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We present a thorough investigation of the electromagnetic resonant modes supported by systems
of polaritonic rods placed at the vertices of canonical polygons. The study is conducted with rigorous
finite-element eigenvalue simulations. To provide physical insight, the simulations are complemented
with coupled mode theory (the analog of LCAO in molecular and solid state physics) and a lumped
wire model capturing the coupling-caused reorganizations of the currents in each rod. The systems of
rods, which form all-dielectric cyclic metamolecules, are found to support the unconventional toroidal
dipole mode, consisting of the magnetic dipole mode in each rod. Besides the toroidal modes, the
spectrally adjacent collective modes are identified. The evolution of all resonant frequencies with rod
separation is examined. They are found to oscillate about the single-rod magnetic dipole resonance,
a feature attributed to the leaky nature of the constituent modes. Importantly, we observe that
ensembles of an odd number of rods produce larger frequency separation between the toroidal mode
and its neighbor than the ones with even number of rods. This increased spectral isolation, along
with the low quality factor exhibited by the toroidal mode, favors the coupling of the commonly
silent toroidal dipole to the outside world, rendering the proposed structure a prime candidate for
controlling the observation of toroidal excitations and their interaction with the usually present
electric dipole.

I. INTRODUCTION

The toroidal dipole, first considered by Zel’dovich in
1958, is the first of the toroidal multipoles, a peculiar
electromagnetic excitation that differs from the more fa-
miliar electric and magnetic multipoles which involve the
separation of negative and positive charges (the elec-
tric ones) or the closed circulation of electric currents
(the magnetic ones). In contrast, the toroidal dipole re-
sults from poloidal currents circulating on a surface of a
gedanken torus along its meridians. Zel’dovich connected
the excitation of the static toroidal dipole, called the
anapole, with parity nonconservation in atomic spectra
[1], a feature also experimentally observed in later years
[2, 3]. The importance of the static anapole has been dis-
cussed for a number of solid-state systems including fer-
roelectric and ferromagnetic nano- and micro-structures,
multiferroics, macromolecules, molecular magnets etc.
[4–9].
In the dynamic case, an oscillating toroidal dipole

emits radiation with the same angular momentum and
parity properties as the electric dipole. However, the
toroidal and electric dipoles have some differences: the
toroidal moments interact with the time derivatives of
the incident fields, the toroidal dipole radiated power
scales with ω6 (rather than ω4 for the electric dipole),
and their vector-potential fields do not coincide [10–14].
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Despite their distinct characteristics, toroidal multipoles
are not considered in classical electrodynamics textbook
[11–14]. Other peculiar phenomena which have been as-
sociated with toroidal multipoles are the violation of the
action-reaction equality, nonreciprocal refraction of light,
and the propagation of nontrivial vector potential in the
complete absence of fields [10, 15, 16]. In nature, ma-
terials that contain molecules of toroidal topology, such
as some important macromolecules and complex proteins
[17, 18], are expected to exhibit toroidal-related electro-
magnetic properties, while anapoles have recently been
connected with universe dark matter [19].

Toroidal multipoles have attracted growing attention
because of their unusual properties and their connection
to the electric multipoles. However, given their silent na-
ture, their role may easily be overshadowed by the usually
much stronger electric and magnetic multipoles. Thus,
special care should be exercised in systems where the re-
lation between the time dependent charge distribution
acting as the source and the far field radiation is inves-
tigated [20–25]. In this respect, the rapid evolution of
metamaterials has proven to be a valuable tool for under-
standing toroidal-related phenomena and has moreover
provided the means for the direct experimental evidence
of the toroidal response as seen in Ref. 26. Strong toroidal
response has been observed in various systems comprising
metamolecules of split-ring resonators, metallic arrays,
metallic bars, etc. [27–33]. Moreover, interesting appli-
cations have already been reported, such as a toroidal
lasing spaser [34] and the potential use of toroidal qubits
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in naturally environmentally decoupled artificial atoms
[35].

Recently, the range of metamaterials that support
toroidal modes has been extended to all-dielectric struc-
tures [36–38], which have the advantage of almost zero re-
sistive losses in contrast to metallic-based toroidal meta-
materials. In particular, in Ref. 36 a metamolecule of four
polaritonic rods placed at the corners of a square was
found to support a toroidal dipole mode. By perform-
ing scattering simulations it was shown that the toroidal
mode was substantially contributing to the overall meta-
material response for a certain spectral region.

In this paper, we revisit the polaritonic-rod toroidal
metamaterial. Rather than investigating the excitation
of the toroidal mode through scattering simulations, we
perform a comprehensive analysis of the supported eigen-
modes focusing on the toroidal mode and its frequency-
adjacent modes. We characterize each mode by its dis-
tinctive field distribution and by calculating the rele-
vant multipole moments in order to identify the domi-
nant contribution. We show that, contrary to common
belief, the toroidal dipole resonance has a substantial
imaginary part due almost exclusively to radiation leak-
age, hence favoring coupling to incoming/outgoing radi-
ation of appropriate character, facilitating thus mode ex-
citation/detection. We thoroughly investigate all TE10-
based collective modes supported by ensembles of N =
2 − 8 polaritonic circular rods placed at the vertices of
regular polygons (in TE modes the electric field is paral-
lel to the rod axis and in particular local TE10 modes in
each cylinder constitute the building block of the toroidal
mode). More specifically, we are interested in the evolu-
tion of the collective mode resonance frequencies with
rod separation and particularly the spectral isolation of
the toroidal mode with respect to the neighboring ones.
Amongst else, we find that the cyclic metamolecule of an
odd number of rods (N = 3, 5, 7) can prove advantageous
in terms of the frequency separation between the toroidal
mode and its neighbors. The enhanced frequency separa-
tion, the absence of Ohmic losses and the leaky nature of
the toroidal mode in the polaritonic rod metamolecules
render the proposed structure a prime candidate for con-
trolling and exploiting toroidal excitations.

The paper is organized as follows: In Sect. II we in-
vestigate the natural modes supported by a single po-
laritonic rod, focusing on the spectral range around the
TE10 (magnetic dipole) mode with resonance frequency
f10. The N = 2 system is thoroughly examined in
Sect. III for the purpose of understanding TE10 collec-
tive mode formation and interpreting the evolution of the
resonant frequencies with rod separation. We find that
collective mode frequencies, in contrast to the LCAO ex-
perience, do not remain lower (the symmetric one) or
higher (the antisymmetric one) than the single cylinder
frequency f10. Instead, they are interchanging sides de-
pending on the rod distance. This counter-intuitive result
can be explained by the leaky nature of the constituent
modes. As a result, their coupling is mediated by oscil-
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FIG. 1. Schematics of the cyclic metamolecules under study
for N = 3, 4. In all cases, identical, infinitely-long polaritonic
rods of circular cross-section and a radius R = 8 µm are
located at the vertices of regular polygons. The rod material
is LiTaO3 with permittivity εr = 41 around 2 THz.

lating field tails instead of evanescent ones. This expla-
nation is quantitatively verified by substituting a linear
combination of the isolated-rod modes in the frequency-
squared functional of the system (corresponding to the
energy functional in the case of LCAO) and minimizing
it. The cross (off-diagonal) terms of the coupling ma-
trix, responsible for frequency splitting, are indeed oscil-
lating. Another important observation is that the oscil-
lation of the collective mode frequencies about f10 can
be highly asymmetric leading to steep segments in the
frequency-separation curve. This is because the TE10

modes within each rod can be significantly deformed in
the coupled system (compared to the isolated rod). We
recover this coupling-caused current deformation with a
wire model, i.e., by approximating the displacement cur-
rent distribution in each rod with a pair of lumped cur-
rent wires; these currents, which are determined by solv-
ing a 2N × 2N eigenvalue problem, acquire asymmetric
values effectively reproducing the local mode deforma-
tion. This current deformation is the analog of the dipole
type charge deformation in each atomic orbital appearing
in the LCAO method and being responsible for the van
der Waals interactions. Finally, Sect. IV is devoted to
many-rod (N = 3− 8) systems. After a systematic anal-
ysis of the N = 3 and N = 4 structure (Sect. IVA and
IVB), we proceed to compare respective systems in terms
of the spectral separation between the toroidal mode and
its neighbors. Systems of an odd number of rods are
found to offer better spectral isolation thus favoring the
excitation/detection of toroidal dipoles.

II. PHYSICAL SYSTEM

The structure under study is depicted in Fig. 1 for
N = 3, 4. Rods of circular cross-section are arranged at
the vertices of a regular polygon lying on the xy-plane
with their axes parallel to the z-axis. The cylinders ex-
tend to infinity along z and possess a radius of R = 8 µm.
They are made of LiTaO3 embedded in an infinite homo-
geneous medium, in this case air. LiTaO3 is an ionic crys-
tal that exhibits strong polaritonic response due to the
excitation of optical phonons [39, 40]; LiTaO3 rods can
be realized with various crystal growth methods [41]. At
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FIG. 2. First four eigenmodes and corresponding eigenfre-
quencies (stars in the complex frequency plane) of TE polar-
ization (E ≡ Ez) for the metaatom, an isolated polaritonic
rod, assuming kz = 0. Insets show the polarization current
(color) and magnetic field (arrows in logarithmic scale) dis-
tribution. The TE10 (magnetic dipole) mode lies at f10 =
(2.183, 0.07) THz; the material losses for this mode are neg-
ligible (< 5% of radiation losses).

frequencies below the phonon resonances (ωT /2π = 26.7
THz and ωL/2π = 46.9 THz is the frequency of the trans-
verse and longitudinal phonons, respectively) LiTaO3 ex-
hibits high permittivity and very low dissipation losses.
In particular, in the frequency range under consideration,
around 2 THz, the real part of the LiTaO3 permittivity
is nearly flat and equal to εr = 41. Throughout this in-
vestigation the material losses have been omitted since
they are negligible compared to the radiation losses for
all the relevant modes.
The single cylindrical rod, the metaatom of the cyclic

metamolecule, supports electromagnetic modes whose
complex frequencies and field profiles are shown in Fig. 2.
These results were obtained by using the suitable Bessel
(inside the cylinder) and Hankel (outside the cylin-

der) functions, Jn(kcylr) and H
(1)
n (kairr) with kcyl =

k0nLiTaO3
and kair = k0nair, to describe the field pro-

file and subsequently imposing the appropriate bound-
ary conditions at the rod interface [42]. A homogeneous
system of linear equations is formed that admits a non-
trivial solution when its determinant is zero. Assuming a
wave-vector in the xy-plane (kz = 0) and TE polarization
(E ≡ Ez) the system boils down to

v
J ′
n(u)

Jn(u)
− u

H
(1)′

n (v)

H
(1)
n (v)

= 0, (1)

where u = kcylR and v = kairR. The Bessel func-
tions are transcendental, meaning that for each value
of n there is an infinite number of roots denoted by
the integer m. Therefore, Ez-polarized solutions are
denoted by TEnm, where subscript n refers to the az-
imuthal and subscript m to the radial order. Return-
ing to Fig. 2, the complex resonance frequencies of the
supported modes in the frequency range 0-4 THz (TE00,
TE10, TE20 and TE01) are shown with stars on the com-

plex plane. The field profiles are also included: color rep-
resents the only nonzero component of the polarization
current, J ≡ Jz = iωε0(εr−1)Ez, while arrows represent
the magnetic field which lies in the xy-plane. TE00 is
the lowest order mode (zero order azimuthal and radial
variation) and, as an electric dipole mode, is character-
ized by the highest radiation losses (highest imaginary
part of the resonant frequency). Next in ascending fre-
quency, at f10 = (2.183, 0.07) THz, lies the TE10 mode,
which constitutes the basic element for building toroidal
collective modes in the N > 1 systems. This mode is of
magnetic dipole nature: the current forms a loop (closes
through infinity), inducing a magnetic moment which for
the orientation in Fig. 2 (arbitrary due to cylindrical sym-
metry) is along the y axis. The free-space wavelength at
the resonance, λ10 = 137.4 µm, is much larger than the
radius of the rod R = 8 µm (∼ λ10/17); a consequence
of the high rod permittivity. The quality factor is low,
Q10 = ℜ{f}/2ℑ{f} ∼ 15, indicating high radiation leak-
age. The field profile of the three nonzero components
{Ez, Hr, Hφ} for r > R is given by (constants aside)

{iH
(1)
1 (kr) sin(φ),

H
(1)
1 (kr)

r
cos(φ), H

(1)′

1 (kr) sin(φ)}

(2)
with Bessel functions taking the place of Hankel func-
tions for r < R. Note the faster radial decay and the
distinct azimuthal variation of Hr. In the spectral neigh-
borhood of the magnetic dipole we also find the TE20

and TE01 modes. In parallel to the analytic solution,
and having in mind the investigation of the N > 1 sys-
tems, we perform eigenvalue analysis with the commer-
cial software COMSOL Multiphysicsr [43] implement-
ing the full-wave vectorial finite element method (FEM),
which determines the complex eigenfrequency and field
profile of each mode.
Having obtained the field distribution, we determine

the dominant multipole moment for each mode. We cal-
culate the multipole moments by integrating the polar-
ization currents J with the use of the corresponding ex-
pressions to be found in Ref. 31. For convenience we
repeat here the toroidal dipole moment expression:

T =
1

10c

∫
d3r[(r · J) · r− 2r2J], (3)

where c is the speed of light.
The dominant multipole moments of the single cylinder

eigenmodes shown in Fig. 2 verify their electromagnetic
nature imprinted in the field distribution. The funda-
mental TE00 mode has a strong electric dipole moment
component, p, TE10 is characterized by a dominant mag-
netic dipole moment, m, and TE20 has strong magnetic
quadrupole moment, Q(m). Finally, the TE01 mode has a
dominant toroidal dipole moment, T, which is intuitively
expected given the formation of poloidal currents (in-
ward and outward counter-propagating currents shown
in Fig. 2). Toroidal dipole excitations related to modes
of the TE01 type are discussed in Ref. 38.
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III. TWO-ROD SYSTEM: INTERPRETATION

OF COLLECTIVE MODE EVOLUTION WITH

ROD SEPARATION

The TE10 mode supported by a single polaritonic rod
is the building block for the formation of the toroidal
mode in Ref. 36. Obviously, ensembles of any number
of polaritonic rods in a regular polygon arrangement can
also foster toroidal modes. We begin by investigating the
TE10 collective modes in the simplest case of the two-rod
system, N = 2. This way we can focus on understand-
ing and physically interpreting the evolution of collec-
tive mode frequencies with separation distance. To this
end, we complement the FEM simulations with a coupled
mode theory (CMT) approach and a lumped wire model
(WM), providing valuable physical insight.

The two-rod system supports four TE10 collective
modes, two consisting of x-oriented (i.e. along the line
connecting the centers of the two rods) local TE10 modes
and two consisting of y-oriented local TE10 modes (mode
orientation is associated with the direction of the mag-
netic dipole moment). We first focus on the x-oriented
collective modes: Fig. 3(a) depicts the evolution of the
resonant frequencies with rod separation for both even
and odd collective modes. The same is done in Fig. 3(c)
for the quality factor. The field profiles of the two collec-
tive modes are depicted in Fig. 3(b) for a structure with
rod separation s = 21 µm. Clearly, the mode in the upper
panel is odd (antisymmetric) with respect to the yz mir-
ror plane of the structure, whereas the mode in the lower
panel is even (symmetric). Note that the even collective
mode resembles a magnetic dipole with a net moment
along the x axis, whereas the odd collective mode has a
zero net dipole moment, but strong quadrupole moment.

As anticipated, coupling results in frequency splitting,
i.e., two collective modes with frequencies above and be-
low the isolated-rod frequency f10, respectively. What
is interesting is that the odd (even) mode does not re-
main strictly above (below) f10. Rather, the resonant
frequencies oscillate (in this case symmetrically) about
f10. In fact, the shape of the oscillation can be described
quite accurately by Y1(2πs/λ10)/s. This is consistent
with Ref. 44: the propagating state mediating the cou-
pling in our case is the radiation leakage of the modes
themselves, described by Eq. (2). Since it is only Hr that
is nonzero along the coupling direction for this specific
local dipole orientation, a translation operation along x
primarily results in a scaling of the resonator coupling co-

efficient with H
(1)
1 (kr)/r. Naturally, the imaginary part

of this coupling coefficient can be associated with the col-
lective mode resonant frequency (whereas the real part
with ℑ{f}), explaining the Y1(2πs/λ10)/s variation. The
intersections fe = fo (e for even, o for odd) where fre-
quency splitting vanishes are clearly marked in Fig. 3(a).
They are seen to nicely correspond to the zeros of the
Y1(2πs/λ10) function (s/λ10 = 0.35, 0.86, 1.37). Note
that intersections occur at f10, i.e., it holds fe = fo = f10.
Finally, the decay of the oscillation is physically antici-

pated, since power density decreases with separation and,
thus, coupling becomes weaker. There is also quality
factor splitting, Fig. 3(d), originating from the fact that
isolated modes couple in the far field as well, leading to
constructive or destructive interference of the radiated
fields [45]. The shape of the ℑ{f} oscillation (not shown)
can be described by J1(2πs/λ10)/s. This is manifested
in the quality factor by the intersections Qe = Qo which
occur at the zeros of the J1(2πs/λ10) function (s/λ10 =
0.61, 1.12). Again, it holds Qe = Qo = Q10 ∼ 15.

The full-wave results can be accurately reproduced
with a CMT framework [46, 47] which amounts to sub-
stituting a linear combination of the isolated rod modes
in the frequency-squared functional of the two-rod sys-
tem and minimizing (in direct analogy with the LCAO
method). Details regarding the formulation can be found
in Appendix A. The results are shown in Fig. 3(a),(c)
with circular markers. Clearly, the agreement with the
full-wave simulations of the coupled system is exception-
ally good corroborating the validity of the results.

We now return to the oscillations of the collective mode
frequencies about f10 with increasing s, which is an atyp-
ical and initially counter-intuitive result. It can be ex-
plained by the fact that the two isolated-rod modes form-
ing the collective mode are leaky. As a result, their
coupling is mediated by oscillating field tails instead of
evanescent ones (which is the case for bound waveguide
modes in electromagnetics or wavefunctions in quantum
mechanics). This claim can be further corroborated by
turning to CMT. More specifically, the cross term of the
coupling matrix which is responsible for frequency split-
ting (see Appendix A) acquires positive or negative val-
ues depending on rod separation. Being an overlap inte-
gral of the two isolated-rod mode profiles over one rod’s
cross-section, this is only possible when oscillating mode
tails are involved, not evanescent ones. As mentioned,
the periodic oscillation of fe and fo about f10 with a
shape determined by the propagating state mediating
resonator coupling has been also noted in the context
of guided-wave photonic circuits [44].

The collective modes of y-oriented TE10 local modes
are examined in Fig. 4. The field distribution of both odd
and even modes for a separation distance s = 21 µm are
presented as insets. The even collective mode, red line
in Fig. 4(a), is characterized by the presence of polar-
ization currents that oscillate in the inward and outward
parts of each rod with opposite directions. These cur-
rents produce a vortex of the magnetic field that threads
both current loops and correspond to a precursor of the
toroidal dipole mode which will be thoroughly discussed
in Sect. IV. In Fig. 4(a) we observe that unlike the x-
orientation case, the oscillations about f10 are highly
asymmetric, of larger amplitude, and with steep tran-
sitions between the local minima and maxima for both
even and odd collective modes. This behavior can be ex-
plained as follows: In the case of y-orientation the max-
imum of the radiation pattern is towards the adjacent
rod. This leads to the deformation of the polarization
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f10 is highly asymmetric. This is attributed to current redistribution within each rod due to coupling as shown in the inset
depicting the distribution of the polarization current at points 1, 2 and 3 marked on the red curve. All features observed can
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in Fig. 4(a). (b) Ratio of currents I1 : I2 [see inset for definition] determined by the four wire model as a function of s. The
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current distribution within the rods, significantly affect-
ing the resonant frequencies of the collective modes. The
phenomenon is analogous to the charge redistribution
within each atom which leads to induced dipole moments
and the van der Waals interaction. An inset in Fig. 4(a)
presents the distribution of the polarization current in
the rods at points 1, 2 and 3 marked along the red curve
(given the symmetry of the fields, only one rod is pre-

sented). The local dipoles in the coupled system are most
significantly deformed at points 1 and 3 where the reso-
nant frequency is farthest away from f10. In contrast, at
point 2 where f = f10 the local dipole modes are almost
perfectly symmetric.

Although this highly asymmetric oscillation cannot
be described with a closed-form function as in the x-
orientation, the intersections fe = fo still correspond to
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the zeros of J1(2πs/λ10), s/λ10 = 0.61, 1.12, as one would
anticipate given that it is now Ez that mainly mediates
resonator coupling, see Eq. (2). This time, the collec-
tive mode frequencies at the intersections are not exactly
equal to f10. At the intersection points the current distri-
bution in each rod is almost, but not exactly, symmetric.
This small asymmetry, as opposed to the perfect symme-
try in an isolated rod, accounts for the small difference
between fe = fo and f10. In other words, the self-effect
known as coupling induced frequency shift (CIFS) [47],
quantified by the main diagonal elements of the coupling
matrix in the CMT framework is not as weak and be-
comes noticeable when frequency splitting vanishes.

CMT is not capable of accurately recovering the col-
lective mode frequencies in this case, since it cannot ac-
count for current deformation: the collective modes are
built directly from the isolated, perfectly symmetric TE10

modes. However, the features observed in Fig. 4(a) can
be successfully reproduced by making use of a simple
lumped wire model (see Appendix B for details), capa-
ble of reproducing the fact that up and down currents in
each rod are not in general equal. More specifically, the
current distribution in each rod is described with a pair
of current-carrying thin wires as shown in the schematic
of Fig. 4(b). The distance between the two wires within
each rod was kept constant at 7 µm as it has been found
to effectively reproduce the TE10 modes under consid-
eration. Having two degrees of freedom for each rod
we can effectively allow for mode deformation. For the
two-rod structure, a 4 × 4 eigenvalue problem is formu-
lated, which can be solved to produce four eigenvalues, Z,
and four eigenvectors, I, for each value of separation dis-
tance s. The eigenvalues Z correspond to the collective
impedance in each wire and the eigenvectors I to the cur-
rents in the wires. The imaginary part of the impedance
is proportional to the resonant frequency of the system
(the real part accounts for losses and can thus be associ-
ated with the imaginary part of the resonant frequency),
whereas the current vector describes current redistribu-
tion. Two of the four solutions obtained correspond to
the y-oriented odd and even collective modes. The imag-
inary part of the normalized eigenvalues Z/Z10 is plotted
in Fig. 4(a) with dashed lines. The eigenvalue Z10 cor-
responds to a single pair of wires at a distance equal to
7 µm, i.e., the isolated-rod TE10 mode. The results are
found to successfully reproduce the features of the col-
lective mode frequency evolution.

The deformation of the local dipoles is manifested
in the ratio I1 : I2 (or, equivalently, I3 : I4) of the
further-away currents to the nearby currents [see insets
in Fig. 4(b)]. This ratio is plotted versus the separation
distance, s, in Fig. 4(b). Just like the collective mode fre-
quencies, it oscillates around unity in a similarly asym-
metric fashion. The amplitudes of the four currents for
points 1, 2 and 3 on the even branch are also included
as insets. Just like the eigenmode polarization currents
[insets in Fig. 4(a)] the lumped wire currents are most
significantly deformed at points 1, 3 where the imaginary

part of the normalized eigenvalue Z/Z10 is furthest away
from unity. In contrast, at point 2 where ℑ{Z} ∼ ℑ{Z10}
the inside and outside currents are equal in amplitude.
We conclude that when collective modes of leaky res-

onant modes are concerned, irrespective of the symme-
try (even or odd with respect to the mirror planes of
the structure), each collective mode can be found on ei-
ther side of f10 depending on the rod distance. In ad-
dition, depending on the radiation pattern the fields of
each resonator can significantly disturb each other lead-
ing to asymmetric oscillations of the resonant frequencies
about f10 with large amplitudes.

IV. MANY-ROD CYCLIC METAMOLECULES

We turn now to the study of many-rod cyclic meta-
molecules. In each case we solve for the TE10-based
collective modes and examine their evolution with rod
separation. We are particularly interested in identifying
the toroidal mode supported by such systems and in de-
termining the conditions for spectrally separating it from
its neighbors.

A. Three-rod cyclic metamolecule

The three-rod metamolecule supports six TE10 col-
lective modes. Their profiles are depicted in Fig. 5(a)
for a configuration with a rod separation s = 21 µm
(s/λ10 ∼ 0.15). Color corresponds to Jz (the sole compo-
nent of the polarization current) and arrows correspond
to the magnetic field (logarithmic scale). The logarithmic
scale helps to better convey the direction of the magnetic
field. The collective modes are ordered according to their
resonant frequency (real part) in ascending order. Modes
B and C and modes D and E, respectively, have the same
resonant frequency, i.e., they are degenerate. Figure 5(b)
presents the calculated absolute values of the relevant
multipole moments and in particular the toroidal dipole
moment, Tz, the magnetic dipole moments, mx and my,

and quadrupole magnetic moments, Q
(m)
yx and Q

(m)
yy , for

each of the six collective modes. The moments are calcu-
lated by integrating each eigenmode current distribution
using the suitable formulas found in Ref. 31. In order to
provide a fair comparison between the collective modes,
we normalize each current distribution with the square
root of the stored electric energy in the corresponding
eigenmode.
Clearly the fields in each rod closely resemble the TE10

mode of the single rod (properly rotated depending on
the specific mode), as one would anticipate for TE10-
based collective modes. Note that all collective modes
in Fig. 5(a) involve strong interaction between the con-
stituent modes as evidenced by the directions of the re-
spective E-field maxima. In fact, these interactions re-
sult in the deformation of the local currents, as discussed
in Sect. III. Depending on the coupling strength, the
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FIG. 5. (a) TE10 collective modes supported by the three-rod cyclic metamolecule with a rod separation of 21 µm as obtained
by the accurate full wave numerical calculation. Color shows the current distribution and arrows the magnetic field. They are
numbered according to their resonant frequency in ascending order. (b) Toroidal dipole moment, Tz, magnetic dipole moments,

mx and my, and quadrupole magnetic moments, Q
(m)
yx and Q

(m)
yy (absolute values) for each of the six modes A to F of Fig. 5(a).

The moments are shown normalized to the maximum value within each panel.

local current deformation may give rise to a nonzero to-
tal current in each rod and hence to a nonzero electric
dipole moment, which would otherwise be zero due to
the perfectly antisymmetric current distribution in the
TE10 isolated-rod mode. Mode A is the toroidal mode
supported by the structure. Its distinct trademark is
the ring-like structure of the magnetic field threading
all three current loops. This conclusion is rigorously
proved by the results shown in Fig. 5(b) according to
which, mode A consists exclusively of the toroidal dipole
moment (and a non-resonant electric dipole moment ap-
pearing only when the net current in the metamolecule
is nonzero). Notice that the coexistence of both toroidal
and electric dipole moments provides the possibility of
mutual cancellation of their fields outside the source re-
gion (by adjusting their magnitude and phase) and there-
fore of extremely high Q-factors. The current distribu-
tion of modes B, C corresponds to magnetic quadrupole

moments, an observation verified by the dominant Q
(m)
yx

and Q
(m)
yy values. Moreover, the three partially cancelling

each other magnetic dipole moments of modes B, C pro-
duce nonzero net dipole magnetic moments (directed
along x and y, respectively) also imprinted in the nonzero
values of mx and my; for this reason along with the term
quadrupole we also use the term partial magnetic dipole.
In modes D and E, all three local magnetic dipole mo-
ments combine in a net moment, m, which is parallel to
the x or y axis, respectively, also proven by the high mx

andmy values. Finally, in mode F the values of the above
moments are insignificant. Mode F seems to radiate its
magnetic field radially (the magnetic lines of course re-
turn back). Based on this phenomenological observation
and in order to preserve a consistency in the terminology
of all the N -rod systems under consideration, we term
this type of mode hereinafter magnetic pseudo-monopole.
Nonetheless we mention N=3, the pseudo-monopole ex-

hibits a nonzero magnetic octupole moment, O
(m)
yxx, also

marked in the deduced radiation pattern. Concluding
the characterization of the modes, it should be stressed
here that obviously in a scattering scenario, depending on
the specific excitation (direction of incidence, phase front
etc.) the contribution of each moment to the scattered
power is expected to vary.

The evolution of the collective mode frequencies with
rod separation is depicted in Fig. 6(a). In agreement
with the behavior of the two-rod structure, each collec-
tive mode can cross to the other side of the TE10 res-
onant frequency, f10, as rod separation increases. The
unique feature in this case is that mode A [red line in
Fig. 6(a,b)] consists of two disconnected branches. The
lower branch is a true toroidal mode at small separations
and evolves into a TE00 collective mode for large separa-
tions. This can be verified by observing Fig. 6(c) which
demonstrates that the field inside the rods is progres-
sively deformed until the first-order azimuthal variation
vanishes. The upper branch is a kind of spatially diffused
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of toroidal nature into a TE00 collective mode with increasing s. Points 1− 3 are clearly marked in Fig. 2(a). (d) Evolution of
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of local dipoles can connect with each other producing a stretched toroidal mode (point 2, lower branch) or close locally (point
4, upper branch). This qualitative difference is noted in (a) and (b) by using a dashed line for the upper branch. (f) Magnetic
field lines (color represents |H|) in the lower (s = 25 µm) and upper (s = 90 µm) branch of mode A, respectively, emphasizing
the difference between the two branches.

toroidal mode for large s [see Fig. 6(e,f)] and evolves into
a TE01 collective mode as separation decreases, Fig. 6(a).
Notice in Fig. 6(d) how the first-order azimuthal varia-
tion gradually gives its place to a first-order radial vari-
ation. This transformation to collective modes based on
other than the TE10 single-rod mode is to be expected
when the frequencies of the TE10-based collective modes
approach the frequencies of other single-rod modes. Note
that in theN = 3 structure frequency splitting is stronger
compared to the two-rod structure (compare maximum
deviation from f10 in Fig. 6 and Figs. 3,4, respectively).
In fact, considering the high imaginary part of the TE00

and TE01 modes (Fig. 2), the corresponding collective
modes are expected to deviate even more significantly
from f00 = 0.72 THz and f01 = 3.67 THz, respectively
(Fig. 2). As a result, the evolution of a TE10 collective
mode into a TE00/TE01 collective mode becomes pos-
sible, something that was not witnessed in the N = 2
structure. Obviously, coupling mode theory can describe
this phenomenon only if the scheme includes (besides the
TE10) the TE00 and TE01 modes for each rod.
It is also important to note the different characteris-

tics of the magnetic field distribution for points 2 and
4 in Fig. 6(a) which share the same s value (80 µm)
but belong to different branches of collective mode A.
They are highlighted in Fig. 6(e). The magnetic fields
of local dipoles in point 2 (lower branch) connect with
each other forming a unidirectional magnetic field vortex
threading the current loops in each rod, characteristic
of a toroidal mode. On the other hand, in point 4 the
magnetic field forms again broad and spatially diffused
closed loops which, however, avoid the rods which form
local dipoles. The above observation holds for the entire
upper and lower branch as illustrated in Fig. 6(f) where
the magnetic field lines are compared for two different
points on the lower (s = 25 µm) and upper (s = 90 µm)
branch of collective mode A. In the lower branch, the
magnetic field lines pass through the rods threading the
current loops, whereas on the upper branch they bypass
them. To emphasize this qualitative difference the lower
branch is indicated in Fig. 6(a,b) with a continuous line,
while the upper one with a dashed line.
The evolution of the collective mode quality factors

with rod separation is depicted in Fig. 6(b). Importantly,
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The moments are shown normalized to the maximum value within each panel.

the toroidal mode possesses a relatively low quality fac-
tor, indicating strong coupling to plane waves which fa-
vors its excitation/detection. Especially for s < 30 µm
its quality factor is the lowest among all collective modes.
A local maximum is observed at s = 55 µm (s/λ10 ∼ 0.4).
At this point the magnetic field torus is least connected
since the magnetic field is mainly localized inside the
rods. The insets in Fig. 6(b) demonstrate this weakening
of the magnetic field torus. A second observation is that
the quality factor of mode B (the neighbor of the toroidal)
shown in light blue decreases with rod separation. There-
fore, the linewidth of the resonance (quantified by the
half power bandwidth, HPBW) increases, something that
affects the spectral isolation of the toroidal mode. This
will be examined in detail in Sect. IVC. Finally, although
the two branches of the toroidal mode are disconnected,
if we wanted to define a transition point between them
this could be where the quality factor curves (red and
blue) intersect. In fact, this happens at a normalized rod
separation of ∼ 0.62 (s = 85 µm), consistent with the
first zero of the J1(2πs/λ10) function.

B. Four-rod cyclic metamolecule

Turning to the four-rod metamolecule we find eight
TE10 collective modes. Their field profiles are depicted
in Fig. 7(a) for a configuration with s = 21 µm. They
appear according to their resonant frequency (real part)
in ascending order. Note that modes C & D and modes
E & F, respectively, are degenerate. Importantly, the

neighbor of the toroidal (mode B) is not doubly degen-
erate as in the three-rod structure. As will be shown in
detail in Sect. IVC, this is a distinct difference between
even-numbered and odd-numbered systems and affects
the spectral isolation of the toroidal mode. The absolute
value of the relevant multipole moments (toroidal dipole,
magnetic dipole and magnetic quadrupole moment) for
each mode is presented in Fig. 8(b). Regarding mode
characteristics, mode A (the lowest-frequency TE10 col-
lective mode for small separations) is the toroidal mode of
the structure, exhibiting a large toroidal moment, Tz. It
also features the lowest quality factor among all collective
modes for small separations, indicating strong coupling
to plane waves. The excitation of the toroidal dipole in
a four-rod-based metamaterial has been thoroughly dis-
cussed in Ref. 36. The toroidal mode appears in the rel-
evant scattering numerical experiment and at the same
time its critical contribution to the multipole decompo-
sition is demonstrated. Modes B and G are clearly mag-
netic quadrupoles verified both by the field distribution

and by their large magnetic quadrupole moments, Q
(m)
yx

and Q
(m)
yy , respectively. Modes C and D have a nonzero

net magnetic moment also evident in the increased values
of mx and my, and are termed partial magnetic dipoles.
In modes E and F all local moments are aligned giv-
ing rise to a strong net dipole moment with a clear di-
rection which is also reflected in the large dipole mo-
ments, mx and my, in Fig. 7(b); they are, thus, termed
magnetic dipoles. Finally, as in the three-rod structure,
the highest-frequency collective mode for small separa-
tions (mode H) is phenomenologically termed a magnetic
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pseudo-monopole.
The evolution of collective mode frequencies with rod

separation is depicted in Fig. 8. The behavior is entirely
analogous to the three-rod case [cf. Fig. 6(a)]. Mode A
consists of two disconnected branches. The lower branch
is of toroidal nature and evolves into a TE00-based collec-
tive mode for large separations. On the other hand, the
upper branch is a spatially diffused toroidal mode (in-
dicated with a dashed line) with the magnetic field lines
bypassing the rods, as in Fig. 6(f). It evolves into a TE01-
based collective mode as separation decreases. The main
difference with the three-rod structure is that the toroidal
mode is not well-separated from its neighbor [light blue
line in Fig. 8] for small s values. The two modes start
separating for s > 60 µm, where mode A has already
begun evolving into a TE00-based collective mode and
where the resonance linewidth of mode B is quite wide
[see Fig. 9(b)]. As a result, exciting the mode A without
exciting mode B as well seems challenging. This indicates
that the three-rod structure can provide better toroidal-
dominated response compared to the one observed for
the four-rod structure in Ref. 36.

C. Toroidal dipole: Spectral isolation in N = 3− 8
cyclic metamolecules

Having systematically identified the TE10 collective
modes and their various features for systems of N = 3, 4
rods, we are now interested in the structure that provides
the highest degree of spectral isolation for the toroidal
mode, something that is expected to facilitate its unam-
biguous excitation/detection. To this end, we examine
structures with N = 3 − 8 and compare them on this
basis. We find that odd-numbered structures are advan-
tageous (something already indicated by the three- and
four-rod structures, Sects. IVA and IVB). A physical
interpretation for this feature is provided below. Fig-

ure 9 depicts the resonant frequency evolution of the
toroidal mode (red curves) and its closest neighbor (blue
curves) for N = 3 − 8 systems in the rod separation
range 17 µm < s < 80 µm. In order to investigate the
spectral isolation of the toroidal mode, apart from the
central frequencies we also need the resonance linewidths
of the neighbor and the toroidal. Thus, we also plot the
half-power bandwidth (HPBW), ∆f3dB = f/Q (shaded
areas). In all cases, for small rod separation values the
HPBW of the toroidal mode is significant, of the order of
200GHz; for larger separation values it decreases. That
is the toroidal response is expected to be wideband for
small rod separation and narrowband for large rod sepa-
ration. On the contrary the neighbor mode exhibits low
HPBW, in the order of a few GHz, for small separation
values and increases as rod separation becomes larger.
This is a feature that may further contribute to the iden-
tification of the toroidal mode.

We now focus on the N = 3 and N = 4 case pre-
sented in Fig. 9(a),(b). In the N = 3 system, closest to
the toroidal mode lies the quadrupole/partial magnetic
dipole shown in Fig. 6(a) (mode B). As is evident in
Fig. 9(a), the two modes are farthest away for s < 25 µm
and 60 µm < s < 80 µm. In the intermediate region
the two resonances significantly overlap. Exploiting the
60 µm < s < 80 µm region is not a favorable option
since the toroidal mode has already begun evolving into
a TE00 collective mode. In addition, the HPBW of the
neighboring mode is significantly increased. The opti-
mum operating point is, thus, smin = 17 µm where the
quality factor of the second mode is maximum leading to
a resonance span of only 20 GHz, much smaller than the
frequency distance of 127 GHz separating the two modes.

The N = 4 system is examined in Fig. 9(b). This
time the neighbor of the toroidal mode is the quadrupole
shown in Fig. 8(a) (mode B). As already noted in
Sect. IVB the two modes are not well separated for small
s values. In particular, for smin = 17 µm the spectral
separation of the central resonances is only 35 GHz. Al-
though the resonance linewidth of the second mode is
narrow, exciting the toroidal mode alone would be chal-
lenging. For greater separation values the behavior of
the system is similar to the N = 3 case with the two res-
onances overlapping for separation values up to 60 µm.
The spectral isolation increases only after the toroidal
mode has entered the TE10-to-TE00 collective mode tran-
sition phase.

Moving on to systems with N > 4 we find that spec-
tral isolation is enhanced (at the cost of a larger meta-
molecule). Interestingly, the advantage of the N = 3
compared to the N = 4 system is generally observed
when comparing N = 2n − 1 with N = 2n systems.
In particular, we compare the first row in Fig. 9 ex-
amining odd-numbered systems with the second row of
Fig. 9 examining even-numbered systems. Systems with
N = 3, 5, 7 exhibit systematically higher spectral isola-
tion for the toroidal mode compared with N = 4, 6, 8
systems: the frequency distances between the toroidal
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mode and its neighbor at smin = 17 µm are {127, 35,
180, 100, 193, 140} GHz for N = 3 − 8, respectively.
This behavior is attributed to the characteristics of the
mode close to the toroidal. To better demonstrate this,
we present in Fig. 10 a comparison of selected TE10

collective modes for the N = 7 and N = 8 systems.
Figure 10(a-d) depicts four characteristic modes of the
N = 8 system in ascending resonance frequency and for
a rod separation of s = 21 µm. They are formed by an
azimuthal or radial arrangement of the local magnetic
dipoles with fixed or alternating directions. The corre-
sponding modes of the N = 7 system are depicted in
Fig. 10(e-h). Modes (a), (e) are the toroidal modes of
the systems and modes (b), (f) their respective (partial)
magnetic polypole neighbors. We are interested in deter-
mining why (e) is more separated from (f) than (a) from
(b). Focusing on the N = 8 case, we note that modes
(b) and (d) are characterized by a radial arrangement of
the local dipoles with alternating and fixed directions,
respectively. In mode (b) (alternating local moment di-
rections) the nearby currents in adjacent rods are of the
same sign and the electric field experiences a variation
with N = 8 zeros along the fictitious circumference con-
necting the rod axes. On the other hand, in mode (d)
the nearby currents in the adjacent rods are of opposite
sign and the number of the zeros is 2N = 16, explaining
the higher frequency of mode (d): 2.663 vs 2.059 THz.
In the N = 7 system, mode (f) (corresponding to mode
type (b) of the 8-rod system) is not so well-defined. In
particular, mode (f) fails to fulfill the type (b) distribu-
tion, since the alternating direction is not commensurate
with the odd number of rods. Instead, mode (f) emerges
as a hybridization of mode type (b) with mode type (d)
and the number of zeros is N+1 = 7+1 = 8 (the current
distribution is shown saturated in the inset of Fig. 10(f)
to better illustrate this fact). This results in an increase
of its resonant frequency (recall that mode type (d) fea-
tures a faster variation along the circumference), leading
to a larger frequency separation from the toroidal mode.
This also explains why the advantage of odd-numbered
systems diminishes as N increases: the characteristics of
mode type (d) are inherited for only one pair of adjacent
rods meaning that the bump in frequency becomes less
pronounced as N increases. Note, finally, that the second
partial magnetic polypole of the N = 7 system, shown in
Fig. 10(g), emerges in a similar manner as a hybridiza-
tion of mode types (a) and (c) which results in a decrease
of its resonant frequency.

D. Cyclic metamolecules of elliptical rods

In the expectation of a toroidal mode closer to the
ideal one, we investigate finally the case of cyclic meta-
molecules made of elliptical rods of equal cross-sectional
area to the circular ones. In particular, we investigate
the toroidal mode supported by a six-elliptical-rod meta-
molecule and compare it with that of the circular-rod
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(green curve) magnetic dipoles as shown in Fig. 11(e). (e) Po-
larization current distribution of the x- and y-oriented mag-
netic dipoles.

counterpart, Fig. 11. The radius of the metamolecule is
constant throughout and equal to 25 µm and the eccen-
tricity, e, of the elliptical rods in Fig. 11(a,c) is equal
to e = 0.9. The magnetic field lines and magnetic field
distribution (color) for the toroidal mode are presented
for three distinctive cases. In Fig. 11(a) the elliptical
rods are arranged with their major axes along the az-
imuthal direction, in Fig. 11(b) the rods are of circu-
lar cross-section and in Fig. 11(c) the elliptical rods are
arranged with their major axes along the radial direc-
tion. Comparing the field distribution in Fig. 11(a) and
Fig. 11(b), we observe that the confinement of the mag-
netic field lines in the elliptical rods with the azimuthal
arrangement is enhanced; this implies the formation of
better-defined toroidal modes. On the contrary, in the
case of the radial arrangement, Fig. 11(c), the magnetic
field lines escape the characteristic path of the torus lead-
ing to poorly-defined toroidal modes. It is also interest-
ing to note that the resonant frequency of the toroidal
mode for the three systems is very different: 2.57, 2.09
and 1.61 THz for cases (a)-(c), respectively. This is due
to the fact that the toroidal mode is formed by differ-
ent single-rod TE10 modes as a result of the cylindrical
symmetry breaking lifting the degeneracy. Indeed, the
ellipse supports two TE10 magnetic dipole modes with
different resonant frequencies: one with the magnetic mo-
ment along the major axis (x-orientation) and the other
along the minor axis (y-orientation) [the distribution of
the corresponding currents for e = 0.9 are depicted in
Fig. 11(e)]. Figure 11(d) shows the evolution of the res-
onant frequencies for the x-oriented (blue curve) and y-
oriented (green curve) TE10 modes with respect to the
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ellipse eccentricity. Actually, the x-oriented TE10 mode
is expected to be close but higher than the mode in a
slab of thickness equal to the minor axis of the ellipse
and length equal to the major axes of the ellipse. In
particular for the case of eccentricity equal to e = 0.9,
the ratio between the x-oriented TE10 resonance in the
ellipse and the corresponding resonance of a slab with
cross-section that encloses the ellipse (circumscribed rect-
angle) is 2.77 THz : 2.49 THz. The toroidal of Fig. 11(a)
is formed by x-oriented magnetic dipoles which explains
its high frequency; in analogy, the low frequency toroidal
mode, Fig. 11(c), is formed by y dipoles. It is important
to stress out here that the toroidal spectral isolation is
compromised in the elliptical rods metamolecules; this is
due to the frequency splitting of the isolated rod modes.
Similarly to the TE10 magnetic dipole in the ellipse, we
also expect frequency splitting of the lower and higher
order neighbor modes (e.g. of the type TE00, TE01 and
TE20 seen in Fig. 2). This frequency splitting is expected
to lead to a higher spectral overlap between the collective
modes in the many-elliptical rod metamolecules.

V. CONCLUSION

We have presented a thorough investigation of the elec-
tromagnetic resonant modes supported by cyclic meta-
molecules of N = 2 to 8 polaritonic rods. We have fo-
cused our study on TE10-based collective modes since
the TE10 mode is the building block for the formation
of the peculiar toroidal dipole. In each system, we have
identified the toroidal mode (both by the distribution
of the fields and the explicit calculation of the toroidal
dipole moment as defined by Eq. 3) and those lying
in its spectral neighborhood and we have investigated
the features of the resonances with varying rod separa-
tion. We have conducted the analysis with finite-element
eigenvalue simulations and the results have been com-
plemented with coupled mode theory and a lumped wire
model capturing the coupling-caused reorganizations of
the currents in each rod in analogy with the reorganiza-
tion of the changes in each atom within the framework
of the LCAO in molecular and solid state physics. We
found that the collective mode eigenfrequencies oscillate
about the single-rod magnetic dipole resonance, a fea-
ture attributed to the leaky nature of the constituent
modes. We have also shown that metamolecules with an
odd number of rods exhibit enhanced spectral isolation
for the toroidal mode; along with its leaky nature this
can lead to configurations that favor the unambiguous
excitation and detection of the unconventional toroidal
response.
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Appendix A: Coupled Mode Theory Framework

The framework used is based on Refs. 46 and 47. We
briefly outline the formulation to highlight the points re-
quiring attention. The modes of the N−rod structure
can be specified by finding the extrema of the functional

ω2 =

∫
∇×H · ε̃−1∇×H dΩ̃

∫
H · µ̃H dΩ̃

, (A1)

where ε̃ and µ̃ are tensors for the general case of
anisotropic materials. This functional is found by dot
multiplying theH-field vector-wave equation withH (un-
conjugated to allow for leaky modes) and integrating.
Using the magnetic field as the working variable is im-
portant as will be shown in the next paragraph. The
form of Eq. (A1) is reached only when the boundary
term

∮
H ·

(
n̂× ε̃−1∇×H

)
dΓ which arises is zero. In

open, leaky systems this is handled by surrounding the
structure with perfectly matched layers (PMLs) backed
with a PEC/PMC boundary condition. For stretched-
coordinate PMLs, integration in Eq. (A1) extends in the

complex plane, denoted by dΩ̃. Including the PML in the
integration domain also provides a means of compensat-
ing for the exponential divergence observed in the field
profile of complex-frequency eigenmodes [48].
Next, we suppose that the supermodes supported by

the structure can be expressed as a linear combination

of the N isolated-rod modes H =
∑N

i=1 aiHi. In other
words, we assume that coupling does not significantly
perturb the individual modes comprising the supermode.
Using the magnetic field in the expansion (and the cor-
responding version of the functional, Eq. (A1)) is crucial
in order for the supermode trial function to satisfy the
divergence condition ∇ ·D = 0 [49]. If the electric field

is instead used then ∇ · ε̃E =
∑N

i=1 ∇ · δ̃εiEi 6= 0, where

ε̃ ≡ ε̃i + δ̃εi. Obviously, each mode Hi satisfies a vector
wave equation of its own. Taking the inner product with
Hj and omitting the boundary term (zero due to the use
of PMLs) we can write
∫

∇×Hj · ε̃
−1
i ∇×Hi dΩ̃ = ω2

i

∫
Hj · µ̃iHi dΩ̃. (A2)

The linear combination is substituted in Eq. (A1)
which can be written in matrix form (uppercase italic
bold symbols indicate N × N matrices, whereas lower-
case italic bold symbols indicate N × 1 vectors):

ω2 =
a
T
Ka

aTWa
, (A3)
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where

Kij ≡

∫
∇×Hi · ε̃

−1∇×Hj dΩ̃, (A4a)

Wij ≡

∫
Hi · µ̃Hj dΩ̃. (A4b)

Differentiating the right hand side of Eq. (A3) with re-
spect to the complex ai as shown in Ref. 46 we reach

Ka− ω2
Wa = 0. (A5)

Importantly, the supermode frequencies can be directly
determined form solving Eq. (A5) which amounts to find-
ing the eigenvalues of the W−1

K matrix (and taking the
square root). There is no need to first derive a temporal
CMT equation (see Refs. 46 and 47), something which
entails the assumption that all supermode frequencies
cluster around a typical value ω0 making it more ap-
proximate. Note that for evaluating the K matrix it is
necessary to make use of Eq. (A2). This permits us to in-
corporate in the formulation the zeroing of the boundary
term for each constituent mode, as we did for the entire
supermode in the process of reaching Eq. (A1). To this
end, we introduce in Eq. (A4a) the perturbations to indi-

vidual permittivity distributions ε̃−1 ≡ ε̃−1
j + ∆̃ε

−1

j , and

use Eq. (A2) to arrive at

Kij = ω2
j

∫
Hi · µ̃jHjdΩ̃− ωiωj

∫
Di · ∆̃ε

−1

j DjdΩ̃,

= Wijω
2
j − 2ωiMijωj .

(A6)

Matrix M in Eq. (A6) is responsible for mode cou-
pling. Note that integration is restricted to regions where

∆̃ε
−1

j is nonzero. The off-diagonal elements (i 6= j) de-
scribe resonator-to-resonator coupling (frequency split-
ting), whereas the elements on the main diagonal (i = j)
represent CIFS [47], i.e., the modification of the isolated-
rod frequencies due to the index perturbations experi-
enced by their own field profiles. In the case of evanescent
coupling, the Mij elements monotonically decay with res-
onator separation; it is only when oscillating tails are
involved that they oscillate between positive and nega-
tive values. This oscillating behavior is inherited by the
supermode frequencies as can be seen by writing

W
−1

K =
(
Ωd − 2W−1ΩdM

)
Ωd

= (Ωd − 2Λ)Ωd,
(A7)

where we have introduced the diagonal matrix Ωd =
diag(ω1, ω2, . . . , ωN ) containing the isolated-rod resonant
frequencies and defined Λ ≡ W

−1ΩdM which has units
of frequency (both W and M are measured in Joules).
Note that if we further assume that Λ represents a

small perturbation to the resonant frequency, then Λ2

is of second-order smallness. Therefore, in the con-
text of first-order perturbation theory we can write

++ 0

TE10

x

y

k

E

H

z

x

y

x

y

wire pair
Jz

I1=1 I2=  1

=

TE solution10H||Re{ } &Jz

FIG. 12. TE10 magnetic dipole mode: Schematic for the de-
scription of the lumped wire pair equivalent.

(Ωd − 2Λ)Ωd ≈ (Ωd −Λ)2, completing the binomial
identity, and recover the result in Ref. 47 which states
that one can solve for the supermode frequencies (instead
of their squares) by finding the eigenvalues of the Ωd−Λ

matrix.

Appendix B: Lumped Wire Model

In the lumped wire model approximation we assume
that the features of each constituent TE10 magnetic
dipole mode can be approximated by a combination of
thin wires, infinitely long along the z direction, that
carry uniform currents. As seen in Fig. 12, the TE10

dipole mode is characterized by two separated symmet-
ric areas of positive and negative oscillating displacement
currents. Assuming the simplest possible approximation,
we consider that a pair of wires with currents I1 = 1 and
I2 = −1, placed at a fixed position is able to reproduce
the features of the mode. We note here that the choice
of the two wires facilitates the simplicity of the model;
a more accurate representation of the TE10 would occur
by a combination of a larger number of current-carrying
wires. For the N rods system and for the TE10-based col-
lective modes we assume N pairs of wires placed at the
desirable separation distance. We expect that in each
wire the currents should be capable of reproducing lo-
cally TE10-like field distributions. Up to now we have
formed a system of M = 2N coupled current-carrying
wires; each current Im radiates omnidirectional electro-
magnetic energy and at the same time the current in
each wire is affected by the radiation coming from the
adjacent M − 1 wires. The radiation field that each wire
m produces and in particular the Ez component of the
electric field, reads

Ez,m(r) = −Im
µ0

4
ωH

(1)
0 (k0|r− rm|), (B1)

where |r − rm| is the distance from the mth wire in the
xy plane. At the position of each wire the total field
coming from the adjacent M − 1 wires is the sum of each
M − 1 radiation contribution and at the same time it is
equal to the local electric field produced by the current
Im, Ez,m(r ≡ rm) = ImZm, where Zm is a term that
contains all the impedance contributions in the wire and
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it is the same for all wires Zm = Z, ∀m. For the electric
field at each mth wire is we have

ImZ =

M∑

n6=m

−In
µ0

4
ωH

(1)
0 (k0|rn − rm|), (B2)

where |rn − rm| is the distance between the mth and the
nth in the xy plane. The distances and the frequency
is constant, ω = ω10, and the free parameters are the
currents Im and impedance terms Zm. The system of
the linear equations corresponds to an M×M eigenvalue

problem, LIcrt − ZIcrt = 0, where

Lnm = −

M∑

n6=m

µ0

4
ωH

(1)
0 (k0|rn − rm|). (B3)

The system has M eigenvalues Z and eigenvectors
Icrt = [I1, I2, ..., IM−1, IM ] that correspond to the cur-
rents flowing through each wire. Among the M solutions
of the problem we find the eigenvectors with currents that
correspond to the TE10-based collective mode under con-
sideration. For example at the case for the isolated-single
rod we place a pair of wires at fixed points at a distance
w < 2R, R is the radius of the rods. The current carry-
ing pair produces a 2×2 system with two solutions, with
eigenvalues Z1 and Z2 , and eigenvectors Icrt = [1,−1]
and Icrt = [1, 1]. Solution Z1 and Icrt = [1,−1] corre-
sponds to the TE10 dipole mode. We note here that w is
a parameter that can be finer tuned in order to approx-
imate more effectively the corresponding mode and here
is chosen equal to 7 µm.
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[47] M. Popović, C. Manolatou, and M. Watts, Opt. Express

14, 1208 (2006).
[48] C. Sauvan, J. P. Hugonin, I. S. Maksymov, and

P. Lalanne, Phys. Rev. Lett. 110, 237401 (2013).
[49] S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weis-

berg, J. Joannopoulos, and Y. Fink, Phys. Rev. E 65,
066611 (2002).


