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We introduce a real-space technique able to extend the standard Hopfield approach commonly
used in quantum polaritonics to the case of inhomogeneous lossless materials interacting with the
electromagnetic field. We derive the creation and annihilation polaritonic operators for the system
normal modes as linear, space-dependent superpositions of the microscopic light and matter fields.
We prove their completeness and invert the Hopfield transformation expressing the microscopic
fields as functions of the polaritonic operators. As an example, we apply our approach to the case
of a planar interface between vacuum and a polar dielectric, showing how we can consistently treat
both propagative and surface modes, and express their nonlinear interactions, arising from phonon
anharmonicity, as polaritonic scattering terms. We also show that our theory, including the proof
of completeness, can be naturally extended to the case of dissipative materials.

I. INTRODUCTION

Photons propagating in a polarizable medium can res-
onantly interact with an optically active resonance and a
part of the photonic energy thus resides in the matter de-
grees of freedom, resulting in a dispersive reduction of the
group velocity. Quantum descriptions of such systems
can be achieved through macroscopic approaches where
one starts from the Maxwell equations treating the mat-
ter by a dispersive dielectric function ǫ (ω). A modified
orthonormality between the fields is derived to achieve
the expected commutation relations with the final re-
sults dependant on the group velocity in the dielectric1,2.
Such approaches can describe dissipative systems by ad-
dition into the Maxwell equations of noise currents pre-
serving the commutation relations3, allowing to describe
the system dynamics by recourse to the Green’s function
of the classical scattering problem4–6. The consistency
of the approach can be shown in the homogeneous and
general inhomogeneous case7. Quantization of the elec-
tromagnetic field in inhomogeneous systems is particu-
larly relevant to the study of quantum effects in surface
plasmon polaritons8–13 and other analogous excitations
living at the interface between materials with different
optical properties, like surface phonon polaritons14 sur-
face excitons15, and Tamm states16. In the study of sur-
face plasmon polaritons the quantum properties of the
matter degrees of freedom are usually of little interest,
and macroscopic approaches that do not explicitly ac-
count for them are very successful. Elson and Ritchie
where the first to quantize the electromagnetic field at
the surface of a metal described by a Drude model in the
absence of dissipation17. This work was then extended
to more general dielectric constants18,19.

A different, microscopic approach to the interaction of
light with matter in solid-state physics was initially pi-
oneered by Hopfield, that considered the matter degrees
of freedom as bosonic fields coupled to the photons20.
The normal modes of the coupled light-matter system,
usually referred to as polaritons, are then found as linear
superpositions of the creation and annihilation operators

of the original light and matter fields. In this way it is
possible to microscopically derive results postulated in
macroscopic approaches21,22. Losses can be taken into
consideration by coupling the system to a broadband
reservoir23. Furthermore the Hopfield approach can be
made fully covariant24 and equivalence can also be shown
with the macroscopic Green’s function approaches under
the appropriate choice of dielectric function25.
The Hopfield method though, has the advantage of

treating on equal footing light and matter, thus becom-
ing the tool of choice in the domain of quantum polari-
tonics, where nonlinear processes depending upon the
matter component of the excitations are of paramount
importance26–28. Once the polaritonic operators have
been obtained as linear superpositions of light and mat-
ter fields the Hopfield transformation can be inverted,
allowing to express the fields describing the microscopic
degrees of freedom as linear superpositions of polaritonic
operators. Arbitrary nonlinearities, usually stemming
from terms nonlinear in the matter field can then be
naturally expressed as scattering terms between the po-
laritonic normal modes, allowing to investigate coherent
and non-coherent polaritonic scattering processes. Al-
though plasmons were initially quantized by Bohm and
Pines as microscopic bosonic degrees of freedom29, Hop-
field approaches to the study of surface plasmon polari-
tons have appeared only recently30, using ad-hoc meth-
ods that make it difficult to invert the Hopfield transfor-
mation. To the best of our knowledge, no general theory
of Hopfield diagonalization in inhomogeneous materials
has been formulated, and this becomes a pressing issue
as inhomogeneous polaritonic systems characterised by
extremely localised resonances31,32, and thus potentially
by large nonlinear effects, become commonplace. The ne-
cessity of real-space approaches in polaritonics has also
recently been highlighted in Ref. 33, proving that an in-
homogeneous Hopfield theory is necessary to study sub-
healing length details in polaritonic condensates.
In this work we introduce a real-space Hopfield ap-

proach to the study of non-magnetic polarizable materi-
als, which allows to determine invertible Hopfield trans-
formations for generic geometries. For sake of simplicity
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we will limit ourselves to the isotropic case, the exten-
sion to the anisotropic one not presenting any concep-
tual difficulty. As an alternative to the Green’s func-
tion and path integral approaches previously employed
we are able to use a straightforward modal analysis in
the non-dissipative case to derive the polaritonic wave-
functions, and we can normalize the resulting modes im-
posing bosonic commutation relations, without need to
recur to flux normalization22.
This paper is organised as follows: in Sec. II we intro-

duce the general real-space Hopfield approach in the non-
dissipative case. While for surface plasmon polaritons a
non-dissipative treatment is accurate only at the qualita-
tive level, this is not true for surface phonon polaritons,
where quality factors in excess of 100 for localised res-
onances are nowadays commonly achieved31,34,35. The
increasing interest in those systems36–43 and the need
for a simple and powerful tool to study them has been
one of the primary motivations for the present work. In
Sec. III, in order to give a physical instantiation of the
formal theory, we explicitly apply it to the analytically
manageable case of the interface between vacuum and a
polar dielectric, sustaining both propagative and surface
excitations44. In Sec. IV we extend the model to include
losses, showing how we recover an equivalent formulation
to the Green function approach of Ref. 25 and the results
of Ref. 23 in the homogeneous case.

II. REAL-SPACE HOPFIELD THEORY FOR

NON-DISSIPATIVE MATERIALS

A. Formulation of the Problem

The coupled light-matter system can be described by
the Power-Zienau-Wooley Lagrangian density30

L0 (r)=

∫

dr

[

ǫ0
2
E (r)

2
−

1

2µ0
B (r)

2
(1)

+
ρ (r)

2
Ẋ (r)2−

ρ (r)ωT (r)
2

2
X (r)2

−κ (r)X (r)·Ȧ (r)−U(r)∇ [κ (r)X (r)]

]

,

where the electromagnetic field is described by the elec-
tric and magnetic components E (r) ,B (r), related to the
vector and scalar potentials A (r) and U (r) by

E (r)=−∇U(r)−Ȧ (r) , (2)

B (r)=∇×A (r) , (3)

and the field X (r) describes the degrees of freedom of
the matter resonance with a space-dependent transverse
frequency ωT (r) and density ρ (r). The function κ (r)
describes the spatially inhomogeneous light-matter cou-
pling. Matter is present only inside the regions where
ρ (r) 6=0 and thus, in order not to burden the notation, we

will in the following assume that all the integrals involv-
ing matter degrees of freedom extend only inside those
regions. In the rest of this paper the spatial dependence
of all variables will be suppressed where not necessary.
Notice that the Lagrangian in Eq. (1) not only models
the coupling of light with microscopic harmonic degrees
of freedom as excitons or phonons, but it has been shown
to correctly describe plasmonic excitations in the limit of
vanishing ωT

30. The canonical momenta can now be cal-
culated as

Π=
δL0

δȦ
=ǫ0Ȧ−[κX]

T
, (4)

P=
δL0

δẊ
=ρẊ, (5)

where δ is a functional derivative and the superscript T
refers to the transverse component of the field. Introduc-
ing the longitudinal frequency

ω2
L=ω2

T+
κ2

ǫ0ρ
, (6)

we can obtain from the Lagrangian in Eq. (1) the Hamil-
tonian

H0=

∫

dr

[

D2

2ǫ0
+
µ0H

2

2
+
P2

2ρ
+
ρω2

LX
2

2
−

κ

ǫ0
X·D

]

, (7)

where we expressed the electromagnetic variables in
terms of the electric displacement D=−Π and magnetic
field H=B/µ0. This Hamiltonian can be quantized by
imposition of canonical commutation relations, whose
non-zero components read

[X(r),P(r′)]=i~δ(r−r′), (8)

[D(r),A(r′)]=i~δT(r−r′), (9)

where δT(r−r′) is the transverse delta function and ~ is
Planck’s constant. From Eq. (8) we can derive the further
commutation relation between electric displacement and
magnetic field

[D(r),H(r′)]=i
~

µ0
∇′×δ(r−r′), (10)

where the prime on∇ denotes it acting upon primed vari-
ables. As the Hamiltonian is quadratic in the fields, in the
spirit of the original Hopfield paper20, we look for normal
modes of the system in the form of polaritonic operators,
linear superpositions of the light and matter microscopic
fields, weighted by arbitrary space-dependent coefficients

K=

∫

dr [α·D+β·H+γ ·P+η ·X] , (11)

where we will refer to α, β, γ, η as real-space Hopfield
coefficients and to K as the annihilation operator of a
polariton mode. The choice of the four microscopic op-
erators we use in the definition of the polariton operators
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in Eq. (11) is somehow arbitrary, and we could have used
as well creation and annihilation operators for the light
and matter fields, as in the original Hopfield paper20, or
conjugate variables Π and A also for the electromagnetic
field. In order for the polariton operator to diagonalise
the Hamiltonian H0 it must obey the Heisenberg equa-
tion

[K,H0]=~ωK. (12)

Using Eqs. (7)-(11) we obtain

[K,H0]=i~

∫

dr∇×α·H−c2∇×β·D

+κ c2∇×β·X−ρω2
Lγ ·X+

κ

ǫ0
γ ·D+

1

ρ
η ·P

=~ω

∫

drα·D+β·H+γ ·P+η·X,

(13)

which, equating the coefficients of the different operators,
can be restated as the eigensystem

ωα=−ic2∇×β+i
[κγ]T

ǫ0
, (14)

ωβ=i∇×α, (15)

ωγ=i
η

ρ
, (16)

ωη=iκ c2∇×β−iρω2
Lγ. (17)

We have thus transformed the operator-valued Eq. (12)
into a set of equations, equivalent to Maxwell equations
in matter, over the Hopfield coefficients. Such a system
can be formally solved yielding discrete eigenmodes

|Ψn〉=(αn,βn,γn,ηn) , (18)

and the relative eigenfrequencies ωn. Bamba and Ogawa
showed that polarizable matter is stable against superra-
diant phase transitions both in the homogeneous and in-
homogeneous cases45, implying that Eqs. (14)-(17) do not
present zero energy solutions. In particular they proved
that, under suitable continuity conditions, an inhomo-
geneous system is stable if the condition of stability for
the corresponding point-wise homogeneous system is ver-
ified. In the homogeneous case, by evaluating Eq. (14)
and Eq. (17) for ω=0, we infer the stability condition
ωT>0. In the following we will thus consider a trans-
verse frequency everywhere positive, although possibly
arbitrarily small. From direct inspection we can verify
that if |Ψn〉 in Eq. (18) is solution of Eqs. (14)-(17) then

|Ψn̄〉=
(

ᾱn, β̄n, γ̄n, η̄n

)

, (19)

is also solution with eigenvalue ωn̄=−ωn, that is for each
positive energy solution there exist a negative energy one
such that K†

n=Kn̄. This is a general feature, that re-
mains valid also if we chose a different representation
for the polaritonic operators (e.g., representing them as

linear superpositions of creation and annihilation oper-
ators), even if in this case the coefficients of the nega-
tive energy solutions will in general not be the complex
conjugate of the positive energy ones. This bipartition
of the solutions into positive and negative energy sub-
spaces is fundamental for our interpretation of the posi-
tive (negative) energy polariton operators as annihilation
(creation) operators for the relative excitations.
In order to determine the eigenmodes of Eqs. (14)-(17)

it is convenient to introduce the novel variable

θ=α+i
[κγ]

L

ωǫ0
, (20)

where L denotes the longitudinal component, that allows
us to restate Eqs. (14)-(17), as the wave equation

∇×∇×θ=
ω2ǫ (ω)

c2
θ, (21)

where

ǫ (ω)=
ω2
L−ω2

ω2
T−ω2

, (22)

is the (generally space-dependent) dielectric function of a
lossless dielectric composed of Lorentz oscillators with ωL

and ωT as longitudinal and transverse resonant frequen-
cies. We recognise in Eq. (21) the electromagnetic wave
equation in an inhomogeneous, non-magnetic medium,
that allows us to solve the differential problem in terms
of θ with the usual methods employed in classical elec-
tromagnetism. The coefficients of the polariton operator
can then be calculated from Eq. (20) and Eqs. (14)-(17)
as

α=θT, (23)

β=
i

ω
∇×θ, (24)

γ=i
κω

ρ (ω2
T−ω2)

θ, (25)

η=
κω2

ω2
T−ω2

θ. (26)

We notice that Eq. (21) is generally not in the form
of an eigenvalue problem, due to the simultaneous fre-
quency and position dependence of the dielectric func-
tion, making it simpler to reason using the eigensystem
in Eqs. (14)-(17). Once the eigenmodes have been deter-
mined, they can be normalized requiring the polariton
operators to obey

[

Km,K†
n

]

=δm,n sgn(ωn), (27)

where sgn(ω)= ω
|ω| is the sign function. Such an equation

reduces to the standard bosonic commutation relation
if we restrict the indexes m and n only over the posi-
tive energy solutions. In term of the Hopfield coefficients
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Eq. (27) reads

i~

∫

dr
1

µ0
αm ·∇×β̄n−

1

µ0
∇×βm ·ᾱn+ηm ·γ̄n−γm ·η̄n

=~ǫ0

∫

dr
ǫ(ωm)ω2

m−ǫ(ωn)ω
2
n

ωm−ωn

θm ·θ̄n=δm,n sgn(ωn),

(28)

that in the case m=n may conveniently be expressed as

~ωnǫ0

∫

dr ǫ (ωn) ν(ωn)θn ·θ̄n=sgn(ωn), (29)

where the function ν(ω) is given by

ν(ω)=1+
1

ǫ (ω)

∂ [ǫ(ω)ω]

∂ω
=
vG (ω)

vP (ω)
, (30)

which is equivalent to the ratio of the local group and
phase velocities vG (ω) and vP (ω)46.

B. Expressions of the microscopic fields

We can now express the microscopic light and matter
fields as linear combinations of the polaritonic modes

D=
∑

n

fDn Kn=

′
∑

n

[

fDn Kn+ f̄Dn K
†
n

]

, (31)

H=
∑

n

fHn Kn=
′

∑

n

[

fHn Kn+ f̄Hn K
†
n

]

, (32)

P=
∑

n

fPnKn=

′
∑

n

[

fPnKn+ f̄PnK
†
n

]

, (33)

X=
∑

n

fXn Kn=

′
∑

n

[

fXn Kn+ f̄Xn K
†
n

]

, (34)

where the primed sums are intended to be only on posi-
tive energy solutions. Expansion coefficients for the pos-
itive energy solutions can be calculated using the expan-
sion of the polariton operators in Eq. (11) and the com-
mutator relations in Eqs. (8)-(10) as

fDn =
[

D,K†
n

]

=−i
~

µ0
∇×β̄n, (35)

fHn =
[

H,K†
n

]

=i
~

µ0
∇×ᾱn, (36)

fPn =
[

P,K†
n

]

=−i~η̄n, (37)

fXn =
[

X,K†
n

]

=i~γ̄n. (38)

C. Orthonormality and Completeness

It remains to verify that our procedure yields a com-
plete set of solutions in the form of Eq. (11), satisfying
Eq. (27). The polariton normalization in Eq. (28) offers

the natural inner product over the space of Hopfield co-
efficients |Ψ〉=(α,β,γ,η), as orthonormality would as-
sure the different polariton modes respect the required
commutator relations. We thus define the inner product
between two wavefunctions |Ψ′〉 and |Ψ〉 as

〈〈Ψ′|Ψ〉〉= i~

∫

dr

[

1

µ0
α·∇×β̄′−

1

µ0
∇×β·ᾱ′ (39)

+η ·γ̄′−γ ·η̄′

]

.

From Eq. (28) such an inner product is not positive def-
inite and thus the vector space of the |Ψ〉 does not form
an Hilbert space over the scalar product in Eq. (39). Still
it forms a Krěın space47 with signature operator

η=

′
∑

n

[|Ψn〉〉〈〈Ψn|−|Ψn̄〉〉〈〈Ψn̄|] , (40)

allowing us to recover the structure of an Hilbert space
over the inner product

〈Ψ′|Ψ〉=〈〈Ψ′| η |Ψ〉〉. (41)

Recasting the eigensystem in Eqs. (14)-(17) in operatorial
form as

B0 |Ψ〉=ω |Ψ〉 , (42)

we have to impose B0 to be self-adjoint with respect to
an inner product defined in Eq. (41), that is

〈Ψ′|B0Ψ〉−〈B0Ψ
′|Ψ〉=0. (43)

Using Eqs. (14)-(17) and Eqs. (39)-(41) we can transform
Eq. (43) into

∫

dr [α·∇×∇×ᾱ′−ᾱ′ ·∇×∇×α]=0. (44)

Imposing the condition ∇·α=0, that from Eq. (35) is
just the transversality of the electric displacement field
∇·D=0, and using Green’s second identity, we can put
Eq. (44) in the form

∫

∂V

dS [α·(n·∇) ᾱ′−ᾱ′ ·(n·∇)α]=0, (45)

where ∂V is the surface of the quantization volume V, dS
the infinitesimal surface element, and n the unit vector
normal to it. It is possible to satisfy Eq. (45) imposing
proper homogeneous boundary conditions for α on ∂V
and under such conditions the system in Eqs. (14)-(17)
is self-adjoint, allowing us to find a complete set of so-
lutions in the form of the polaritonic operators defined
in Eq. (11) respecting bosonic commutation relations in
Eq. (27). We can at this point write the completeness
relation that, for arbitrary |Ψ〉 and |Ψ′〉, reads

〈Ψ|

[

∑

n

|Ψn〉 〈Ψn|

]

|Ψ′〉=〈Ψ|Ψ′〉, (46)



5

leading to expressions between the Hopfield coefficients
of the form

′
∑

n

[

αn(r
′)·∇×β̄n(r)−ᾱn(r

′)·∇×βn(r)

]

=i
µ0

~
δT(r−r′),

(47)

allowing us to verify the consistence of our procedure by
explicitly calculating the commutators we used to quan-
tize the theory

[D(r),H(r′)]=
~
2

µ2
0

′
∑

n

[

∇×β̄n(r)·∇
′×αn(r

′) (48)

−∇×βn(r)·∇
′×ᾱn(r

′)

]

=
~
2

µ2
0

′
∑

n

∇′×

[

∇×β̄n(r)·αn(r
′)

−∇×βn(r)·ᾱn(r
′)

]

=i
~

µ0
∇′×δ(r−r′),

with equivalent expressions arising for the other coeffi-
cients and leading to the other commutators between the
microscopic fields. The Hamiltonian in Eq. (7) can thus
be put in the diagonal form

H0=
′

∑

n

~ωn K
†
nKn. (49)

III. APPLICATION: PHONON POLARITONS

AT A PLANAR INTERFACE

In order to illustrate the method developed in the pre-
vious section, we will apply it to the well-known case of
a planar interface between vacuum and a polar dielec-
tric described by the Lorentz dielectric function, where
the coupling of the electromagnetic field with the trans-
verse optical phonons gives rise to both bulk and surface
phonon polariton excitations44. Assuming the surface to
lie in the x−y plane, the air-dielectric interface, sketched
in Fig. 1(a), will be described by the dielectric function

ǫ (ω, z>0)=1,

ǫ (ω, z<0)=ǫL (ω)=
ω2
LO−ω2

ω2
TO−ω2

, (50)

where ωLO and ωTO are the longitudinal and trans-
verse optical phonon frequencies, linked between them
by the Lyddane-Sachs-Teller relation48. The eigenmodes
and the relative eigenfrequencies can be calculated solv-
ing Eq. (21) with the dielectric function in Eq. (50),
leading to both bulk and surface solutions. The bulk,
propagative ones, impinging upon the surface from each

ω
TO

ω
LO

A
n

g
u

la
r 

F
re

q
u

e
n

cy

kσ

E2

E

E

ε=1

ε=ε
L
(ω)

ε
L
(ω)>0

ε
L
(ω)<0

ε
L
(ω)>0

σ=TMv

kσ=k

σ=S

kσ=k
Ⅱ

σ=TMl, TMu

kσ=k

z ε
L
(ω)<0

FIG. 1: Dispersions of the different classes of solutions of a
planar interface between vacuum and a polar dielectric. The
dispersion of photons in vacuum (red) and of bulk phonon
polaritons in the dielectric (blue) are plotted as a function of
the three-dimensional wavevector k, while the dispersion of
the surface modes (yellow) is plotted as a function of the two-
dimensional in-plane wavevector k‖. Representative schemes
of the modes are shown as insets: on the top the propagative
TM solutions with wavevector k=(k‖, kz), incident from the
vacuum side of the interface, on the center the surface solu-
tion propagating along the interface with wavevector k‖ and
its evanescent field profile from Eq. (55), and on the bottom
the propagative TM solutions with wavevector k=(k‖, kz), in-
cident from the dielectric side of the interface, and belonging
either to the lower or to the upper polariton branch.

side, are indexed by their polarization (TM or TE) and
three dimensional wavevector in the medium of origin,
k=(k‖, kz), with kz>0 for waves coming from vacuum
(v) and kz<0 for waves coming from the dielectric. The
latter ones need also an extra index over the two bulk
phonon polariton branches, lower (l) and upper (u) po-
laritons, existing in the dielectric for each value of k.
Those propagative modes are described, in the dielec-
tric, by a linear superposition of transverse photonic and
phononic resonances, becoming more photon-like near
the free photon dispersion and more matter-like close
to the frequency of the optical phonon resonance. The
surface solutions instead form a single branch of surface
phonon polaritons, indexed by the two-dimensional in-
plane wavevector k‖, and they only exist for ck‖≥ωTO.
The dispersion of the surface mode can be found by pos-
tulating an evanescent solution to Eqs. (14)-(17). This
mode is confined at the interface as schematically shown
in the inset to Fig. 1, with its degree of confinement in-
creasing for larger k‖, as the mode becomes more matter-
like. The dispersion of the different modes are shown in
Fig. 1. We can thus write the general expression of po-
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lariton operators

K
σ
kσ=

∫

dr

[

ασ
kσ ·D+

i

ωkσ

∇×ασ
kσ ·H (51)

+i
κωkσ

ρ (ω2
TO−ω2

kσ)
ασ

kσ ·P+
κω2

kσ

(ω2
TO−ω2

kσ)
ασ

kσ ·X

]

,

where σ=[TMv, TMl, TMu, TEv, TEl, TEu, S] indexes
the different classes of solutions, and kσ is the relative
two- or three-dimensional wavevector. In the following
we will explicitly consider only the surface phonon po-
lariton modes (σ=S) and a single kind of bulk propaga-
tive solution (σ=TEv, the TE polarised modes incident
from the vacuum side of the interface), as the other so-
lutions lead to very similar expressions. Introducing the
orthogonal basis vectors êz, ê‖, and ê⊥, oriented along
the z axis and in the x−y plane respectively parallel and
perpendicular to k‖, we can write the positive energy
solutions of Eq. (21) for the TEv modes as

θTEv
k (r‖, z>0)=NTEv

k e−ik‖·r‖
(

eikzz+rTEv
k e−ikzz

)

ê⊥,

(52)

θTEv
k (r‖, z<0)=NTEv

k tTEv
k e−ik‖·r‖e

i
√

ǫL(ωk)k2−k2

‖
z
ê⊥,

where the Fresnel coefficients read

rTEv
k

=
kz−

√

ǫL (ωk) k2−k2‖

kz+
√

ǫL (ωk) k2−k2‖

, (53)

tTEv
k

=
2kz

kz+
√

ǫL (ωk) k2−k2‖

. (54)

For the S modes we have instead

θS
k‖
(r‖, z>0)=NS

k‖

[

1
√

ǫL
(

ωk‖

)

ê‖+êz

]

(55)

×e−ik‖·r‖e

−k‖

√

−1

ǫL

(

ω
k‖

) z

,

θS
k‖
(r‖, z<0)=

NS
k‖

ǫL
(

ωk‖

)

[

−
√

ǫL
(

ωk‖

)

ê‖+êz

]

×e−ik‖·r‖e
k‖

√

−ǫL

(

ωk‖

)

z
.

In Eq. (52) and Eq. (55) the Nσ
kσ coefficients are the

normalization of the different modes, that can be fixed
by plugging the relevant coefficients into Eq. (51), and
then using Eq. (29). This yields

NTEv
k =

√

1

2ǫ0~ωkV
, (56)

NS
k‖
=

√

k‖

ǫ0~ωk‖
A

[

1−
νL

(

ωk‖

)

ǫL
(

ωk‖

)

]− 1

2

×





1
√

−ǫL
(

ωk‖

)

+
√

−ǫL
(

ωk‖

)





− 1

2

, (57)

where A is the area of the quantisation surface and νL (ω)
the function obtained using ǫL (ω) into Eq. (30). This
expression can be recast in the form calculated by Ar-
chambault by expansion of the function ν (ω)18.
We can finally recover the expressions of the micro-

scopic fields by inverting the Hopfield transformation us-
ing Eqs. (31)-(34), allowing us not only to calculate phys-
ical observables, but also to naturally express nonlinear
interactions in terms of scattering between polariton op-
erators. In the specific example we are considering here
nonlinearities can arise due to phonon anharmonicity,
leading to N th order nonlinear interaction Hamiltonians
that can be written in the general form

HNL=

∫

dr
3

∑

j1···jN=1

Φj1···jN

N
∏

l=1

Xjl , (58)

where the js index space coordinates and values of the
nonlinear tensor Φ for some reference structure can be
found in the literature at least up to the fourth order49.
Inverting Eq. (51) and using Eq. (26) we can express the
matter field as

X=
∑

σ

∫

dkσ κ~ωkσ

ρ(ω2
TO−ω2

kσ)
θ̄σ
kσK

σ
kσ+H.c, (59)

where σ runs over all the different classes of solutions
as in Eq. (51). Substituting Eq. (59) into the nonlinear
Hamiltonian in Eq. (58) we thus obtain the interaction
Hamiltonian written as scattering terms between the po-
laritonic operators

HNL=
∑

σ1···σN

N
∏

l=1

[
∫

dkσl

]

Ξσ1···σN

kσ1 ···kσN

N
∏

l=1

K
σl

k
σ
l
, (60)

where the scattering coefficients Ξ are obtained perform-
ing the relevant integrals over the space variables.
As an example we will calculate the χ(2) nonlinearity

for mutually orthogonal field components

H
xyz=

∫

drΦxyzXxXyXz , (61)

where Φxyz is the contributing part of the nonlinear di-
electric tensor. Introducing the linear susceptibility

χ(ω) =
κ2

ρǫ0(ω2
TO−ω2)

, (62)

into Eq. (59) we can write such an Hamiltonian as

H
xyz=

(

~ǫ0
κ

)3
∑

σ1,σ2,σ3

∫

drΦxyz

∫ ∫ ∫

dkσ1dkσ2dkσ3

(63)

×

[

3
∏

l=1

ωkσ
lχ (ωkσ

l )
[

θσl,l
k
σ
l
K

σl†
k
σ
l
+θ̄σl,l

k
σ
l
K

σl

k
σ
l

]

]

,
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where θσ,l
k

is the lth Cartesian component of θσ
k
. In

Eq. (63) we can recognise the mechanical contribution
to the third order anharmonic dielectric susceptibility50

χ
(2)
M (ωkσ1 , ωkσ2 , ωkσ3 )=Φxyz

3
∏

l=1

ǫ0
κ
χ (ωkσ

l ) . (64)

IV. EXTENSION TO THE DISSIPATIVE CASE

The model described in Sec. II can be extended to in-
clude dissipative effects on the same line of the original
Huttner and Barnett paper23. This is achieved by cou-
pling the matter field to a continuum bath of harmonic
oscillators modelling the continuum in which the matter
energy can be dissipated. Given the continuous character
of the resulting spectrum, this will come at the cost of
renouncing to the simple modal solution of Eq. (21) and
we will have to solve instead a non-homogeneous wave
equation. Still it is important to show that in this case
our method remains viable, effectively recovering a re-
sult equivalent to Ref. 25, and reducing to Ref. 23 in the
homogeneous case.
We thus consider the total Lagrangian L=L0+LB

where L0, from Eq. (1), describes the non-dissipative sys-
tem and

LB=

∫ ∞

0

dζ

[

ρẎ2
ζ

2
−
ρζ2Y2

ζ

2
−υζX·Ẏζ

]

, (65)

the bath of harmonic oscillators Yζ , indexed by their
frequency ζ, and coupled to the matter mode by the cou-
pling υζ . Analogously to what was done in Sec. II we
will assume that all the integrals over the bath degrees
of freedom extend only in the regions where ρ 6=0. The
canonical momenta for the bath operators are found as

Qζ=
δLB

δẎζ

=ρẎζ−υζX. (66)

The corresponding total Hamiltonian will thus be given
by H=H0+HB with

HB=

∫

dr

∫ ∞

0

dζ

[

ρζ2Y2
ζ

2
+
Q2

ζ

2ρ
+
υζ
ρ
Qζ ·X+

υ2
ζX

2

2ρ

]

,

(67)

where the last term in Eq. (67) can be included into H0

introducing the renormalized longitudinal frequency

ω̃2
L=ω2

T+
κ2

ǫ0ρ
+

∫ ∞

0

dζ
υ2
ζ

2ρ2
, (68)

that includes the static shift from coupling to the bath.
The full Hamiltonian H is quantized by imposition of
commutation relations whose non-zero elements are those
in Eqs. (8)-(10), in addition to

[Yζ (r) ,Qζ′ (r′)]=i~δ (r−r′) δ (ζ−ζ′) . (69)

The polaritonic operators are now defined as

K=

∫

dr

[

α·D+β·H+γ ·P+η·X (70)

+

∫ ∞

0

dζ
(

χζ ·Qζ+ξζ ·Yζ

)

]

, (71)

and solving the Heisenberg equation

[K,H]=~ωK, (72)

we obtain the system of equations

ωα=−ic2∇×β+i
[κγ]

T

ǫ0
, (73)

ωβ=i∇×α, (74)

ωγ=i
η

ρ
, (75)

ωη=iκ c2∇×β−iρω2
Lγ+i

υζ
ρ
ξζ , (76)

ωχζ=i
ξζ

ρ
−i

υζ
ρ
γ, (77)

ωξζ=−iρζ2χζ . (78)

Such a system may be solved using the method originally
due to Fano51, by using Eq. (78) to eliminate χζ and then
writing the bath operator ξζ as a function of γ as

ξζ=P

[

υζζ
2

ζ2−ω2
γ

]

+y (ω) δ (ζ−ω) , (79)

where P refers to the principal part and y (ω) is a
frequency- and space-dependent function to be deter-
mined. Analogously to what done in Sec. II we can
restate the system in Eqs. (73)-(78) as an inhomogeneous
wave equation

∇×∇×θ−
ω2ǫ̃ (ω)

c2
θ=iω j (ω) , (80)

where

ǫ̃ (ω)=
ω̃2
L−ω2−F (ω)

ω2
T−ω2−F (ω)

, (81)

is the complex dielectric function with

F (ω)=P

[

∫ ∞

0

dζ
υ2
ζζ

2

ρ2 (ζ2−ω2)

]

, (82)

which is of the form derived by Wubs and Suttorp25, and
the source current j (ω) relates to the function y (ω) as

j (ω)=
υω
κρc2

[ǫ̃ (ω)−1]y (ω) . (83)

Solutions of Eq. (80) can now be determined for any value
of ω, leading to a continuous spectrum of solutions in-
dexed by the frequency ω where the function y (ω) takes
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the role of the normalization factor. In order to fix such a
function we impose again the bosonic commutation rela-
tion for the polaritonic operators, in a continuous version
of Eq. (27)

[

Kω,K
†
ω′

]

=δ(ω−ω′)sgn(ω′). (84)

Following exactly the same steps as in Sec. II, extending
it to wavevectors of the form

|Ψ̃〉=
(

α,β,γ,η,χζ , ξζ
)

, (85)

we can write the total Hamiltonian in diagonal form as

H=~

∫

ω>0

dωK
†
ωKω, (86)

where the integral extends over the positive energy spec-
trum of Eqs. (73)-(78). Notice that our derivation proves
the completeness of the solutions of Maxwell equations
in an inhomogeneous, dissipative medium without free
charges. To the best of our knowledge the proof of this
result, normally assumed to be true, had not been ex-
plicitly reported in the literature.

V. CONCLUSION

We introduced a real-space Hopfield approach to the
diagonalization of polarizable media, able to extend to in-

homogeneous materials the standard machinery used in
the field of quantum polaritonics. Our approach allows
us to obtain explicit expressions for the quantum light
and matter microscopic fields as a function of the po-
laritonic operators. Natural applications of this method
are in the study of quantum nonlinear processes in in-
homogeneous systems, where the microscopic nonlinear-
ity, usually known as a nonlinear function of the matter
fields, can be expressed as scattering terms between po-
laritonic operators. We thus expect our theory will be
an important tool in the developing field studying quan-
tum properties of plasmons and other surface excitations,
where extremely small mode volumes can lead to strong
nonlinear effects.
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A. L. Aurélien A. L. Nicolet, P. R. Hemmer, F. Jelezko,
and J. Wrachtrup, Wave-particle duality of single surface

plasmon polaritons. Nat. Phys. 5, 470-474 (2009).
12 M. S. Tame, K. R McEnery, S. K. Özdemir, J. Lee, S. A.

Maier, and M. S. Kim, Quantum plasmonics. Nat. Phys.
9, 329 (2013).

13 G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-
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