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A tendency to form benzene-like molecular orbitals has been recently shown to be a common
feature of the 4d and 5d transition metal oxides with a honeycomb lattice. This tendency competes
with other interactions such as the spin-orbit coupling and Hubbard correlations, and can be par-
tially or completely suppressed. In the calculations, SrRu2O6 presents the cleanest, so far, case of
well-formed molecular orbitals, however, direct experimental evidence for or against this proposition
has been missing. In this paper, we show that combined photoemission and optical studies can be
used to identify molecular orbitals in SrRu2O6. Symmetry-driven election selection rules suppress
optical transitions between certain molecular orbitals, while photoemission and inverse photoemis-
sion measurements are insensitive to them. Comparing the photoemission and optical conductivity
spectra one should be able to observe clear signatures of molecular orbitals.

PACS numbers:

I. INTRODUCTION

Low dimensional ruthenates with a honeycomb lattice
have been attracting a lot of attention in recent years.
α−RuCl3, which has one hole in the t2g manifold, shows
hallmarks of Kitaev physics [1, 2], Li2RuO3 with two t2g
holes dimerizes in the low-temperature phase [3, 4] and
exhibits a valence bond liquid behavior at high temper-
atures [5, 6], while SrRu2O6 with a half-filled t2g band
shows rather unusual magnetic properties [7]. It has been
argued [8] that the physics of these compounds is under-
scored by competition between the spin-orbit coupling
and Hubbard correlations, on one side, direct Ru-Ru
one-electron hopping, on the other side, and O-assisted
indirect hopping that leads to formation of molecular or-
bitals (MO), on the third side [9]. Ab initio calcula-
tions show that MOs appear to dominate in the last com-
pound [8]. In the first two they are mostly suppressed,
but at least in α−RuCl3 (and in a similar compound,
Na2IrO3) they manifest themselves via an anomalously
large third-neighbor coupling [10].

MOs inevitably occur if transition metals with active
t2g orbitals form a honeycomb lattice and t2g electrons
can only hop via oxygen p orbitals [11]. In this case,
the electronic structure problem maps onto that of the
benzene molecule, essentially, a 6-member ring with near-
est and next-nearest neighbor hoppings only (t′1 and t′2,
respectively). The electronic structure then consist of
four levels, A1g, E1u, E2g, B1u (E1u and E2g are dou-
bly degenerate), formed by six molecular orbitals. Their
energies are: EA1g

= 2(t′1 + t′2), EE1u
= (t′1 − t′2),

EE2g
= −(t′1 + t′2), and EB1u

= −2(t′1 − t′2) [12]. In this
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approximation, an electron occupying one of the MOs re-
mains fully localized within one of the Ru hexagons, in
spite of the fact that the lattice itself is uniform without
any dimerization or clusterization [13]. A sketch of the
crystal structure of SrRu2O6 is shown in Fig. 1.

In real materials t′1/3 ∼ −t′2 > 0 and the two highest
MO levels, A1g and E1u, turn out to be nearly degener-
ate [8, 13]. This is conducive for the spin-orbit coupling
(SOC) and is the reason why the SOC is so efficient in
the case of one t2g hole as in α−RuCl3 or in Na2IrO3.
Moreover, for the whole range between the weak and the
strong SOC limit the highest energy state (jeff = 1/2 or
A1g in the respective limits) is half-filled and therefore
Hubbard correlations are important.

Increasing number of holes, i.e. going from Ru3+ to
Ru4+ makes E1u band half-filled. One may lift the de-
generacy and gain some energy not due to the SOC or
formation of molecular orbitals on hexagons, but dimer-
izing lattice (if the elastic energy penalty would not
be too large). In this case the system gains consider-
able covalent energy due to direct d − d hopping (which
may be large in the common edge geometry)[14, 15] and
forms spin-singlet dimers. This scenario is realized in
Li2RuO3 [3, 5, 16].

In the case of three t2g holes, Ru5+, we arrive at
the situation, when A1g and E1u states are completely
empty and the MOs with their large gap between the
E1u and E2g states are energetically favorable. In the
ionic approximation the energy gain is of the order of
EE1u

− EE2g
≈ 2t′1. Interestingly, the long range Neél

antiferromagnetic (AFM) order does not destroy MOs,
but even increases this energy gain [8]. These are the
reasons why the MOs are so clearly seen in the band
structure calculations in SrRu2O6 [8].

While MO scenario has been very successful in explain-
ing the physical properties of SrRu2O6 [8], no direct ob-
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Figure 1: The projection of crystal structure of SrRu2O6 onto
the ab plane. The black line indicates the unit cell boundary.

servation of MOs has been effected so far, and other, al-
beit, in our opinion, less convincing, scenarios have been
proposed [17]. In this paper we suggest that a combina-
tion of the spectroscopic techniques sensitive and insen-
sitive to the dipole selection rules may provide direct evi-
dence of the formation of MOs in SrRu2O6. These can be,
e.g., optical absorption and photoemission measurements
(the latter are mostly determined by the electronic den-
sity of states, DOS), properly corrected for corresponding
cross sections. We will show both analytically and nu-
merically that the optical conductivity in the MO picture
is dramatically different from the joint DOS, because of
unusually restrictive optical selection rules.

II. OPTICAL PROPERTIES OF MOLECULAR

ORBITALS

The dipole selection rules prohibit optical transitions
between states of the same parity. In the MO picture, this
leaves four transitions: B1u → E2g (at ~ω = t′1 − 3t′2),
E2g → E1u (at 2t′1), E1u → A1g (at t′1 + 3t′2), and
B1u → A1g (at 4t′1). For the half filling, representative
of SrRu2O6, that would generate two absorption peaks,
corresponding to the E2g → E1u and B1u → A1g transi-
tions, the latter at a twice larger energy than the former.
However, there is an additional symmetry in the problem
that forbids some of these transitions. Indeed, to assure a
nonzero optical matrix element, the direct product of the
representations of the initial and final states must con-
tain a representation of the corresponding component of
the dipole operator pα (see, e.g., Ref. [18]). In the case
of an ideal hexagon with the point group symmetry D6h

the px and py components are transformed according to
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Figure 2: The nonmagnetic GGA band structure (upper
panel) and total DOS obtained by GGA calculation for the
Neél antiferromagnetic structure (lower panel). The contribu-
tions from different molecular orbitals are labeled according
to Refs. [8, 12].

the E1u representation [19]. Since

B1u ×A1g = B1u (1)

B1u × E2g = E1u (2)

E2g × E1u = B1u +B2u + E1u (3)

E1u ×A1g = E1u (4)

the point symmetry will suppress B1u → A1g, but not
B1u → E2g, E2g → E1u, and E1u → A1g transitions. In
SrRu2O6 only E2g → E1u transitions are allowed, but
in other hexagonal systems with different number of d
electrons one may also expect B1u → E2g and E1u → A1g

transitions. In Sec. IV we show explicitly the matrix
elements of pα in the nearest- and next-nearest neighbor
tight binding approximation. The out-of plane matrix
element is zero and corresponding optical transitions are
absent in the MO approximation.
Together with the selection rules forbidding transitions

between states with the same parity this additional se-
lectivity offers a direct test of the MO scenario. It sug-
gests that despite the double-hump structure of the DOS
(Fig. 2), and, correspondingly, joint DOS, the optical ab-
sorption σ(ω) will have a one peak structure. Impor-
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Figure 3: Results of the antiferromagnetic GGA calcula-
tions. (a) The joint density of states, J(ω), is shown by black
line. (b) The real part of optical conductivity, Re σαβ(ω) =
ω
4π

Im εαβ(ω), where α, β = x (blue dotted line) and α, β = z

(green dotted line). The imaginary part of the frequency-
dependent dielectric functions, εxx (c) and εzz (d) are shown
by solid blue and green lines, correspondingly.

tantly, this is a qualitative, not quantitative test. While
the exact positions and relative intensities of different
peaks in DOS and σ(ω) may differ from the density func-
tion theory predictions (due to many-body effects), the
general structure described above should qualitatively
hold. This way one can directly verify by spectroscopi-
cal means (comparing optical, photoemission and inverse
photoemission spectra) the concept of molecular orbitals.

III. DFT CALCULATIONS OF σ(ω) IN SrRu2O6

We used the full-potential linearized augmented plane-
wave (LAPW) method as implemented in the WIEN2k
code [20] to calculate optical properties of SrRu2O6. We
used the exchange-correlation potential of Ref. [21]. The
spin-orbit coupling has been found to be unimportant in
SrRu2O6 [8, 22], so that we have not included this in-
teraction to the calculations. Similarly, we have found
before that the including correlation effects within the
dynamical mean-field theory (with modest U ∼ 1 eV),
while renormalizes hopping integrals, leave the entire pic-
ture of MOs intact, so in the following we have been using
straight DFT. Integration was performed using the tetra-
hedron method on a mesh consisting of 4096 k-points in
the Brillouin zone (BZ). The radii of atomic spheres were

chosen to be 2.36, 1.93 and 1.72 a.u. for Sr, Ru, and O,
respectively. The parameter of the plane wave expansion
was set to RMTKmax=7, where RMT is the radius of O
and Kmax is the plane wave cut-off.
For a dielectric, the imaginary part of the dielectric

function in the random-phase approximation (RPA) is
defined as

Im εαβ(ω) =
e2

πm2ω2

∑

c,v

∫

〈c,k|pα|v,k〉〈v,k|pβ |c,k〉

× δ(ǫc(k)− ǫv(k) − ~ω)dk, (5)

where m is the electron mass, {α, β} = {x, y, z}, summa-
tion runs over all pairs of conduction (c) and valence (v)
bands, and ǫ(k) gives the energy of corresponding band,
while 〈c,k|pα|v,k〉 is the momentum operator’s matrix
element [23]. The real part of the optical conductivity is

Re σαβ(ω) =
ω

4π
Im εαβ(ω).

This, obviously, includes the phase space factor, usually
called the joint density of states,

J(ω) =
∑

c,v

∫

δ(ǫc(k)− ǫv(k) − ~ω)dk,

and the effects of the matrix elements. The J(ω) ob-
tained within the AFM GGA calculations is shown in
Fig. 3(a). One observes a broad maximum in the joint
DOS at 1.0–1.5 eV, due to the transitions between the
E2g and the E1u+A1g manifolds, and another maximum
at 1.6-1.8 eV, due to the B1u → E1u +A1g transitions.
Since SrRu2O6 has a trigonal crystal structure there

are only two independent components in the dielectric
tensor, εxx and εzz. Fig. 3(c), (d) shows the calcu-
lated imaginary part of dielectric tensor components for
SrRu2O6. The amplitude of the εxx component is about
8 times larger than the one of εzz , reflecting the fact that
it only appears through deviations from the MO model.
More interestingly, we observe that Im εxx(ω) has one
strong peak “A”at ∼1 eV, corresponding to E2g → E1u

transitions, while the second peak of J(ω) is completely
suppressed in Im εxx(ω) (Fig. 3(c)). Moreover, the first
peak also becomes sharper, reflecting the fact that, while
the E1u and A1g orbitals are strongly mixed, the higher
energy part of the corresponding manyfold has some-
what more of the A1g character, leaving less room for the
E2g → E1u transitions (remember that the E2g → A1g

transitions are forbidden by parity). This is exactly the
qualitative effect we were looking for.
Note that if the matrix elements in Eq. (5) are set

to a constant, 〈c,k|pα|v,k〉 = const, then ωσ(ω) =
const · J(ω), and, indeed often in computational papers
joint DOS is compared to ωσ(ω). However, in real ma-
terials, |〈c|p|v〉|2/m usually grows with energy, roughly
as (Ec − Ev) [24], so one can elucidate the suppression
of particular transitions by comparing J(ω) (Fig. 3(a))
with σ(ω) (Fig. 3(b)).
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It is worth noting that the structure of Im εzz(ω),
which cannot be derived from the MO model, is nonethe-
less quite interesting. Indeed, the pz matrix element ap-
pears to be strongly enhanced in the very low frequency
region, from the absorption edge to about 0.7 eV (the
feature denoted “C” in Fig. 3(d)). The matrix elements
for next feature, “D”, are suppressed by a factor of ≈ 1.5
[2.2-2.3 in Im εzz(ω)/J(ω)], and the high-energy region
corresponding to the B1u → E1u +A1g transitions by an
additional factor of ≈1.8 (feature “E”).

Compared to iridates Na2IrO3 and Li2IrO3, often
quoted in the context of MOs, SrRu2O6 has a clear ad-
vantage in the sense that in iridates the MO picture
is contaminated by a strong spin-orbit interaction that
makes selection rules not well expressed. Indeed, while
DFT calculations for iridates [25] agree well with experi-
mental data, they cannot be interpreted in such a simple
way as ours presented above, and cannot provide such a
qualitative assessment of the MO picture. Nevertheless
for the sake of completeness below we present a simple
tight-binding model, which can be used to investigate op-
tical response not only in the case of three t2g electrons
as in SrRu2O6, but also for any other occupation.

IV. TIGHT-BINDING TREATMENT OF

OPTICAL PROPERTIES IN AN IDEAL MO

SYSTEM

While there are three t2g orbitals on each Ru site,
so that formally the tight-binding (TB) Hamiltonian is
18×18, only one t2g orbital per site contributes to any
given MO[11], so the problem is reduced to 6×6. This
allows us to map the full t2g problem onto a simple tight-
binding model on an ideal hexagon with one s-orbital per
site:

H =















0 t′1 t′2 0 t′2 t′1
t′1 0 t′1 t′2 0 t′2
t′2 t′1 0 t′1 t′2 0
0 t′2 t′1 0 t′1 t′2
t′2 0 t′2 t′1 0 t′1
t′1 t′2 0 t′2 t′1 0















, (6)

where t′1 and t′2 are the nearest and next-nearest neigh-
bor hoppings via oxygen. Diagonalization of this Hamil-
tonian gives the spectrum described in the Sec. I.

The dielectric function Im εαβ(ω) in Eq. (5) is de-
termined by matrix elements of momentum operator
〈c,k|pα|v,k〉, which can be easily calculated using the
matrix elements of the momentum operator in the initial
TB basis of s−orbitals, defined as [26]

pij =
im

~
Hij(Ri −Rj),

where Ri and Rj are the positions of corresponding sites
in the hexagon.

0 0.5 1 1.5 2
Energy (eV)

0

0.5

1

1.5

N
ef

f
(e

le
ct

ro
ns

)

Figure 4: The effective number of electrons obtained for
SrRu2O6 in the GGA calculation according to Eq. (10) for
εxx component.

The optical transitions can be characterized by their
oscillator strengths

fcv =
2

m

|〈c,k|pα|v,k〉|2

Ec − Ev

,

which can be calculated in the basis of the MOs using
eigenvectors of Eq. (6) as a transformation matrix. In our
model there are only three nonzero momentum operator
matrix elements

fB1u,E2g
=

ma2

2~2
(t′1 − 3t′2), (7)

fE2g,E1u
=

ma2

~2
t′1, (8)

fE1u,A1g
=

ma2

2~2
(t′1 + 3t′2), (9)

where a is the distance between the nearest neighbors
(3.0053 Å in SrRu2O6). This is in agreement with sym-
metry consideration presented above and results to a sin-
gle optical E2g → E1u transition in SrRu2O6.
For other fillings, e.g., four or two electrons per tran-

sition metal site, one may expect two other transitions,
which can be, however, suppressed not due to the sym-
metry or parity reasons, but because of a particular ra-
tio between hopping parameters. E.g., in both RuCl3
and SrRu2O6, as well as in Na2IrO3, the hopping t′2 was
found to be of order of −t′1/3 [11, 27], which will result
in a strong suppression of the E1u → A1g transition. If
one chose t′1 = 0.3 eV and t′2 = −0.1 eV as it was es-
timated for SrRu2O6 by Wang et al. [27], then indeed
fE1u,A1g

∼ 0, while fB1u,E2g
=fE2g,E1u

=0.356.
This provides us with an interesting quantitative check

of the validity of the MO model as regards to the full
all-electron DFT calculations. A major integral charac-
teristic of the optical absorption is given by the optical
sum rule, conveniently written in terms of the effective
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number of electrons:

ω
∫

o

Im εαα(ω′)ω
′dω′ =

2π2e2

mΩ
Neff (ω), (10)

where Ω is the unit cell volume.
The Neff obtained within ab initio calculation from

xx component of the dielectric function for SrRu2O6 is
shown in Fig. 4. A plateau in Neff (ω) curve clearly
points to a presence of a single transition in agreement
with model and symmetry considerations. For the en-
ergy of 2 eV Nxx

eff=1.44 [28]. In the MO model there is

one allowed transition, E2g → E1u, f = 0.356 (using the
parameters presented above), and, accounting for sym-
metry and spin degeneracies, Nmodel

eff = 4f = 1.424, in
excellent agreement with the DFT calculations.

V. CONCLUSIONS

We presented first principle calculations of the op-
tical properties of the putative molecular orbital solid
SrRu2O6, as well as an analytical analysis of the opti-
cal absorption in the molecular orbitals model. We have
identified a qualitative signature of molecular orbitals in
optical properties. There are only four possible transi-
tions allowed by the parity of the wave functions, but
one of these parity-respecting optical transitions is sup-
pressed by the point group symmetry, an unusual effect
directly related to molecular orbitals. Different distor-

tions of the crystal lattice, spin-orbit coupling, correla-
tion effects etc. may completely suppress formation of
molecular orbitals or strongly modify their structure. We
emphasize that one may use optical spectroscopy in the
way described above as a probe to identify molecular or-
bitals in other transition metals oxides consisting of hon-
eycomb layers, even though in the moment SrRu2O6 is
the only viable candidate for a honeycomb MO driven
material.

One may also expect that formation of molecular-
orbitals in SrRu2O6 may result in unusual spin excitation
spectra. Thus, inelastic neutron scattering may provide
another, albeit more indirect way to find signatures of
the molecular orbitals.
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