α+

0 (ω)], (13)

where α−0 (ω)−α+
0 (ω) = N(ω, Ta)−N(ω, Tb) and Lin(z) =∑+∞

k=1 z
k/kn is the polylogarithmic function. Hence, one

finds that to zeroth order in the gradient expansion at the in-
terface, the RHT ∼ 1/d2 as d → 0 whenever Ta 6= Tb. In
contrast, if the temperatures at the interfaces coincide, this di-
vergence is regularized and the leading contribution instead
comes from the n = 1 term, given by:

ϕ1(ω) ' − 1

8π2d

r′′

r′
Im[log(1−r2)][α−1 (ω)−α+

1 (ω)]. (14)

where, assuming Ta = Tb, one finds that α−1 (ω) −
α+
1 (ω) = −[∂zT (−d/2) + ∂zT (d/2)]∂TN(ω, Ta) depends

on the derivatives of the temperature profile at z = ±d/2.

It follows that if ∂zT (−d/2) 6= −∂zT (d/2) and Ta = Tb,
the asymptotic behavior of the RHT ∼ 1/d. If the former is
violated, e.g. when the profile has zero derivative at the inter-
faces, then the n = 1 term is exactly zero, and the asymptotic
behavior is instead determined by the n = 2 term, which re-
quires a more delicate treatment. In particular, replacing the
integrand by its high-k behavior and performing a different
change of variables x = log(ck/ω)/ log(ωd/c), one finds:

ϕ2(ω) ' − [Im(r)]2

4π2
log
(ωd
c

)
[α−2 (ω)− α+

2 (ω)]

×
∫ 0

−∞
dx

e−2k(x)d

|1− r2e−2k(x)d|2
, (15)

with k(x) ≡ k0 exp[log(ωd/c)x]. We now observe that
as d → 0, the function exp[−2k(x)d] tends to 1 for any
−1 < x < 0 and to 0 for any x < −1. Thus, if Ta = Tb
and ∂zT (−d/2) = −∂zT (d/2), it follows that

ϕ2(ω) ' − 1

4π2
log
(ωd
c

) (r′′)2

|1− r2|2
[α−2 (ω)− α+

2 (ω)]. (16)

where α−2 (ω) − α+
2 (ω) = [∂2zT (−d/2) −

∂2zT (d/2)]∂TN(ω, Ta) involves only second derivatives
of T (z) at z = ±d/2. Such a logarithmic divergence is
further regularized if ∂2zT (−d/2) = ∂2zT (d/2), in which
case the RHT tends to a constant value in the limit d → 0.
A trivial situation under which all three conditions lead to
constant flux as d → 0 is an even temperature profile, i.e.
T (−z) = T (z), in which case the flux vanishes at every d.
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IV. NUMERICAL PREDICTIONS

In order to discuss the rich scenarios associated with the
presence of temperature gradients, we consider numerical
evaluation of the above formulas for the case of two infinitely
thick parallel silicon carbide (SiC) slabs separated by vacuum.
We consider the specific configuration depicted in Fig. 1(b),
in which the temperature of the slab on the left (right) is con-
stant and equal to TL (TR) everywhere except for a region of
thickness a (b), with Ta (Tb) denoting the slab–vacuum in-
terface temperatures of the left (right) slab. Such a scenario
would arise, for instance, if both slabs were to be connected
to thermal reservoirs held at TL and TR. The dielectric prop-
erties of SiC are described by means of a Drude-Lorenz model
[29], highlighting the existence of a surface phonon-polariton
resonance in the infrared region of the spectrum, particularly
relevant for near-field RHT [1]. We fix a = b = 1µm, focus-
ing first on the case (TL, TR) = (600, 300) K and assuming a
linear temperature gradient in the regions of varying tempera-
ture, determined by our choice of Ta and Tb.

Figure 3(a) shows the RHT (multiplied by d) over a wide
range of d ∈ [10−4, 1]µm. Note that we include ex-
tremely low values of separations (below a nanometer) in
order to better illustrate the asymptotic regimes discussed
above. We consider three configurations in which Ta dif-
fers from Tb, illustrating the expected 1/d2 scaling de-
scribed by (13), plotted as dotted lines, the appearance of
which depends on the precise values of Ta and Tb, with
the transition occuring anywhere between a few to hun-
dreds of nm. Also shown is the RHT in the special case
Ta = Tb = 450 K, illustrating the 1/d behavior predicted
by (14) (dotted line), the onset of which occurs below the
nm scale. Noticeably, while all four curves approach one
another at the micron scale, the different values of interface
temperatures produce both quantitatively and qualitatively
different behaviors in the experimentally accessible range
d ∈ [1, 100] nm. It is instructive to compare one of the above
configurations, (TL, Ta, Tb, TR) = (600, 451, 449, 300) K,
to the more standard scenario of uniform-temperature slabs:
(600, 600, 300, 300) K and (451, 451, 449, 449) K. The re-
sults, shown in the inset of Fig. 3(a), demonstrate that at small
distances, RHT becomes a surface effect, in which case only
the interface temperatures are relevant; in contrast, at large d
RHT is dominated (and well described) by the bulk tempera-
tures TL and TR of the infinite regions.

Figure 3(b) shows the four curves of Fig. 3(a) in a lin-
ear scale and introduces three additional configurations, cor-
responding to situations in which Ta ↔ Tb are exchanged
(dashed lines). Such a flip leads to a situation in which the
bulk (TL > TR) and surface (Ta < Tb) temperatures com-
pete, contributing RHT in opposite directions. As before, the
behavior at asymptotically small d is determined by (13) and
(14) (dotted lines), except that in the case of flipped Ta < Tb
(dashed lines), the RHT goes from positive to negative (re-
versing sign) as d decreases, with the transition distance oc-
curing anywhere from a few to hundreds of nm, depending on
Ta, Tb. Such a surface-temperature inversion could potentially
be engineered (and tuned) via the introduction of an external

2 4 6 8 10 12 14

-0.4

-0.2

0.

0.2

10-1 101 103
10-5

10-3

10-1

FIG. 4. Heat flux as a function of distance for (Ta, Tb, TL) =
(451, 449, 300)K. The solid lines correspond to TL = 600K and
have a = b = 100 nm (black), 1µm (red) and 10µm (blue). The
dashed lines correspond to a = b = 1µm and have TL = 800K
(brown), 700K (orange) and 500K (purple).

pump or thermostat.
The results presented thus far highlight the existence of

both 1/d2 and 1/d asymptotic power-laws. Figure 3(c) on
the other hand also illustrates the appearance of logarith-
mic behavior by considering a situation consisting of fixed
(TL, Ta, Tb, TR) = (600, 450, 450, 300) K but where the in-
tervening temperature profile is chosen to have different poly-
nomial dependencies (shown on the top inset), including lin-
ear (n = 1, black), quadratic (n = 2, red), cubic (n = 3,
orange), and quartic (n = 4, blue) power laws. While the sub-
1/d behavior associated with the n > 1 profiles is apparent
from the main plot, the three curves are better distinguished
in the inset of the figure, which shows the slow, logarithmic
scaling associated with the n = 2 profile, plotted in conjunc-
tion with the predictions of (16) (dotted line), along with the
fact that RHT approaches a constant for n > 2.

Figure 4 focuses on the role of the thicknesses a = b
and external temperature TL on the sign-flip effect ex-
plored in Fig. 3(b), considering the reference scenario
(TL, Ta, Tb, TR) = (600, 451, 449, 300) K. We first fix
TL = 600 K and vary the thickness, from a = 100 nm to
a = 10µm (black, red, and blue lines), demonstrating a
decreasing zero-flux distance, from 10nm to 2nm, with de-
creasing thickness. Fixing a = 1µm and modifying instead
the external temperature, from TL = 500 K to TL = 800 K,
produces similar variations on the zero-flux distance, from
4nm to 10nm. The inset of Fig. 4 yields even more in-
sights on ways of manipulating the asymptotic behavior,
showing the RHT (multiplied by d) for the same three val-
ues of a = 100 nm, 1µm, 10µm explored in the main figures,
but under different surface temperatures (or gradients). The
dashed lines correspond to the case (Ta, Tb) = (451, 449) K,
illustrating the expected 1/d2 scaling behavior. It follows
from (13) that in this case the asymptotic RHT depends only
on the two temperatures Ta and Tb and not on their deriva-
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tives, which explains why the three dashed lines approach one
another as d → 0. The solid lines correspond to the case
Ta = Tb = 450 K and illustrate the expected 1/d behavior,
revealing an asymptotic prefactor that decreases with decreas-
ing temperature gradients, as predicted by (14).

V. CONCLUSIONS

The approach we presented, valid for arbitrary materials
and distances and based on a scattering-matrix formalism,
leads to analytical expressions of the short-distance behavior
of the flux. We have shown that the latter is entirely deter-
mined by the gradient expansion of the temperature profile
near the slabvacuum interfaces. In particular, we find that
apart from the well-known 1/d2 power-law scaling, under cer-
tain conditions, the flux can diverge asymptotically either as
1/d or logarithmically, or it can also saturate to a constant
value. We have shown that the introduction of a temperature
profile can result in significant flux tunability, leading for in-
stance to changes in the sign of the flux with respect to slab
separations. The temperature profile within a given body can
be for example experimentally engineered by means of the
introduction of several thermostats put in contact at different
points of the body. Moreover, a temperature gradient can natu-
rally appear as the result of the coupling between radiative ex-
change and conduction within each body, as studied in detail

in Refs. [22, 23], in both planar and structured geometries. It
has been shown that, depending on the chosen material, an ob-
servable temperature profile can indeed appear for distances as
high as tens or hundreds of nanometers. Our approach would
be needed to accurately describe radiative heat transfer under
these conditions. In fact, recent experiments are beginning to
explore such short distance regime (down to sub-nanometer
separations [6, 14, 16, 17]), some of which have already ob-
served a saturating flux that has yet to be properly explained.
Moreover, the possibility of tuning the temperature profile of
a system and thereby the behavior, e.g. sign, of the heat trans-
fer with respect to external thermal sources is yet unexplored
and could be important for thermal devices [25]. Finally, it
must be stressed that at distances as low as a few nanometers
or in the sub-nanometer range theoretical descriptions based
on macroscopic fluctuational electrodynamics are no longer
valid: in this regime, atomic-scale and other non-local screen-
ing effects as well as the tunneling of phonons can play sig-
nificant role.
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