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One of the central ideas regarding anomalies in topological phases of matter is that they imply
the existence of higher-dimensional physics, with an anomaly in a D-dimensional theory typically
being cancelled by a bulk (D+1)-dimensional symmetry-protected topological phase (SPT). We
demonstrate that for some topological phases with reflection symmetry, anomalies may actually be
cancelled by a D-dimensional SPT, provided that it comes embedded in an otherwise trivial (D+1)-
dimensional bulk. We illustrate this for the example of ZN topological order enriched with reflection
symmetry in (2+1)D, and along the way establish a classification of anomalous reflection symmetry
fractionalization patterns. In particular, we show that anomalies occur if and only if both electric
and magnetic quasiparticle excitations possess nontrivial fractional reflection quantum numbers.

I. INTRODUCTION

A major research direction in recent years has been the
study of the interplay between symmetry and topology in
quantum phases of matter. When a gapped topological
phase of matter possesses a symmetry, its quasiparticle
excitations can carry fractional quantum numbers of the
symmetry group, with common examples including the
fractional electric charge carried by the quasiparticle ex-
citations in the fractional quantum Hall states1 and the
S = 1/2 spinon excitations in quantum spin liquids2,3.
The classification of the different ways in which sym-
metry fractionalization can occur is both an interest-
ing theoretical problem and a valuable question from an
experimental standpoint, as symmetry fractionalization
can be measured by conventional shot-noise and neutron-
scattering experiments4–6, in contrast to other signatures
of topological order like anyonic braiding statistics, which
are notoriously difficult to measure.

Closely related to the idea of symmetry fractional-
ization is the study of anomalies in topological phases.
Anomalies in topological phases arise when there is an
obstruction to gauging a symmetry, and their presence
depends on the pattern of symmetry fractionalization re-
alized in the system. Anomalies in D spacetime dimen-
sions must typically be cancelled by (D+1)-dimensional
physics7–9, which usually comes in the form of a sym-
metry protected topological phase10–18 (SPT), which is a
short-ranged entangled phase possessing a unique ground
state on arbitrary spatial manifolds.19–23.

The majority of work devoted to understanding
fractionalization and anomalies in gapped symmetry-
enriched topological phases (SETs) has focused on the
case where the topological phase in question possesses
an internal (onsite) unitary symmetry. Although there
has been some recent work examining time reversal and
space group symmetries24–29, a systematic understanding
of how symmetry fractionalization and anomalies occur
in these systems is still under development. Developing
such an understanding is particularly important from an
experimental point of view, due to the abundance of these
types of symmetries in real materials.

In this paper, we use a dimensional reduction proce-

dure to show that for abelian SETs enriched by ZP2 re-
flection symmetry, anomalies in D spacetime dimensions
may be cancelled by a D-dimensional SPT, as long as
it is embedded in an otherwise trivial ambient (D+1)-
dimensional bulk. We focus on the illustrative exam-
ple of ZN topological order, and use a field theory ap-
proach to classify anomalous ZP2 fractionalization pat-
terns, which agrees with recent results obtained for the
case of Z2 topological order24,30. We show that in these
theories, anomalies arise if and only if both the electric
and magnetic quasiparticles carry a nontrivial fractional
reflection quantum number and that when they do occur,
anomalies can be understood by considering the way in
which gauge fields for the ZP2 symmetry, which we define
on reflection-invariant subspaces of the system, interact
with one another.

II. MODEL SETUP AND DIMENSIONAL
REDUCTION PROCEDURE

In this paper, we will restrict our attention to topo-
logical order enriched with ZP2 reflection symmetry. In
crystalline solids translation symmetry will always exist
alongside reflection symmetry, which we discuss briefly
in section IV. We consider a topological phase defined
on a (2+1)D surface split along a reflection axis into a
manifold X and its image under reflection P(X), with
the reflection axis corresponding to ∂X. Depending on
whether or not the theory is anomalous, it may be neces-
sary to place this surface on top of a (3+1)D bulk, with
the full system possessing reflection symmetry about a
mirror plane Σ (see Figure 1).

We assume that the (2+1)D surface X is equipped
with a triangulation and for concreteness that it pos-
sesses ZN topological order, although the generalization
to arbitrary abelian topological phases is straightforward.
Inspired by Refs27,28,31, we describe the ZN topological
order by electric and magnetic integer-valued 1-cochains
a and b, which can be thought of as the discrete analogues
of the two U(1) fields employed in the conventional K-
matrix description of ZN topological order32. We take
the electric 1-cochain a to be defined on the links of X
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FIG. 1: An illustration of the geometry we consider and the
gauge fields present in our theory, viewed at a single time
slice. The a and b cochains represent electric and magnetic
quasiparticle strings, and live on the surface X, although our
theory only involves their restriction to the mirror axis ∂X.
The Gα represent the electric and magnetic ZP2 gauge fields,
and are initially also defined on ∂X. Deciding whether or not
the Gα also must extend down into the mirror plane Σ (as
shown in the figure) amounts to determining whether or not
the surface theory is anomalous.

and the magnetic cochain b to be defined on the links of
X∗ (the dual triangulation of X), so that the electric and
magnetic strings always intersect each other transversely.
By Poincare duality, a (b) is dual to a two-dimensional
submanifold of X (X∗), which represents the worldsheets
swept out by the electric (magnetic) quasiparticle strings.
The coboundary da (db) is dual to the boundaries of these
worldsheets, which represent the worldlines of the electric
(magnetic) excitations in the theory.

The electric and magnetic excitations interact topo-
logically with each other by passing through each other’s
string worldsheets, and so the surface theory needs to
keep track of how electric quasiparticle worldlines (de-
scribed by da) intersect magnetic string worldsheets (de-
scribed by b) and vice versa. We describe such an inter-
action on X by a Chern-Simons-like surface action27,33

SX =
1

2N

∫
X

(a ∧ db+ b ∧ da), (1)

where the prefactor ensures that only values of the
integer-valued gauge fields a and b mod N are physical.

To ensure reflection symmetry we take SP(X) = P(SX)
on the other half of the surface (see figure 1). In the ex-
pression for (1), we have abused notation slightly and
written ∧ for the cup product, which is the discrete ana-
logue of the wedge product. In geometric terms, the term
a∧ db represents the intersection of the submanifolds de-
fined by the Poincare duals of a and db. More precisely,
if we let a∗ and (db)∗ denote the Poincare duals of a
and db, which are respectively two-dimensional and one-
dimensional submanifolds, then the cup product a ∧ db
represents the intersection a∗ ∩ (db)∗. For a review of
the essential algebraic topology we refer the reader to
Appendix A.

One way to motivate our approach to classifying sym-
metry fractionalization patterns and identifying anoma-
lies is inspired by the dimensional reduction classifica-

tion of SPT phases protected by point group symmetries
recently introduced in Ref30. We rule out a topologi-
cally ordered (3+1)D bulk by assumption and assume
that ZP2 is the only symmetry present. This means that
if an anomaly in the surface theory forces any nontrivial
physics to occur in the bulk, the bulk theory will nec-
essarily possess only short-ranged entanglement, which
may or may not be protected by reflection symmetry.

Following Ref30, we consider a small volume V lying
in the bulk. Because of the short-ranged nature of the
bulk entanglement, we may act on the bulk with local
unitary operators UV and UP(V ) supported on the vol-
ume V and its image under reflection P(V ), which act to
transform the Hamiltonian densities HV and HP(V ) into
those of a product state in a reflection-symmetric way.
This works for any volume V in the bulk provided that
V is not mapped to itself under reflection. We see that by
repeatedly applying such UV UP(V ) operators we can dis-
entangle the entire bulk into a trivial product state, with
the exception of the mirror plane Σ which is mapped to it-
self under reflection. Thus, we expect that any anomaly-
induced bulk physics will derive solely from what happens
on the mirror plane, with the rest of the bulk playing a
passive role. Now, deciding whether or not the surface
topological phase is anomalous is equivalent to determin-
ing whether or not the theory can be defined solely on
the surface X, with the entire bulk (including the mirror
plane) remaining in a trivial product state. Since our dis-
entangling procedure means that only the mirror plane
can possibly contain any nontrivial bulk physics, we ex-
pect that the physics of the interplay between the ZP2
symmetry and the surface topological order will be en-
coded entirely in the boundary of the mirror plane, which
is the (1+1)D mirror axis ∂X, on which ZP2 acts in an
onsite way. This means that we have dimensionally re-
duced the study of a (2+1)D theory to a simpler (1+1)D
problem. This dimensional reduction approach can also
be motivated by folding the (2+1)D surface about the
mirror axis, the details of which we sketch in Appendix
D.

This approach suggests that the symmetry fractional-
ization on the surface is realized “holographically”, in the
sense that the entire information of the symmetry action
is encoded in the properties of the one-dimensional mirror
axis. Our goal is to construct a field theory description
of the mirror axis ∂X with gauged ZP2 symmetry, which
will lead us to a classification of the possible symmetry
fractionalization patterns and anomalies that can occur.

III. TESTING FOR ANOMALIES AND
CLASSIFYING FRACTIONALIZATION

PATTERNS

The usual way to test for anomalies in SETs is to at-
tempt to gauge the symmetry7,8,34. Normally gauging
a non-local symmetry like reflection would be physically
ill-defined, although our dimensional reduction approach
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tells us that we only need to gauge ZP2 on the mirror axis
∂X, on which it acts as an onsite Z2 symmetry. When
we gauge ZP2 on ∂X, we introduce symmetry fluxes for
the ZP2 symmetry which proliferate on the mirror axis.
Symmetry fluxes act on the a and b strings which pass
over them, and so in order to fully gauge ZP2 on ∂X, we
need to give the a and b ZN gauge fields a way of com-
muting with the action of the symmetry fluxes. This is
done by constructing an action which “intertwines” the
action of ZP2 on the a and b fields in a local way.

More precisely, the gauging procedure is accomplished
by introducing two Z2 gauge fields Ga and Gb which are 1-
cochains defined on ∂X and (∂X)∗, respectively. Ga and
Gb are each closed modulo 2, and are the connections of
the ZP2 gauge field on the mirror axis for the electric and
magnetic sectors of the ZN topological order. To write
down a potential field theory description of the mirror
axis after ZP2 has been gauged, we need to couple the
ZN gauge fields to the Gα gauge fields. This is done by
coupling the electric cochain a to the magnetic gauge field
Gb, and the magnetic cochain b to the electric gauge field
Ga. Since Ga (Gb) is defined on ∂X ((∂X)∗), this coupling
ensures that the ZN gauge fields always intersect the Gα
to which they couple transversely.

The strengths of the couplings between the ZN and
Gα gauge fields are determined by the ZP2 gauge charges
of the a and b fields. These gauge charges can be iden-
tified with the reflection quantum numbers carried by
the electric and magnetic quasiparticles, which deter-
mine the symmetry fractionalization class of the the-
ory. Since reflection acts in an onsite way on the mir-
ror axis, the different symmetry fractionalization classes
are parametrized by choices of group cohomology classes
wα ∈ H2

P(Z2,ZN ) for α ∈ {a, b}13,35, where the cohomol-
ogy group is twisted by the action of reflection on the ZN
gauge fields. We will adopt the notation ωα = wα(P,P),
so that the single quasiparticle state |α〉 transforms under
reflection as

P : |α〉 7→ eπiωα/N |P(α)〉, (2)

meaning that ωα determines the reflection quantum num-
ber (i.e. the ZP2 gauge charge) of |α〉.

Quantifying the topological interaction between the
ZN and the Gα fields is accomplished by taking the cup
product of the electric ZN gauge field a with the mag-
netic ZP2 gauge field Gb, and vice versa. This means that
gauging ZP2 on the mirror axis results in the mirror axis
action

S∂X =
1

2N

∫
∂X

(ωbGb ∧ a+ ωaGa ∧ b), (3)

where a and b in the above action are taken to mean the
restriction of the surface a and b strings to the mirror
axis ∂X, which by Poincare duality may be viewed as the
worldlines drawn out by the intersections of the surface
a and b strings with the mirror axis.

Importantly, the 1/2N prefactor in the mirror axis
action S∂X means that if the reflection quantum num-
bers determined by the ωα are nontrivial, the mirror axis

can effectively possess a sort of Z2N gauge theory, rather
than a ZN gauge theory. This is actually quite natural
when viewed from an algebraic point of view. In alge-
braic language, the ways in which reflection symmetry
can fractionalize for the quasiparticles in the electric and
magnetic sectors are classified by the different group ex-
tensions of ZP2 by ZN , which are given by groups E with
E/ZN ∼= ZP2 in which relations between the elements
in ZP2 (namely P2 = 1) hold only modulo elements of
ZN . From this perspective, the process of gauging ZP2
amounts to “lifting” the ZN gauge theory up to an E
gauge theory. In our case, nontrivial group extensions of
ZN by ZP2 are given by E = Z2N , and so the fact that
we obtain a Z2N gauge theory when the ωα are nontriv-
ial is to be expected. On the other hand, if the ωα are
trivial, then the ZN character of the gauge theory on the
mirror axis is unchanged upon gauging ZP2 , which agrees
with the fact that the trivial group extension is given by
the choice E = ZN × Z2. All of these statements also
have a natural geometric interpretation in terms of fiber
bundles, which we elaborate on in Appendix B.

There are several ways of determining whether or not
the theory we are working with is anomalous. In what
follows, we will diagnose possible anomalies by examining
the gauge (in)variance of the mirror axis action S∂X , with
an alternate approach sketched in Appendix C.

A gauge transformation on S∂X means altering the
gauge fields Gα by an exact 1-cochain28 by sending Gα 7→
Gα + dγα, where γα is a 0-cochain on ∂X taking values
in Z2. We will assume that under this transformation on
the Gα the electric and magnetic fields respond by trans-
forming as a 7→ a + λa, b 7→ b + λb, where the λα are
1-cochains yet to be determined. Because the symmetry
fractionalization pattern of the a and b fields must be the
same throughout the entire surface, a and b transform as
above on all of X, meaning that the action SX is also
affected by the gauge transformation on the Gα fields.

The total action is generically not gauge-invariant un-
der such a transformation, which signals an anomaly in
the theory. We decompose the gauge variance of the to-
tal action Stot = SX + SP(X) + S∂X into three different
parts, with the gauge transformation acting on Stot as

Stot 7→ Stot +

∫
X∪P(X)

Otop,X +

∫
∂X

(Otop,∂X +Osym),

(4)
where the three classes of anomalies are given by

Otop,X =
1

N
(a ∧ dλb + b ∧ dλa + λa ∧ dλb) ,

Otop,∂X =
1

2N
((ωbdγb − 2λb) ∧ a+ (ωadγa − 2λa) ∧ b) ,

Osym =
1

2N
(ωb(Gb + dγb) ∧ λa + ωa(Ga + dγa) ∧ λb

+ 2λa ∧ λb).
(5)

In the expression for Otop,∂X , the terms involving the λα
are boundary terms from the gauge variations of SX and
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SP(X), which are equal to one another by the requirement
of reflection symmetry.

The “topological” anomalies Otop,X and Otop,∂X are
the most serious of the three. Their nontriviality would
imply that the a and b ZN gauge fields could not be
defined strictly on the (2+1)D surface, and would be in-
stead required to extend into the (3+1)D bulk. Since
we rule out bulk topological order by assumption, their
contribution

∫
X+P(X)

Otop,X +
∫
∂X
Otop,∂X to the gauge

variation of Stot must vanish in order for our theory to
be well-defined. We see that this happens if we make
the choice λα = ωαdγα/2, which implies that under the
gauge transformation Gα 7→ Gα+dγα the ZN gauge fields
transform as

a 7→ a+
1

2
ωadγa, b 7→ b+

1

2
ωbdγb, (6)

which is to be expected and confirms our earlier state-
ment that ωa (ωb) controls the ZP2 gauge charge of the
quasiparticles in the electric (magnetic) sector.

The above transformation law (6) for a and b may at
first glance look rather trivial, since we should always
be free to modify a and b by exact integral 1-cochains
without changing the physics of the surface theory. How-
ever, d(ωαγα/2) is only an exact integral 1-cochain if ωα
is an even integer. This means that all even choices of
ωα belong to the trivial fractionalization class, while odd
choices of ωα imply nontrivial fractionalization. This can
also be checked by explicitly calculating the cohomology
group H2

P(Z2,ZN ).
This choice for the transformation of the a and b fields

eliminates both Otop,X and Otop,∂X , and so only Osym
remains, which cannot generically be made to vanish on
its own. This represents the gauge anomaly, and is given
by the action

Sanomaly =

∫
∂X

Osym =
ωaωb
4N

∫
∂X

(Ga ∧ dγb + Gb ∧ dγa),

(7)
where we have dropped terms like dγ ∧λ and λ∧λ since
they are total derivatives. Crucially, we see that if ei-
ther of the electric or magnetic sectors transforms triv-
ially under ZP2 then we can set one of the ωα to zero,
and Sanomaly vanishes. That is, if either the electric or
magnetic sector transforms trivially under ZP2 , the the-
ory must be non-anomalous. This is an illustration of the
idea that

anomalies are caused by the interplay between symmetry

fractionalization in the electric and magnetic sectors.

Stated differently, having a nontrivial fractionalization
class is a necessary, but not sufficient, condition for the
occurrence of an anomaly, while having both the elec-
tric and magnetic quasiparticles transform projectively
under reflection is a sufficient condition. This prop-
erty is closely related to the observation that anomalies
which occur in theories with symmetry groups of the form

G1 × G2 arise because of conflicts between the G1 and
G2 symmetries7,8,11.

In order for our candidate surface theory to be well-
defined, we must cancel the remaining gauge anomaly
given by Osym. It is straightforward to show that
the anomalous action Sanomaly is the gauge variation
of a (2+1)D Chern-Simons-like term, meaning that the
anomaly cancellation can be accomplished by the addi-
tion of a Chern-Simons action SG between the electric
and magnetic ZP2 gauge fields:

SG = −ωaωb
4N

∫
Γ

(Ga ∧ dGb + Gb ∧ dGa), (8)

where Γ is some (2+1)D bounding surface with ∂Γ = ∂X.
This action represents the interaction between the Gα
gauge fields, and tells us that anomalies are created when
there is a nontrivial topological interaction between the
electric and magnetic symmetry fluxes.

While we expect the anomaly Sanomaly to be cancelled
by some kind of SPT, we cannot yet be sure whether or
not the action SG represents a genuine SPT phase. In
order for SG to correspond to the nontrivial Z2 SPT, we
need to specify the values that the prefactor ωaωb/4N
can take. Taking the ZN Chern-Simons action (1) with
N = 2 initially suggests that the prefactor should be 1/4.
However, the Gα are closed modulo 2, which means that
there be no nontrivial quasiparticle excitations (given
by the values of the monodromy defects dGα modulo 2)
present in the state described by SG . This means that
since dGα = 0 mod 2, we must multiply the initial fac-
tor of 1/4 by a further factor of 1/2 if the action is to
take on non-integer values11,33. This is analogous to how
in the usual K-matrix formalism, the difference between
Z2 topological order and the nontrivial Z2 SPT state is
a constant factor of 1/2 in the K-matrix. As a con-
sequence, in order for SG to represent a nontrivial Z2

SPT, the prefactor ωaωb/4N should actually be equal to
1/8 (or 0 if there is no anomaly), which is only true if
ωaωb = N/2. This requirement certainly does not hold
for arbitrary symmetry groups, but below we will demon-
strate that for ZP2 symmetry, these values for ωaωb are
actually forced upon us.

A basic physical requirement we can place on the ac-
tion of reflection symmetry is that it commute with braid-
ing processes. In particular, since braiding processes
which exchange two quasiparticles are odd under reflec-
tion, we can impose the constraint that θP(a),P(b) = θ∗a,b,
where P(α) is the image of α under reflection and θa,b
is the mutual statistics of the quasiparticles associated
with the electric and magnetic cochains a and b13. Since
we restrict ourselves to ZN reflection-symmetric topolog-
ical order, we can take θa,b = exp(2πiab/N)36,37, which
means that the action of reflection must permute the
quasiparticles in the system, since it must act as “charge
conjugation” for either the electric or magnetic sector
in order to satisfy P(a)P(b) = −ab. For concreteness,
we adopt the choice that reflection acts as charge con-
jugation on the magnetic sector, so that P(a) = a and
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P(b) = −b.
These transformation properties can be used to place

constraints on the possible reflection quantum numbers
of a and b restricted to the mirror axis. Because the
vacuum sector must carry a linear representation of ZP2 ,
the P2 eigenvalue of an anyon must be the inverse of
the P2 eigenvalue of the anyon’s dual, as the vacuum
must have a P2 eigenvalue of 1. In terms of the ωα,
this condition is ωα = −ω−α. Additionally, acting
with P should not change an anyon’s reflection quan-
tum number, and so all quasiparticles in a given or-
bit under P must carry the same reflection quantum
number, implying that ωα = ωP(α) for all α. Since
P(b) = −b, we must have ωb = ωP(b) = ω−b = −ωb
and so 2ωb = 0 mod N , meaning that we are forced
to choose ωb ∈ {0, N/2} if N is even, and ωb = 0 if
N is odd. We can place no similar restrictions on ωa,
since a is left invariant under reflection. However, we
see that in the electric sector, coboundaries are given by
(dζa)(g, h) = ζa(h)− ζa(gh) + ζa(g) for g, h ∈ ZP2 , and so
choosing ζa(1) = 0, ζa(P) = 1 tells us that for the electric
sector, 2 = (dζa)(P,P) is a coboundary in H2

P(Z2,ZN ).
Since coboundaries are gauge degrees of freedom, we are
allowed to set ωa ∈ {0, 1} without loss of generality if N
is even, and ωa = 0 if N is odd.

These choices for {ωa, ωb} provide us with four frac-
tionalization classes for even N , and only the trivial class
for odd N , which is consistent with the formal calculation
of group extensions by Ext(Z2

N ,Z2) = Ext(ZN ,Z2)2 =
Z2

gcd(2,N). The lack of nontrivial fractionalization classes

for odd N can also be seen by the fact that cup products
in the action S∂X are maps

∧ : C1(∂X,Z2)⊗C1(∂X,ZN )→ C2(∂X,Z2⊗ZN ), (9)

where Ck(∂X,G) is the set of k-cochains on ∂X with
coefficients in G. We see that the right-hand side of the
above expression must be trivial for N odd, since Z2 ⊗
ZN = Zgcd(N,2). That is, for odd N there is no way to

minimally couple the a and b fields to the ZP2 gauge fields,
which forces the fractionalization pattern to be trivial.

Since there are no nontrivial fractionalization classes
for odd N , we will restrict ourselves to even N in what
follows. Additionally, while we focus on the generating
fields a and b, we should mention that composite quasi-
particles which possess both nonzero ZN gauge charge
and nonzero ZN gauge flux may transform under P2 with
a possible additional phase factor which depends on the
self-statistics of the quasiparticle in question30,38. How-
ever, this detail will not play an important role in our
discussion.

In passing, we also note that the requirement
θP(a),P(b) = θ∗a,b along with θa,b = exp(2πiab/N) means

that when (and only when) N = 2, it is also possi-
ble for reflection to implement electromagnetic duality
by exchanging a and b. However, by examining the co-
cycle relations in the cohomology group H2

P(Z2,Z2) we
see that wa = wb, and we also see that coboundaries in

H2
P(Z2,Z2) are given by

(dζα)(g, h) = ζP(α)(h)− ζα(gh) + ζα(g), (10)

for ζα : Z2 → Z2, α ∈ {a, b}, and g, h ∈ ZP2 . Thus by
choosing ζa(1) = ζb(1) = ζa(P) = 0, ζb(P) = 1 we have
(dζα)(P,P) = 1, meaning that 1 is a coboundary. This
allows us to ensure that wa = wb = 0, implying that the
fractionalization pattern must be trivial. Because of this,
we will avoid discussing the P : a↔ b case in any further
detail.

Since the anomalous action (7) tells us that the
anomaly vanishes whenever ωa or ωb is trivial, to exam-
ine anomalous theories we may set ωa = 1 and ωb = N/2
without loss of generality. With this choice, the coeffi-
cient in front of the integral in (8) indeed becomes 1/8,
consistent with the interpretation that the mirror axis
possesses a Z2 SPT state built out of the bosonic Gα
gauge fields. Such a Z2 SPT state is analogous to a
Chern-Simons theory with K-matrix K = σx39.

The final question that remains is the nature of the in-
tegration surface Γ in (8). One possibility would naively
be to simply stack this ZP2 SPT state on top of the sur-
face ZN topological order, so that Γ = X. This could
be done if we could extend the Gα fields into the interior
of the surface X and if the global symmetry acted in an
onsite way, but is incompatible with ZP2 reflection sym-
metry, since P : d 7→ −d under reflection would imply
that P : SG 7→ −SG . We can avoid this issue by regard-
ing X as the surface of a three-dimensional trivial gapped
bulk, in which we embed the ZP2 SPT state given by SG
on the mirror plane by setting Γ = Σ (see Figure 1). We
should stress that we have only gauged reflection sym-
metry on the mirror axis, not on the entire mirror plane.
Since this geometry means that ZP2 effectively acts as an
onsite symmetry as far as SG is concerned, SG is invari-
ant under reflection (as the action of reflection preserves
the Gα fields). This choice completes the cancellation of
the anomaly, and the final theory is anomaly-free.

IV. THE ROLE OF TRANSLATION
SYMMETRY

In this section, we briefly comment on how (discrete)
translation symmetry enriches our classification of sym-
metry fractionalization patterns. For simplicity, we will
assume that the action of translation does not permute
the ZN gauge fields.

For an infinite plane geometry, including translation
symmetry parallel to the mirror plane (which we will let
be implemented by the operator Ty) is straightforward.
Since no regions in X are mapped to themselves under
Ty, our dimensional reduction procedure can proceed as
in the case with only ZP2 symmetry. The full symmetry
group of the system is ZP2 ×Z, and the Kunneth formula
allows us to classify the allowed fractionalization patterns
through

H2(Z2 × Z,ZN ) = Z2
gcd(N,2). (11)
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Note that if reflection symmetry were not present, no
symmetry fractionalization could occur (formally, since
H2(Z,ZN ) = 0). Thus, the presence of translation sym-
metry enriches the full classification, even though trans-
lation symmetry cannot contribute any nontrivial frac-
tionalization classes on its own.

The situation is changed if X has periodic boundary
conditions in the y direction. For example, if X is a
cylinder such that the mirror axis is an S1 of length L
(in units of the lattice constant), the full symmetry group
of the system is changed to ZP2 × ZL. The dimensional
reduction procedure proceeds normally, but the number
of fractionalization patterns is changed. In this case, the
Kunneth formula gives

H2(Z2 × ZL,ZN ) = Zgcd(N,2) × Zgcd(L,2) × Zgcd(N,L,2),
(12)

where we recognize the three factors as the fractionaliza-
tion of reflection, translation, and the interplay between
the two (which is the fractionalization of the relation
(TyP)L = 1 if L is even).

Translation normal to the mirror plane (generated by
the operator Tx) can be dealt with by following the pro-
cedure of Ref30. The symmetry group relation between
reflection and translation is PTxP = T−1

x or equivalently
(P ′)2 = 1, where P ′ = PTx is an operator which reflects
about a plane located at x = 1/2. The enumeration
of the fractionalization classes proceeds for the P ′ sym-
metry in the same way as it did for the P symmetry,
and so the classification of fractionalization patterns is
enlarged to Z4

2, with one factor of Z2
2 coming from the

four fractionalization classes associated with P and the
other coming from the four classes associated with P ′.
Applying the field theory construction of the previous
section shows that anomalies occur when both a and b
fields transform projectively under the action of either P
or P ′. For anomalous P (P ′) fractionalization patterns
that neccesitate the presence of a (3+1)D bulk geometry,
a stack of Z2 SPT phases captured by the action (7) will
be forced to live on each P (P ′) mirror plane, as argued
in Ref30.

V. DISCUSSION

To summarize, we have shown that for (2+1)D ZN
topological phases enriched with reflection symmetry, a
dimensional reduction approach can be applied to ob-
tain a concrete classification of all anomalous and non-
anomalous symmetry fractionalization patterns. The
anomalies that do appear can be cancelled with a (2+1)D
(rather than (3+1)D) Z2 SPT state built out of a pair of
Z2 gauge fields, as long as the SPT comes embedded in an
otherwise trivial ambient (3+1)D bulk. Thus, although
the presence of a three-dimensional bulk is still crucial for
making the full theory well-defined, its existence plays a
rather passive role in the anomaly cancellation.

Furthermore, we showed that the anomalous fraction-
alization patterns are those where both the electric and

magnetic quasiparticles transform projectively under re-
flection, with anomalies occurring when the electric and
magnetic ZP2 gauge fields introduced during the anomaly
detection procedure interact with each other in a nontriv-
ial way. This means that if either the electric or magnetic
sector transforms under a linear representation of ZP2 the
theory is guaranteed to be non-anomalous, regardless of
what happens in the other sector. For the ZN topolog-
ical order we have focused on, we found that for odd
N there are no nontrivial fractionalization classes, while
for even N there are always four, corresponding to the
trivial class, the class in which the electric sector trans-
forms projectively, the class in which the magnetic sector
transforms projectively, and the class in which both sec-
tors transform projectively. Our results imply that the
last class is always anomalous, and that the first three
never are. Several recent works have studied the exam-
ple of N = 2 from different perspectives, and their results
agree with ours in this case24,30. This idea also agrees
with results concerning anomalous fractionalization pat-
terns in similar theories enriched with ZT2 time reversal
symmetry40.

While we have only focused on reflection and transla-
tion symmetry in (2+1)D ZN topological phases, the ex-
tension to other space group symmetries, different types
of abelian topological orders, and systems with different
spacetime dimensions is straightforward. Incorporating
larger symmetry groups of the form Gtot = Gspace×Gspin
for a Lie group Gspin can also be done fairly straight-
forwardly. Besides anomalies resulting from anomalous
Gspace and Gspin fractionalization patterns, there will
generically be additional anomalies occurring from the
interaction between the Gspace and Gspin gauge fields.
For example, performing our analysis for Gspace = ZP2
and Gspin = U(1) or SO(3) shows that if a quasiparticle
carries P2 = −1, an anomaly will occur if the particle’s
electromagnetic dual carries half-odd-integer spin or half-
odd-integer charge, which has been noticed previously for
the example of Z2 topological order24,29.

The extension to more general types of abelian topo-
logical order is also straightforward, and simply involves
performing the analysis described above for theories with
different reflection-symmetric Chern-Simons terms in the
action for SX . This is simplified by the fact that
the requirement of having a reflection-symmetric action
is a rather strong one, since the basic Chern-Simons
term a ∧ da is odd under reflection. Furthermore, even
reflection-symmetric actions are often forced to have triv-
ial fractionalization patterns. For example, consider the
Lagrangian LX = (a∧da−b∧db)/(2N), which is symmet-
ric under reflection provided that reflection interchanges
the a and b fields. However, as mentioned in the previous
section, P : a ↔ b implies that H2

P(Z2,ZN ) = 0, mean-
ing that there are no nontrivial fractionalization classes
in such a theory. Additionally, following our procedure
for actions with terms like a∧ b∧ c suggests that each of
the fields a, b, c must carry a trivial reflection quantum
number, as the cancellation of Otop,X seems to require
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λa = λb = λc = 0 mod N . It would be interesting to
explore these examples further and to determine whether
or not non-abelian topological phases can be treated in
a similar way.
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Appendix A: Review of cochains and cup products

Our discussion in the main text and below draws heav-
ily on the notion of cochains and cohomology groups, and
so in this section we provide a brief review of the essen-
tial definitions41,42. We define a simplicial k-cochain A
on X with coefficients in M to be a function A from the
k-simplicies of a triangulated manifold X to the ring M ,
which we typically take to be M = Z or M = ZN (recall
that a 0-simplex is a vertex, a 1-simplex is a link, a 2-
simplex is a face, and so on). We write A ∈ Ck(X,M) to
denote such a cochain, which is the discrete analogue of
a differential k-form. Cochains come with a natural map
d called the coboundary operator, which increases their
degree by 1 (i.e. d : Ck(X,M) → Ck+1(X,M)), and is

defined by summing up the values that the cochain takes
around closed loops in the triangulation of X. As the
notation suggests, the coboundary operator d is the dis-
crete analogue of the exterior derivative. Explicitly, for
A ∈ Ck(X,M), we have

(dA)(p0, . . . , pk+1) =

k+1∑
i=0

(−1)iA(p0, . . . , p̂i, . . . , pk+1),

(A1)
where the pi are points in X and p̂i indicates that the
entry pi is omitted. The notation A(p0, . . . , pk) is taken
to mean the function A evaluated on the k-cell in X
formed by the points p0, . . . , pk. As in exterior calcu-
lus, k-cochains A = dα for α ∈ Ck−1(X,M) which are
coboundaries of (k−1) cochains are called exact, and typ-
ically represent gauge degrees of freedom. Cochains with
zero coboundary (i.e. those satisfying dA = 0) are called
cocycles. The group of all k-cocycles modulo the exact
ones is called the k-th simplicial cohomology group of X
with coefficient ring M , and is written as Hk(X,M).

In many applications, like when determining the wα
cocycles used in the main text, X = G will actually
be a finite group, rather than a manifold. In this case,
a cochain A ∈ Ck(G,M) is best viewed as a function
A : Gk → M . When the group G is equipped with
a nontrivial action ρ on M , the cohomology group is
“twisted” by this action. The coboundary operator d
is also twisted, and for A ∈ Ck(G,M), dA takes on the
explicit form

(dA)(g1, . . . , gk+1) = ρg1 [A(g2, . . . , gk+1)] +

k∑
i=1

(−1)iA(g1, . . . , gi−1, gigi+1, gi+2, . . . , gk+1) + (−1)k+1A(g1, . . . , gk),

(A2)

where we have used additive notation for M and multi-
plicative notation for G. For example, for A ∈ C1(G,M)
we have

(dA)(g1, g2) = ρg1 [A(g2)]−A(g1g2) +A(g1) (A3)

and for A ∈ C2(G,M) we have

(dA)(g1, g2, g3) = ρg1 [A(g2, g3)]−A(g1g2, g3)

+A(g1, g2g3)−A(g1, g2).
(A4)

As in the simplicial case, we can define a cohomology
group Hk(G,M) consisting of all closed k-cochains mod-
ulo the exact ones. The notions of group cohomology
and simplicial cohomology are connected through a space
BG known as the classifying space of G, which has
π1(BG) = G, πi>1(BG) = 0, and is such that the sim-
plicial cohomology Hk(BG,M) is the same as the group

cohomology Hk(G,M). Simple examples relevant for us
are BZ = S1 and BZ2 = RP∞.

When studying symmetry fractionalization in topolog-
ical field theories, simplicial cochains on a triangulated
manifold X are often viewed algebraically as functions
on the cells of X. We feel that the dual formulation we
take in this paper can also be very useful: instead of
thinking of cochains as functions on X, we view them
as submanifolds of X, adopting a geometrically-focused
perspective. Our ability to do this is based on the no-
tion of Poincare duality, which for us means that any
k-cochain A is dual to an (n − k)-dimensional submani-
fold of X, where n = dimX. On triangulated manifolds,
this is illustrated by the fact that the Poincare dual of a
cochain A is simply given by the form the cochain takes
on the dual graph of X. An example of this is shown
in Figure 2, where the black graph represents a region
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X

X∗

FIG. 2: An illustration of Poincare duality for a region of a
2-dimensional triangulated manifold X, shown in black. The
poincare dual of X is shown in pink.

of X and the pink graph represents a region of X∗, the
poincare dual of X. In the figure dimX = 2, and so the
dual of a 1-cochain is a 1-manifold, while the dual of a 0-
cochain is a 2-manifold, and vice versa. From the figure,
it is clear that a 1-cochain defined on X (like a from the
main text) always intersects a 1-cochain defined on X∗

(like b from the main text) transversely.
With this in mind, we see that in the surface theory

(1) for X, the 1-cochain a is dual to a 2-dimensional sub-
manifold a∗ ⊂ X which represents the worldsheets swept
out by the electric a strings, and likewise for b. On the
other hand, the 2-cochain da is dual to a 1-dimensional
submanifold (da)∗ ⊂ X, which represents the worldlines
traced out by the spacetime trajectories of the electric
quasiparticles, and similarly for (db)∗. This is because
the coboundary operator becomes the boundary opera-
tor ∂ under Poincare duality, and so (da)∗ = ∂a∗ corre-
sponds to the ends of electric strings, which are identified
with electric quasiparticles. In the topological field theo-
ries we are interested in, electric and magnetic quasipar-
ticles interact with each other by passing through each
other’s strings. Therefore, we expect that a field theory
description of such topological order should capture the
intersections between a∗ and (db)∗ and those between b∗

and (da)∗.
In order to more precisely incorporate interactions into

our field theory construction, we would like to be able to
“multiply” two cochains together. This is done by using a
device known as the cup product, which takes a k cochain
A and an l cochain B to a k + l cochain. We will abuse
notation slightly and write A ∧B for the cup product of
A and B (the usual notation is ∪). Algebraically, the cup
product has a very simple definition:

(A ∧B)(p0, . . . , pk+l) = A(p0, . . . , pk)B(pk, . . . , pk+l),
(A5)

where as before, the pi are points in the spacetime man-
ifold X. Like the regular wedge product, a key alge-
braic feature of the cup product is its supercommutativ-
ity, namely that for any k-cochain A and any l-cochain
B, we have

A ∧B = (−1)klB ∧A,
d(A ∧B) = dA ∧B + (−1)kA ∧ dB.

(A6)

db

a

t

electric worldsheet

magnetic worldline

FIG. 3: The geometric meaning of the term a ∧ db. Since a
(db) is a 1-cochain (2-cochain), it is represented by a codimen-
sion 1 (2) submanifold in (2+1)D spacetime. The intersection
of these submanifolds (marked by the x) is a codimension 3
submanifold, and is represented by the cup product a ∧ db.

Instead of thinking about the cup product alge-
braically, we prefer to invoke Poincare duality to estab-
lish a geometric, rather than algebraic, interpretation of
A ∧ B. Under Poincare duality, the multiplication of
functions becomes the intersection of submanifolds, and
so A ∧ B can be interpreted as the intersection between
the two submanifolds represented by A and B. That is,
we have

A ∧B = A∗ ∩B∗. (A7)

The intersection ∩ is oriented, so that the cup product
keeps track of the relative orientation with which two
manifolds intersect. The intersection is also defined mod-
ulo homotopy equivalence, so that the RHS of (A7) de-
notes the homology class of A∗ ∩B∗.

We are now ready to better motivate our action SX for
the surface ZN topological order, which has the familiar
Chern-Simons form

SX =
1

2N

∫
X

(a ∧ db+ b ∧ da). (A8)

In the action, the term a ∧ db corresponds to the in-
tersection mod homotopy of a-string worldsheets and
the boundaries of b-string worldsheets, which correspond
to magnetic quasiparticles. The action simply tells us
that when magnetic quasiparticles pass through electric
worldsheets, they pick up a nontrivial braiding factor.
Integrating a∧db by parts gives da∧ b (on a closed man-
ifold), and so we can equivalently interpret the braid-
ing process represented by a ∧ db as electric quasiparti-
cles passing through magnetic worldsheets, which corre-
sponds to the second term in (A8). Alternatively, we can
think of b as a Lagrange multiplier field ensuring the flat-
ness of a, and vice versa. Figure 3 provides a pictorial
illustration of the a ∧ db term.

The notion of cup products and coboundary opera-
tors is very similar to the concepts of their more familiar
differential geometry twins, with the cup product serv-
ing as the discrete analogue of the wedge product and
the coboundary operator serving as the discrete analogue
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of the exterior derivative. The reader may then won-
der why we bother using cup products instead of dif-
ferential forms, if they are so closely related to one an-
other. The main advantage of working with cup products
and cochains rather than wedge products and differential
forms is that cup products allow us to more naturally
incorporate the algebraic information of the symmetry
fractionalization class (like the factor sets wα) into the
theory at a field-theoretic level. Additionally, working
with cochains allows our field theory to be naturally de-
fined on discrete lattices with integer-valued cochains,
which we feel is more natural when studying topological
orders constructed from finite groups.

Appendix B: A geometric interpretation of
symmetry fractionalization

In this section, we briefly outline a geometric interpre-
tation of symmetry fractionalization, which is helpful for
understanding the physical meanings of the algebraic ob-
jects like the factor sets wα used in the main text. In this
section, we will work in a more general setting in which
an abelian topological order derived from a finite group
N is enriched by a symmetry group G, which need not
be finite.

As mentioned in the main text, the possible fraction-
alized quantum numbers for the electric and magnetic
sectors of the theory are parametrized by a choice of co-
homology class wα ∈ H2

ρ(G,N), where the cohomology
group is twisted by the action ρ of G on N and α ∈ {a, b}
distinguishes between the electric and magnetic sectors.
The set of possible choices for wα contains the same in-
formation as the set of (not necessarily central) group
extensions of G by N , which in turn correspond to the
different ways of constructing exact sequences

1→ N → E → G→ 1. (B1)

Trivial fractionalization classes wα = 0 correspond to
split sequences in which E is given by a semi-direct prod-
uct E = N oG, while nontrivial fractionalization classes
correspond to scenarios in which E is not a product
group. For example, if we take N = ZN and G = Z2

with the trivial action of G on N , then the trivial frac-
tionalization class corresponds to the choice E = ZN×Z2,
with the nontrivial choice corresponding to E = Z2N .

While group extensions are usually thought of as alge-
braic objects, they have a very natural geometric inter-
pretation in terms of fiber bundles. In this interpretation,
E is a fiber bundle built out of the base spaceG and fibers
given by the group N .1 In the fiber bundle picture, rep-
resentations of the symmetry group become maps from

1 Readers uncomfortable working with fibers and base spaces built
from discrete groups may replace all finite groups by their clas-
sifying spaces and the exact sequence (B1) by the associated
fibration BN → BE → BG.

G
g

h
gh

s(g) s(h)
s(g)s(h)

s(gh)

wα(g, h)

N

FIG. 4: What fractionalization looks like from a geometric
perspective. Here the fiber N describes the topological phase,
and the base space G describes the symmetry group. s is a
section (aka projective representation) which lifts G up into
the fibers. The fractionalization factor set wα measures the
failure of s to be linear.

the base space up into E. Let us denote the representa-
tions of the symmetry group G by s : G → E, which is
the same thing as a section of the bundle E. That is, the
representation s : G→ E “lifts” up the base space G into
the fibers. If s is a linear representation, it must take val-
ues in the image of N under the map N ↪→ E. However,
allowing s to be a projective representation means that
s may actually take on arbitrary values in the group E.
s is a projective representation when it fails to be a ho-
momorphism, which is the same as saying that if fails to
do the “lifting” of G in to E in a linear way. If this is the
case, s(g)s(h) is only equal to s(gh) up to a phase factor,
which we define as wα(g, h), with α ∈ {a, b} specifying
whether we are working in the electric or magnetic sector.
The phases wα(g, h) are needed to “untwist” movement
around in the bundle, and are precisely the algebraic ob-
jects used in the main text to designate the symmetry
fractionalization pattern. These concepts are illustrated
in Figure 4.

We can now obtain a clearer understanding of the mir-
ror axis action (3), which can be easily generalized to the
more general case we are focusing on in this section. wα
measures the amount by which a given position in a fiber
changes as the base point of the fiber is moved around
a loop in the base space, and forming the cochain G∗αwα
(which is equal to ωαGα/2 in the context of the main
text) by pulling back wα by Gα : X → G translates the
curvature in the bundle E with base space G into the
curvature of the pullback bundle G∗αE with base space
X. If there is an anomaly, the curvature in the fibers
caused by wα cannot be “untwisted”, which creates an
obstruction to forming a complete E gauge theory. The
anomaly is canceled by coupling the N gauge fields to the
Gα fields by writing an action with terms like α ∧ G∗αwα,
which “equivariantizes” movement in the fibers and pro-
motes the N gauge theory to an E gauge theory, gauging
G in the process. Geometrically, this procedure can be
visualized by thinking of the initial N gauge theory as re-
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stricted to live within a single fiber, marked by the base
point of the identity 1 ∈ G. Gauging G allows us to hop
from fiber to fiber in the full bundle, and the result is a
full E gauge theory. Our results from the main text tell
us that for G = ZP2 and N = ZN , the theory is anoma-
lous whenever both the electric and magnetic bundles are
twisted in a nontrivial way.

Finally, we point out that the twisting in the fiber bun-
dle caused by wα manifests itself algebraically as a “per-
turbation” to the group multiplication law in E. If we
write elements in E as pairs (a, g) where a ∈ N and
g ∈ G and let ρ denote the action of G on N , then we
can capture the full structure of the bundle by working
with the following group multiplication law in E:

(a, g)(b, h) = (a+ ρg(b) + wα(g, h), gh). (B2)

This is essentially a perturbed version of a regular semi-
direct product action, with the factor set wα acting as
the perturbation to the semi-direct product structure.
The fiber bundle interpretation shows how this algebraic
perturbation manifests itself as a twist in a geometric
way.

Appendix C: An alternate calculation of the
anomaly

In the main text, we computed the anomaly by ex-
amining the gauge variation of the mirror axis action
S∂X . In this section, we present an equivalent but more
geometrically-minded calculation of the anomaly. In-
stead of testing the gauge invariance of the action, we
test its ability to be defined in strictly (1+1)D by asking
whether or not it contains any hidden information about
(2+1)D physics.

The basic idea9,11 is to compute the curvature of the
mirror-axis Lagrangian, dL∂X , to see if the theory on
∂X is twisted in some fundamental way that only makes
sense in the presence of higher-dimensional fields. In
general, if L is a k-cochain on a k-dimensional mani-
fold M , then we must have dL = 0. To see this, note
that by Poincare duality we may associate L with a zero-
dimensional submanifold of M , and because Poincare du-
ality maps d 7→ ∂ and zero-dimensional submanifolds al-
ways have zero boundary, we must have ∂(L)∗ = 0 and
hence dL = 0. Applying this to the problem at hand, we
see that if dL∂X is nontrivial, then the action only makes
sense when the fields are extended to a (2+1)D manifold
Γ with ∂Γ = ∂X, and the action S∂X is anomalous.

As in the main text, we take

L∂X =
1

2N
(ωbGb ∧ a+ ωaGa ∧ b) (C1)

to represent the mirror axis Lagrangian after we have
attempted to gauge ZP2 on the mirror axis. We write
the coboundary of the Lagrangian as dL∂X = Otop +
Osym, where the anomaly is split into a topological part

Otop which explicitly involves the gauge fields a and b,
and a symmetry-related part Osym. These two classes of
anomalies are given by

Otop =
1

2N
(a ∧ ωbdGb + b ∧ ωadGa),

Osym = − 1

2N
(da ∧ ωbGb + db ∧ ωaGa).

(C2)

As before, the “topological” part of the anomaly Otop
is the more severe of the two, and its nontriviality would
imply a fundamentally ill-defined theory. This require-
ment would naively imply that we must set ωa = ωb = 0,
which would force our theory to have trivial fractional-
ization. However, we note that we can identify Otop with
the surface topological order Lagnrangian LX + LP(X)

provided that we place the following constraints on the
curvatures of the ZN gauge fields:

da =
1

2
ωadGa, db =

1

2
ωbdGb. (C3)

This requirement on the curvatures of the ZN gauge
fields is actually a very natural one. We know that da
(db) measures the integral of electric (magnetic) strings
about closed loops in the spacetime manifold, and so in
a ground state with no quasiparticle excitations present,
the flatness constraints da = db = 0 will be modified
only by the presence of symmetry fluxes, which are mon-
odromy defects that introduce curvature into the ZN
gauge fields. The worldines of the symmetry fluxes are
given explicitly by the cochain G∗αwα, the pullback of wα
by the gauge field Gα : X → Z2

11. Since the curva-
tures da and db will depend only on locations of the sym-
metry flux worldlines, we expect that da = G∗awa and
db = G∗bwb. At the same time, we can set wα(g, h) = 0 if
either of g or h is the identity, and so the only nontriv-
ial value of wα is wα(P,P) = ωα. Thus, the symmetry
flux worldlines will be described by a 2-cochain which
takes the value ωα in locations where the gauge field Gα
takes on nontrivial values, and which vanishes on loca-
tions where Gα vanishes. This is equivalent to making the
identification G∗αwα = ωαdGα/2, with the factor of 1/2
coming from the fact that Gα is closed modulo 2. Using
dα = G∗αwα, we recover the constraints (C3).

With Otop cancelled by introducing nontrivial curva-
tures for the a and b fields, all that remains is to cancel
the gauge anomaly Osym. Plugging the relations (C3)
into the expression for Osym, we obtain the following ac-
tion for the anomaly:

Sanomaly = −ωaωb
4N

∫
Γ

(Ga ∧ dGb + Gb ∧ dGa). (C4)

This tells us that in order for the theory to be well de-
fined, we must have a Z2 SPT state represented by (C4)
present on some bounding manifold Γ with ∂Γ = ∂X. As
explained in the main text, reflection symmetry forces us
to set Γ = Σ to be the mirror plane, which completes the
cancellation of the anomaly.
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XP(X)

XP(X)

∂X

∂X

FIG. 5: An illustration of the folding trick. We fold the sur-
face along the mirror axis ∂X, so that the system becomes
a bilayer system with edge ∂X on which reflection acts as a
layer-exchange symmetry.

Appendix D: Motivating dimensional reduction with
the folding trick

In this section we provide another (very schematic)
way to motivate our dimensional reduction approach, in-
spired by the folding trick43,44. Focusing only on the
surface theory, we note that we can fold up the surface
about the mirror axis while preserving reflection sym-
metry, until we obtain a geometry in which reflection
effectively acts as an “onsite” layer-exchange symmetry
on a doubled sheet carrying two mirror-symmetric copies
of the surface action (1), whose boundary is the mirror
axis ∂X (see Figure 5). Let us denote the doubled sheet
obtained after folding by X �P(X). Using the antisym-
metry properties of the cup product, one can integrate
by parts to show that

SX�P(X) =
1

N

∫
X�P(X)

(a ∧ db+ b ∧ da)

=
2

N

∫
X�P(X)

b ∧ da− 1

N

∫
∂X

a ∧ b.
(D1)

On the other hand, we can also integrate by parts to get

SX�P(X) =
2

N

∫
X�P(X)

a ∧ db+
1

N

∫
∂X

a ∧ b. (D2)

Combining these two equations tells us that

1

N

∫
∂X

a ∧ b =
1

N

∫
X�P(X)

(−a ∧ db+ b ∧ da). (D3)

As explained in the main text, reflection symmetry
forces either wa or wb to take values only in {0, N/2}.
For concreteness, we choose that this constraint be im-
posed on wb. We can then imagine introducing symmetry
fluxes for reflection on the mirror axis by way of the gauge
fields Ga and Gb defined in the main text. As explained
in Appendix C, symmetry fluxes are monodromy defects
for the ZN gauge fields, and are responsible for modified
flatness constraints da = G∗awa, db = G∗bwb on the a and b
gauge fields. In particular, this means that we must have
2db = 0 mod N , since wb must always take values in in-
teger multiples of N/2. This means that the right-hand
side of (D3) is actually equal to SX�P(X), since only val-
ues of SX�P(X) mod 1 are physical and the coefficient in
front of the a ∧ db term after using using the restriction
on wb becomes −1/2 = 1/2 mod 1. This means that the
surface theory can be dimensionally reduced to a (1+1)D
theory defined only on the mirror axis ∂X. In this way,
we see that the constraints imposed by reflection symme-
try allow us to write the surface theory entirely in terms
of an action defined on the mirror axis, and so to study
fractionalization and anomalies in these theories we ex-
pect to be able to focus solely on the behavior of the
simpler (1+1)D physics of the mirror axis, which moti-
vates the dimensional reduction approach considered in
the main text.
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