
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Disorder effects on the band structure of ZnGeN_{2}: Role
of exchange defects

Dmitry Skachkov, Paul C. Quayle, Kathleen Kash, and Walter R. L. Lambrecht
Phys. Rev. B 94, 205201 — Published  1 November 2016

DOI: 10.1103/PhysRevB.94.205201

http://dx.doi.org/10.1103/PhysRevB.94.205201


Disorder effects on the band structure of ZnGeN2: the role of exchange defects

Dmitry Skachkov, Paul C. Quayle, Kathleen Kash, and Walter R. L. Lambrecht
Department of Physics, Case Western Reserve University,

10900 Euclid Avenue, Cleveland, OH-44106-7079

The role of exchange defects on the band structure of ZnGeN2 is investigated. Exchange defects
are defined through the exchange of cations Zn and Ge starting from the ideal Pna21 crystal
structure, which obeys the local octet rule. Each such exchange creates several nitrogen-centered
tetrahedra which violate the local octet rule although overall charge neutrality is preserved. We
study several distributions of exchange defects, some with all antisites making up the exchange
defect close to each other and with increasing numbers of exchange defects, and others where the
two types of antisites ZnGe and GeZn are kept separated from each other. We also compare the
results for these models with a fully random distribution of Zn and Ge on the cation sites. We
show that for a single-nearest-neighbor exchange defect, the band gap is narrowed by about 0.5 eV
due to two effects: (1) the ZnGe antisites form filled acceptor states just above and merging with
the valence band maximum (VBM) of perfect crystal ZnGeN2 and (2) the GeZn antisites form a
resonance in the conduction band which lowers the conduction band minimum (CBM). When more
exchange defects are created, these acceptor states broaden into bands which can lower the gap
further. When tetrahedra occur surrounded completely by four Zn atoms, states even deeper in the
gap are found localized all near these tetrahedra, forming a separate intermediate band. Finally, for
phase segregated ZnGe and GeZn the gap is significantly more reduced, but no separate band is found
to occur. The ZnGe acceptor-like states now form a percolating defect band which is significantly
wider and hence reaches deeper into the gap. In all cases, the wave functions near the top of the
new VBM remain to some extent localized near the ZnGe sites. For a fully random case, the gap
is even more severely reduced by almost 3 eV. The total energy of the system increases with the
number of octet-rule-violating tetrahedra and the energy cost per exchange defect of order 2 eV is
quite high.

I. INTRODUCTION

Recently there has been significant new interest in
heterovalent ternary nitrides, such as ZnGeN2 and
ZnSnN2.1–8 These materials can formally be thought of
as derived from the binary III-N nitrides by replacing
the group III by alternatingly a group II element, such
as Zn, and a group IV element, such as Ge or Sn. These
heterovalent ternaries have properties both similar to and
complementary to the well studied III-N semiconductors.
However, the additional degree of freedom of having two
different valence cations leads to new questions and ad-
ditional complexity. Most notable is the question of the
ordering of the cations.

While the most stable crystal structure found so far
for most of these materials has the β-NaFeO2 structure
with space group Pna21, disordered wurtzite-like phases,
sometimes identified as having monoclinic structure, have
also been reported.2,3,9,10 Besides the 16-atom unit cell
Pna21 structure, another 8-atom cell with space group
Pmc21 was proposed by Lahourcade et al.4 Both of these
structures are unique in that within the overall wurtzite
lattice they preserve the octet rule locally in each tetra-
hedron. That is: each tetrahedron surrounding a N has
exactly two group II and two group IV elements such that
the charge neutrality is conserved locally. In a recent pa-
per, Quayle et al.8 showed that these are the only two
small unit cells that satisfy this rule. Moreover these au-
thors showed that these two structures can be viewed as
simply a different stacking of rows of alternating group

II and group IV atoms in the basal plane. This result
then suggested that random stackings could also occur
and led to a new model for disordered structures which
are constrained to preserve the charge neutrality, as op-
posed to completely random placement of the II and IV
atoms on the wurtzite lattice, which would only preserve
neutrality globally but not locally. This means, for in-
stance, that some tetrahedra would have one group II
and three group IV atoms, which we will call a (1,3)
tetrahedron, and be compensated by the opposite (3,1)
tetrahedra elsewhere in the structure. In principle, in a
fully disordered structure, even (0,4) and (4,0) tetrahe-
dra would occur. In Quayle et al.8 it was shown that a
structure with only (1,3) and (3,1) tetrahedra had a sig-
nificantly higher total energy and lower band gap, and
that both structures Pna21 and Pmc21, with only (2,2)
tetrahedra, had almost the same energy and band gap.
On the other hand, it was recently proposed by Feldberg
et al.6 that for ZnSnN2 a significantly lower band gap was
obtained for “fully” disordered material as compared to
the ideal Pna21 structure. It was however not identified
what constitutes “fully disordered”, and statistics on the
number of each type of tetrahedron in the structure was
not provided.

In previous work,8 we hypothesized that the origin of
the decrease of the band gap in disordered structures
is related to “wrong” tetrahedra, i.e. tetrahedra other
than (2,2) that violate the local charge neutrality. In
this paper we further pursue this question by considering
so-called exchange defects. These consist of a swap of a
group II and a group IV atom, which we call an exchange
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defect. First of all, we analyze how many “wrong” tetra-
hedra such an exchange defect produces. Secondly, we
model a large supercell in which we make a number of
exchange swaps. We study the behavior of the gap and
states in the gap as functions of the distribution of the ex-
change defects and also compare these results with those
of a fully random structure, as more specifically defined
later. Finally we relate these results with those of the
individual antisite defects which were recently studied.11

In this study we focus on ZnGeN2 because it has a larger
gap than ZnSnN2. In the local density approximation,
the gap of ZnSnN2 becomes very small and this makes
it difficult to study the defect-related bands in the gap.
However, the essential physics should be similar, so the
main conclusions will transfer to the case of ZnSnN2 as
well.

II. METHODS AND MODELS

The calculations were done within the local den-
sity approximation (LDA) to density functional
theory.12–14 The full-potential linearized muffin-tin
orbital method15,16 was used for the solution of the
Kohn-Sham equations and the band structures. The
basis sets used and other details of the computation are
the same as those reported in Ref. 11. Each structure
was relaxed by a conjugate gradient method to find the
closest local minimum for a given configuration.

We studied several supercells each consisting of 128
atoms, which is a 2×2×2 supercell of the 16-atom prim-
itive unit cell of ZnGeN2, with various arrangements of
exchange defects. While in a 128 atom cell there may still
be significant defect-defect interactions especially when
considering these somewhat extended defect complexes,
we emphasize that in this study it is not our purpose to
exclude such defect-defect interactions but precisely to
include them. We are here not focused on the dilute limit
of such defect complexes but on their effect on the over-
all band gap of the system, including the defect-defect
interaction effects.

In Fig. 1 we illustrate the structure of a single ex-
change defect. One can see that in the perfect crystal
structure each horizontal row has alternating blue (Zn)
and pink (Ge) atoms. The single exchange defect shown
in Fig. 1a corresponds to a swap of two nearest neigh-
bor cations (connected to the same N) in the basal plane
as indicated by the red line. As explained in the fig-
ure caption, this exchange defect leads to three (1,3) and
three (3,1) “wrong” tetrahedra. A slightly different ex-
change defect can be made by swapping two atoms in
neighboring planes as illustrated in Fig. 1 b-d. As the
caption explains, this defect also has three (1,3) and three
(3,1) tetrahedra. The same is true for more distant atom
swaps. Once we start adding more exchange defects, the
defective regions may start overlapping and the number
of wrong tetrahedra per swap may be reduced. Specif-
ically, we used three different structures each with two

(a) (b)

(c) (d)

FIG. 1. (Color online) (a) Single exchange defect between
atoms in the same basal plane. The blue and pink spheres
indicate Zn and Ge, the small white spheres N. The red line
indicates the swapped atoms. The yellow spheres indicate
N surrounded by 3 Ge and 1 Zn (1,3) tetrahedron, the red
spheres indicate N surrounded by 3 Zn and 1 Ge (3,1) tetrahe-
dron. Additional (1,3) and (3,1) tetrahedra occur above each
antisite. (b) Single exchange defect between near-neighbor Zn
and Ge in adjacent planes (B and C); In (b), showing layers
B on top of C, one can see two (1,3) tetrahedra indicated by
the yellow N; In (c) (layers A on top of B) one can see a third
(1,3) tetrahedron. In (d), showing layers C on top of D, one
can see three (3,1) tetrahedra indicated by red N spheres.

exchange defects, which have respectively 4, 5 and 6 (1,3)
and (3,1) tetrahedra. These structures are shown in Fig.2
and the statistics of their tetrahedra are listed in Table I
along with other models and calculated properties.

Next, we used two different distributions of 3 swaps,
one in which they were all close neighbors and the second
in which we kept the ZnGe separated from the GeZn. The
latter was made by first occupying sites according to a
random number generator, and next we swapped atoms
by hand to keep the antisites from being near neighbors.

Finally, we also study a more fully random system.
The latter is defined in terms of the special quasi-random
structures (SQS) approach.17 In the SQS approach, one
constructs an ordered structure such that various pair-
correlation functions and higher order correlation func-
tions between spins a certain distance from each other
agree as close as possible to the fully random distribu-
tions. Instead of considering pairs on the cation lattice,
we consider the five possible tetrahedra around each N,
(0,4), (1,3), (2,2), (3,1), (4,0), which in the fully random
case should occur according to the binomial distribution,
which for equal concentrations of the two cations means
in the ratio 1/16, 4/16, 6/16, 4/16, 1/16. Using a search
among various models with the 64 cation sites populated
according to a random number generator, we found sev-
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(a) (b)
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FIG. 2. (Color online) Three different models with two ex-
change defects each and respectively 4, 5 and 6 wrong tetra-
hedra in cases (a), (b), (c). The blue spheres indicate Zn,
the pink Ge, the small spheres are N, with the yellow ones
indicating a (1,3) and red ones a (3,1) tetrahedron.

eral cells that obey this distribution of tetrahedra and
used a few of these as representative examples of a ran-
dom system. This approach is equivalent to considering
correlation functions with k = 0, 1, 2, 3, 4 up to nearest
neighbors only. One could further improve on this SQS
by requiring higher distance pairs etc. to have vanishing
pair correlations.

We note that the charge neutrality is always conserved
overall because we start from a stoichiometric sample and
only make exchanges; we do not add or delete atoms
of a given kind. So, the question now is how do these
defects affect the band structure? In the following we
define the band gap as the difference between the low-
est empty state and the highest occupied states. For a
disordered system, one also considers defect state tails
below the band edges in the gap region. In amorphous
systems, one often distinguishes a mobility gap, a gap
above which states contribute actually to transport from
a optical gap. We thus clarify that the gaps we consider
here are related to optical absorption gaps and do not
represent a mobility gap. On the other hand, we will
also study the localization behavior of the states tailing
into the nominal perfect crystal gap.

III. RESULTS

First, let us consider a single swap between nearest
neighbor atoms in the same basal plane. The band struc-
ture and density of states for this case is shown in Fig. 3.
We can see that some defect-like bands occur in the gap
close to the VBM. These bands are filled because we con-
sider the neutral charge state. This result is consistent
with expectations from the individual defects.11 In fact, a
ZnGe antisite was shown to behave as an acceptor defect,
while a GeZn antisite behaves as a very shallow donor,
essentially producing only a resonance in the conduction
band with potentially a hydrogenic Coulomb tail bound
state. The latter however is not reproduced in supercell
calculations because of the limited size of the cell. In the
present case, the donor electrons are transferred to the
acceptor so the donor is in the positive state, compensat-
ing the negative acceptor. Hence the defect levels due to
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FIG. 3. (Color online) Band structure and density of states
for single nearest neighbor swap exchange defect.

the ZnGe acceptor are all filled. Because the ZnGe accep-
tor is still relatively shallow (< 0.1 eV binding energy)
although less shallow than the GeZn donor, one would ex-
pect the gap to be only slightly reduced from the perfect
crystal value. However, we find that the gap is reduced
from 1.93 eV in the perfect crystal to 1.39 eV. These
are LDA gaps and thus underestimated but are sufficient
to explore the changes in gap upon introducing the ex-
change defects. The reason for the gap lowering becomes
clear on closer inspection of the band structure and com-
paring it to the case of a single ZnGe antisite in Fig. 11 of
Ref. 11. In the present case, there is a resonance in the
conduction band due to the GeZn antisite which pushes
the conduction band minimum (CBM) down. Of course,
in the dilute limit one would not expect this resonance
to lower the conduction band but here we are concerned
with the band structure of a 128 atom cell which has 32
Zn sites, so 1/32=3.125 % concentration of GeZn defects.
Furthermore the GeZn occurs close to the ZnGe site and
in fact, as mentioned earlier there are actually six wrong
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tetrahedra, which already has a significant effect on both
the VBM and CBM.

FIG. 4. (Color online) Wave function modulo squared for (a)
the highest valence band and (b) the conduction band reso-
nance in the model with one exchange defect. The grey and
purple spheres indicate regular lattice sites Zn and Ge respec-
tively, while the red indicates ZnGe and the green indicates
GeZn. The small green spheres indicate N surrounded by 3 Ge
and one Zn, while the small red spheres indicate N surrounded
by 3 Zn and one Ge.

Inspection of the wave functions shown in Fig. 4 corre-
sponding to the defect levels just above the VBM shows
that their wave functions are indeed localized near the
ZnGe antisite and similar to those for an isolated antisite
defect. Fig. 4 also shows the conduction band resonance
near GeZn.

The energy of formation of this single exchange defect
is 2.8 eV compared to the perfect crystal. This is com-
parable to the energy of formation of the ZnGe isolated
defect. The latter depends on chemical potential condi-
tions, but here we compare only systems with the same
number of Zn and Ge atoms, so we can directly com-
pare the energy of the crystal with the exchange defect
to that of the perfect crystal, without considering equilib-
rium with different reservoirs. Furthermore we consider
the system to be overall neutral and this condition fixes
the Fermi level at the highest occupied band.

For the alternative single swap defect considered in
Fig.1b we found essentially identical results and there-
fore we do not show them here. Next, we consider several

systems with 2 swaps as indicated in Fig. 2. These show
similar band structures with some variation in the width
of the distribution of ZnGe defect states near the VBM, as
indicated by the gap shown for each structure in Table I.
We also see from this table that the energy of formation
tends to increase with the number of octet-rule-violating
tetrahedra. Remarkably, however, the model with two
swaps, shown in Fig. 2a has a lower energy of formation
than the one-swap model. In view of the opposite charges
of the Zn−2

Ge and Ge+2
Zn we may note that this configu-

ration contains two nearby oppositely pointing dipoles,
which helps to lower its energy. Still, it is remarkable
that this arrangement would lower the energy enough to
compensate for the fact that we have one more exchange
defect.
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FIG. 5. (Color online) Band structure and density of states for
3 nearest-neighbor exchange defects for the model containing
a (4,0) tetrahedron.

Next, we consider a system with three exchange de-
fects, all of them occurring between near-neighbor Zn and
Ge. As shown in Table I, in this case there occurs a (4,0)
tetrahedron; in other words a N surrounded by four Zn
atoms. The band structure and density of states, shown
in Fig. 5, now exhibits a defect band, filled with elec-
trons, well separated from the valence band maximum.
Nominally, one could say that the gap is now significantly
reduced because it corresponds to the gap between the
defect band and the CBM. We will refer to this defect
band as an intermediate band.

However, the flat dispersion and hence high effective
mass will probably result in poor hole transport in this
defect band. Inspection of the wave function (Fig. 6)
shows that all three bands in the middle of the gap have
states localized near the N surrounded by four Zn. This
result is understandable because the defect states of ZnGe

are mostly N-p like and the localized states of the N sur-
rounded by all Zn will be more pushed up by the Zn-3d
states than other for N. The usual valence band below
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TABLE I. Numbers of tetrahedra of different types in various models, their LDA band gaps, and energies of formation. The
type of tetrahedron is indicated as (nZn, nGe) with nZn (nGe) the number of Zn (Ge) neighbors to each N.

model (2,2) (1,3) (3,1) (0,4) (4,0) Egap (eV) Efor (eV) comment
1-swap 58 3 3 0 0 1.39 2.8 defect level close to VBM
2-swaps a 56 4 4 0 0 1.58 2.3
2-swaps b 54 5 5 0 0 1.26 2.9
2-swaps c 52 6 6 0 0 1.01 4.7
3-swaps 47 9 7 0 1 0.50 7.4 intermediate band
separated 3 ZnGe and 3 GeZn 41 10 12 0 0 0.44 10.5 reduced gap, raised VB
random 24 16 16 4 4 0.33a 20.0

a LDA+U gap

the separated intermediate band still has states near its
maximum that are localized near ZnGe but not on the N
surrounded by four Zn.

As an aside, an intermediate band situation like this
one, has been suggested to be possibly useful for photo-
voltaics. The idea is that if such a band is partially filled,
optical transitions can occur between the VBM and this
intermediate band, as well as between this intermediate
band and the CBM. In addition to the usual VBM-CBM
transitions, one could thus absorb photons of lower en-
ergy. If at the same time one can maintain the quasi-
Fermi level of the n- and p-type sides of an interface near
the nominal CBM and VBM then one could maintain
an open-circuit voltage close to the value of the large
band gap of the unperturbed material. However, this
intermediate band can also act as a carrier trap. Thus
good transport in this band, and optimal balance be-
tween these different absorption and capture processes is
essential to make such a concept work for a more efficient
solar cell. In the present case, the intermediate band is
filled, although this situation could of course be changed
by p-type doping or by going slightly off-stoichiometry
toward a Zn-rich situation. However, more importantly,
this structure seems to cost a substantial energy of for-
mation. We do not have a decomposition of the total
energy of formation in terms of different types of wrong
tetrahedra but the N surrounded by four Zn could play
a significant role in this. In any case, this kind of defect
seems rather unlikely to occur.

Next, we consider a 128-atom cell also with three ZnGe

and three GeZn but with the antisites placed in a phase-
separated manner in the structure. The statistics of dif-
ferent types of tetrahedra is again summarized in Table
I. The band structure and density of states are shown in
Fig. 7. In this case we now see that the gap between the
defect band and the VBM has completely filled in and
the gap is significantly reduced to 0.44 eV. This result
means a lowering of the gap by 1.49 eV. Taking into ac-
count the corrections beyond LDA, and a gap of 3.4 eV
for perfect crystal Pna21 ZnGeN2, the gap would now be
reduced to 1.9 eV.

The HOMO wave function for this “phase-separated”
case is displayed in Fig. 8. One can indeed see that the
ZnGe (indicated by red spheres) are separated spatially

form the GeZn (indicated by green spheres) in this model.
The result shows again localization near the ZnGe defects
but in contrast to the previous 3-swap model, the wave
function now looks more extended. Its state percolates
along a chain across the whole cell connecting various
ZnGe sites. This percolation clearly would increase the
band width of such defect bands and explains why the
gap between the defect bands and the VBM fills in. Sim-
ilar extended states can be seen for the HOMO-1 and
HOMO-2 states. The CBM and CBM+1 states on the
other hand have more weight near the GeZn sites.

From the energies of formation in Table I we can see
that this model has significantly higher energy than the
near-neighbor exchange models with 3 swaps. Because
these defects are of opposite charge in an overall neutral
situation where the charge is transferred from the donors
to the acceptors, one indeed expects this segregation to
be unfavorable in total energy.

Finally, we consider a “fully” random system repre-
sented by a SQS constructed in the way discussed in the
previous section. The structure of this model is shown in
Fig. 9. Its band structure is shown in Fig. 10. We found
that in this model the gap is zero in LDA. This means
the gap is reduced by at least 1.9 eV. Therefore we use
the LDA+U model used in Skachkov et al.11 which in
pure ZnGeN2 in the Pna21 structure opens the gap to
3.4 eV. After relaxation of the structure, this results in
a gap of 0.33 eV. This is a remarkable lowering of the
gap by about 3.1 eV compared to the Pna21 structure.
This in some sense confirms the similar results obtained
for ZnSnN2 by Feldberg et al.6 who studied a special
quasirandom structure (SQS) supercell to simulate the
completely random placement of the Zn and Sn atoms
and also found a significant reduction of the gap. The
gap reduction found here is even more severe. Unfortu-
nately, we have no detailed information on the statistics
of the different types of tetrahedra in that previous study.

On the other hand, we find this structure to have an
energy cost relative to Pna21 of 20 eV per 128 atom cell
after relaxation. This large energy cost corresponds to
the large number of antisites in this model. To put this
in perspective, 20 eV/128 atom cell corresponds to 0.625
eV/formula unit or 60 kJ/mole or 14 kcal/mole. For
comparison the energy of formation of ZnGeN2 relative
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FIG. 6. (Color-online) Figure showing |ψ|2 for the wave func-
tions of a few selected states at k = 0 in the 3-swap model.
Panel (a) corresponds to the highest occupied or HOMO state
of the model which lies at the top of the defect band. The
bonds to Zn are indicated and show the wave function to be
localized near a N surrounded by 4 Zn (dark red), two of
them ZnGe (in red) and two of them regular lattice Zn. (b)
shows the HOMO-3 or the highest valence band state below
the intermediate band. This state is still localized near ZnGe

but not on the N with 4 Zn. (c) shows the 2nd conduction
band level which is a resonance located near the three GeZn
(green).

to the elemental solids Zn and Ge and N2 molecules is
-2.43 eV/formula unit. It shows that such structures are
very unlikely or at least very far from equilibrium.
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FIG. 7. (Color online) Band structure and DOS for ZnGeN2

with three exchange defects with the ZnGe antisites spatially
separated from the GeZn antisites

FIG. 8. (Color online) Wave function modulo squared for
highest occupied band at Γ for the model with 3 swaps and
“phase separated” ZnGe, GeZn.

IV. CONCLUSIONS

We studied various models and degrees of randomness
of ZnGeN2. We found that a single exchange defect,
i.e. exchanging a near neighbor Zn and Ge causes sev-
eral charge-neutrality-violating tetrahedra and leads to a
band structure which is characterized by a defect band
close to the VBM and corresponding essentially to the
ZnGe antisite acceptor levels broadened somewhat into
a band. However, the CBM is also lowered by the oc-
currence of a GeZn-related resonance in the conduction
band. This single exchange defect already reduces the
gap by about 0.5 eV. We found that when several such
exchange defects occur they interact and tend to push the
defect band deeper into the gap resulting in some cases
in a distinct “intermediate band” situation. In particular
we found this situation to occur when a N surrounded by
four Zn atoms occurred in the structure. In a structure
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FIG. 9. (Color online) Structure of a 128 atom random place-
ment model: the Nitrogen atoms are colored according to
their nearest neighbors (nZn, nGe): (2,2) grey, (3,1) green
(4,0) dark green, (1,3) red, (0,4) dark red.
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FIG. 10. (Color online) Band gap in relaxed random SQS 128
atom model for ZnGeN2 in LDA+U.

with 3 exchange defects per 128 atom cell, corresponding
to a concentration of 9.375 % phase separated from each
other, already no separated defect bands were found but
instead a reduction of the gap by a raising of the valence
band. The gap was reduced by about 1.5 eV. Finally,
in a completely random structure with a binomial dis-
tribution of the five different types of nearest neighbor
tetrahedra, the gap was found to be reduced even fur-
ther; by as much as 3 eV. We remind the reader that
these are optical band gaps, not mobility gaps. On the
other hand, it is also clear from our study of the local-
ization of the states that for the more isolated exchange
defects, the states in the band gap tail above the valence
band edge are rather localized and hence conduction of
holes in such states is only expected to proceed by a hop-
ping model. A detailed study of transport properties and

an actual determination of the mobility gap is beyond the
scope of this paper.

On the other hand the total energy of the system sig-
nificantly increases with the number of exchange defects.
The energy cost is of order 2.8 eV per exchange defect.
When doubling the number of exchange defects, the en-
ergy of formation roughly doubles if the defects occur in-
dependent of each other (case 2-swaps c in Table I) but
can be significantly reduced when these exchange defects
occur close to each other so that the total number of
octet-rule violations is reduced. The model with 3 swaps
has indeed about 3 times the energy of formation of 1
swap but when the antisites are kept phase-separated the
energy of formation is higher. The energy increases from
2.5 eV per swap if they are kept close to each other, to
3.5 eV if they are kept apart in the 3-swap model. A fully
random structure has even higher energy of formation; of
order 0.625 eV per formula unit.

In our previous paper11 we found that antisite defects
ZnGe and GeZn are the most energetically favorable point
defects in ZnGeN2 and compensate each other, thereby
pinning the Fermi level. Because of their opposite charge,
they will also attract each other and therefore one might
expect them to form near-neighbor exchange defects.
However, the equilibrium concentration of the antisite
defects is low; of order 1016 cm−3. Here we find that
when such defects occur in pairs in large concentrations,
they can lower the band gap. For a 3 % concentration of
exchange defects, which is of order 0.7 × 1021 cm−3, the
gap is reduced by about 0.5 eV. For higher concentrations
of order 9 % (or 2.1×1021 cm−3) the gap may be reduced
by as much as 1.5 eV. We find that the exchange defects
will tend to cluster rather than phase separate, as the
antisites forming them have opposite charge and attract
each other. Nonetheless, we can see that the defect con-
centrations considered here are quite high compared to
equilibrium concentrations. Thus we expect such band
gap lowering due to disorder only when the growth is
significantly perturbed and far from equilibrium. Under
highly non-equilibrium circumstances it is unlikely that
high quality crystallinity can be maintained.

Although we primarily focused on ZnGeN2, we also
performed some calculations for ZnSnN2 and found also
very strong gap reductions under similar circumstances.
Because in LDA the gap is very small to begin with,
the ZnSnN2 gap with exchange defects essentially closes
and this makes it difficult to study the effects in detail
without going beyond LDA. Nonetheless we anticipate
the general conclusions to be applicable also to ZnSnN2.
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