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Universality classes of order parameters composed of many body bound states
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This theoretical paper discusses microscopic models giving rise to special types of order in which
conduction electrons are bound together with localized spins to create composite order parameters.
It is shown that composite order is related to the formation of a spin liquid with gapped excitations
carrying quantum numbers which are a fraction of those of electron. These spin liquids are special
in the sense that their formation necessarily involves spin degrees of freedom of both the conduction
and the localized electrons and can be characterized by nonlocal order parameters. A detailed
description of such spin liquid states is presented with a special care given to a demonstration of
their robustness against local perturbations preserving the Lie group symmetry and the translational
invariance.

PACS numbers: 71.10.Hf, 71.10.Pm, 71.27.+a

I. INTRODUCTION

This paper puts forward a theoretical description of
composite order parameters (COPs). Such order pa-
rameters emerge as a result of condensation of many-
body bound states of conduction electrons with collec-
tive modes of interacting magnetic moments. On the
formal level the COPs are expressed as products of spin
operators of localized electrons and various density op-
erators of conduction electrons. The latter ones may in-
clude multiple products of charge, spin and pair densi-
ties. Being related to many body bound states a forma-
tion of the COP’s requires strong correlations and their
study will take us to hitherto unexplored areas of physics.
The first example of such COP was found in the Kondo-
Heisenberg chain model by Zohar and the author [1]; it
included a bound state of the staggered magnetization
with the pair density, an analogue of the Fulde-Ferell-
Ovchinnikov-Larkin (FFLO) state, but created without
magnetic field. It also included the bound state with a
Charge Density wave with a wave vector proportional to
the total electron density (including the density of local-
ized electrons). Although one dimensional models can
support only quasi long range order, a real order is pos-
sible in arrays of chains provided one manages to couple
the corresponding COPs. This may be a problem since
they usually carry finite wave vectors, so that a coupling
between COPs with different wave vectors is suppressed
due to the momentum conservation. This suppression
mechanism was invoked in [2] to explain the exotic two-
dimensional superconductivity found in a layered com-
pound La1.875Ba0.125CuO4 [3],[4]. It has been suggested
that the superconducting order parameters belong to the
staggered pair density COPs and the COPs from neigh-
boring layers do not couple since their wave vectors are
perpendicular to each other.

Although the concept of composite order is a general
one, to achieve a better understanding we need to con-
sider models which allow reliable and controlled calcu-
lations. I suggest that Kondo-Heisenberg models pro-
vide ideal platforms for these kind of studies. The core

physics of [1],[5] is the following. The Kondo-Heisenberg
model brings together conduction electrons in the form of
one-dimensional electron gas (1DEG) and antiferromag-
netically correlated localized spins. Taken by themselves
both electron and spin subsystems are quantum critical.
In a quasi-one-dimensional setting this means that (i)
the low energy modes are chiral, (ii) the spin and charge
degrees of freedom of the 1DEGs are separated. These
two facts suggest a possibility of a highly entangled state
where right moving spinons from the 1DEG pair to left
moving ones from the antiferromagnet and vice versa. As
a result two independent spin liquids are formed, each one
uniting spin degrees of freedom of opposite chirality from
the 1DEG and the spin chain; the charge sector of the
1DEG is left gapless and is populated by the Goldstone
modes. Such state has a hidden order associated with
pairing of spinons from different chains and hence is ro-
bust with respect to local perturbations. The realization
of such spin liquid is possible when the band filling of
the 1DEG is far from 1/2 so that the Kondo exchange
cannot generate backscattering. Then the relevant cou-
pling is between the spin currents of opposite chirality
from the 1DEG and the spin chain. As I have said, the
resulting spin liquid is a sum of two liquids formed by
spinons of opposite chirality hence being mirror images
of each other. The corresponding excitations carry frac-
tional quantum numbers. Since such pairing takes place
not between electrons, but between the spinons, this pro-
cess cannot be treated perturbatively or via any kind of
mean field making it even more interesting.

In [1],[5] we studied the simplest version of the Kondo-
Heisenberg (KH) model where the localized spins have
magnitude 1/2 and there is one electronic chain per each
spin one. In this paper I demonstrate that this is just
one possibility out of many. One can construct entire
universality classes of KH models corresponding to dif-
ferent representations of Lie groups with different topo-
logical orders, different gapped excitations and different
COPs and generically a particular model may have sev-
eral COPs.

Below I consider two types of models. Both of them
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describe arrays of one-dimensional Kondo-Heisenberg
wires. In the models of the first type the wires are ar-
ranged in ”cables”, such that each one-dimensional unit
consists of a chain of localized spins S = n/2 surrounded
by a bunch of n conducting chains with incommensurate
band fillings. In fact, to call this spin chain the Heisen-
berg one is an abuse of the term since the spin-spin inter-
action I consider includes higher powers of (SnSn+1). It
would be more appropriate to call it Generalized Heisen-
berg chain, but I will not do it for the sake of brevity.

In the suggested construction the gapped fractional-
ized excitations are able to propagate only along a single
cable even when the chains are connected into arrays.
I will argue, however, that the three-dimensional cou-
pling does not destroy these excitations, although it cre-
ates their bound states which carry quantum numbers of
electron and can propagate between the cables. A similar
construction has been recently used in [7] in the context
of Fractional Quantum Hall effect. The models of another
type are SU(N) generalizations of the Kondo-Heisenberg
ladders considered in [5].

The paper is organized as follows. In Sections I-IV I
will consider one dimensional models. In Section V I will
discuss their arrays. In Section II I derive the continuum
limit description for the both types of models mentioned
above. This continuum description is given by integrable
field theories whose spin sector is gapped and has frac-
tionalized excitations. For the cable model n ≥ 2 their
statistics is non-Abelian, for the SU(N)-symmetric lad-
der model it is Abelian.In Section III I will construct
the composite order parameter operators There is a sep-
arate universality class for each symmetry group repre-
sentation. The construction can be easily generalized for
nonunitary Lie groups. In Section IV it will be shown
that the composite order and fractionalized excitations
are robust with respect to group symmetry preserving
perturbations around the integrable point. I will ana-
lyze in detail the perturbations breaking the symmetry
between the exchange couplings and the perturbations
driving the spin chain away from the criticality. In Sec-
tion V I will consider physics of arrays of the KH cables.

The paper has Conclusions and Acknowledgements
section and several Appendices.

II. THE CORE MODELS

The core models of the present paper are of two kinds.

One type of the model called Kondo-Heisenberg cable
(KHC) consists of a critical antiferromagnetic spin S=n/2
Takhtajan-Babujian chain (TBC) coupled by an antifer-
romagnetic exchange interaction to n conducting chains

containing a one-dimensional electron gas (1DEG):

H =
∑
k

n∑
a=1

εa(k)ψ+
k,aσψk,aσ +

1

2

∑
k,q

Jabψ+
k+q,aασαβψk,bβSq +

JH
∑
l

Pn
(
SlSl+1

)
, (1)

where ψ+
a , ψa are creation and annihilation operators of

the 1DEG on chains a = 1, ...n, σb are the Pauli ma-
trices, Sl is the spin S = n/2 operator on site j and
Sq is its Fourier transform. Pn(x) is the polynomial of
degree n whose exact form is fixed by the integrability
requirements [8],[9]. For instance, P1(x) = x,P2(x) =
x − x2, etc. It is assumed that Jab << JH and the
1DEGs have band fillings incommensurate with the TBC:
|2kF,aa0 − π| ∼ 1. Under these assumptions one can
formulate the low energy description of (1), taking into
account that the backscattering processes between exci-
tations in the TBC and the 1DEGs are suppressed by the
above incommensurability. The effective theory is valid
for energies much smaller than both the average Fermi
energy εF,a and the exchange interaction JH of the model
(1).

The reader should not remain under impression that
the obtained results require a fine tuning of the spin sec-
tor to the integrable point. It will be shown in Section
IV that they remain robust against those perturbations
around the integrable point which preserve the transla-
tional and the SU(2) symmetry.

Another core model is a SU(N) symmetric generaliza-
tion of the Kondo-Heisenberg chain:

H =
∑
k

N∑
a=1

ε(k)ψ+
k,aψk,a +

1

2

∑
k,q

J lψ+
k+q,aτ

l
abψk,bT

l
q +

JH
∑
n

(T ln+1T
l
n+1), (2)

where T l, (l = 1, ...N2 − 1) are generators of the su(N)
algebra in the single box representation.

The KHC model (1) is a one-dimensional version of
Spin Fermion (SF) model frequently used to study vio-
lations of the Landau Fermi liquid theory in the vicinity
of quantum critical points. As has been demonstrated
in [5], an array of KH chains can be used as a quasi 1D
SF model. Here the electrons also interact with a critical
insulating subsystem. However, the interacting regime I
am going to study is different from what is usually as-
sumed. In the standard treatment of the SF model the
quantum character of the spin fluctuations is not impor-
tant, it is suggested that the quantum features are gener-
ated by the conduction electrons. In the quasi 1D version
of the SF model considered here this is not the case: the
quantum nature of the spins is responsible for creation
of the spin gap and the formation of the spin liquid.
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A. Continuum limit of model (1)

As usual I start with the linearization of the spectrum
of the 1DEG:

εa(k) ≈ ±vF,a(k ∓ kF,a), (3)

and introduce the right and the left moving fermions R
and L:

ψa(x) = e−ikF,axRa(x) + eikF,axLa(x). (4)

In the rest of my paper I will employ the formalism
of non-Abelian bosonization most adequate for the task.
Although this version of bosonization is not as widely
known as the Abelian one, it has a venerable history and
has been discussed in literature. The most recent review
can be found in [7].

The continuum limit of the TBC chain is described
by the SUn(2) Wess-Zumino-Novikov-Witten (WZNW)
model. This is a critical theory whose primary fields
transform in the spin S ≤ n/2 representations of the
SU(2) group. The excitations are gapless with linear
spectrum ω = vH |q|, vH = πJH/2. In the continuum
limit the spin operators are approximated as [10],[11]:

Sl = [jR(x) + jL(x)] + i(−1)lTr
[
σ(h− h+)

]
+ ..., (5)

(x = la0) where the dots stand for less relevant operators,
a0 is the lattice distance, h is the WZNW SU(2) matrix
field. The current operators jaL, j

a
R satisfy the SUn(2)

Kac-Moody algebra:

[jaR(x), jbR(x′)] = iεabcjcR(x)δ(x− x′) +
in

4π
δabδ

′(x− x′),(6)

with the same commutation relations for the left currents
jaL. The electron spin FR = 1

2

∑n
a=1R

+
a σRa, FL =

1
2

∑n
a=1 L

+
a σLa satisfy the same algebra. The remark-

able fact is that the WZNW Hamiltonian describing the
low energy part of the TBC can be expressed solely in
terms of the currents:

HWZNW =
2πvH
n+ 2

∫
dx
(

: jRjR : + : jLjL :
)
, (7)

The double dots denote normal ordering.
Due to the incommensurability of the Fermi wave vec-

tors in the continuum limit the Kondo term in (1) is
reduced to the interaction of the currents [12](see also
[13]):

Vex =
JK
2

∫
dx(jR + jL)(R+

a σRa + L+
a σLa) (8)

where JK = Jaa (all diagonal elements are taken to be
equal) At vF,1 = vF,2 the sum of the electronic currents
adds up to a single SUn(2) current

FR =

n∑
a=1

R+
a σRa, FL =

n∑
a=1

L+
a σLa. (9)

The further simplification comes from the fact that the
relevant part of (8) contains only products of the cur-
rents of different chirality so that the marginal interac-
tion Vmarg = JK(FRjR + FLjL) can be dropped as the
first approximation. Hence only the SUn(2) part of the
1DEGs is involved in the interaction.

Below I will use the fact that the Hamiltonian of n
copies of spin 1/2 noninteracting fermions with identical
Fermi velocities (I will assume this to simplify the cal-
culations) can be written as a sum of the U(1) Gaussian
model and SU2(n) and SUn(2) WZNW models [13],[14].
The resulting Hamiltonian is

Heff = Horb +
vF
2

[(∂xΘc)
2 + (∂xΦc)

2] +Hspin(10)

Horb =
2πvF
n+ 2

n2−1∑
A=1

(
: IARI

A
R : + : IAL I

A
L :
)

(11)

Hspin =
2πvF
n+ 2

(
: FRFR : + : FLFL :

)
(12)

where IA , A = 1, ...n2 − 1 are SU2(n) currents. Φ and
Θ are mutually dual bosonic fields. Both the charge part
and model (11) are critical, the spectrum is linear: ω =
vF |k|.

Now we will put the relevant part of (8), (12) and (7)
together and rearrange the terms in such a way to obtain
two commuting Hamiltonians:

Hspin + Vex +HWZNW = H(Rl)
s +H(Lr)

s (13)

H(Rl)
s = (14)

2πvF
n+ 2

: FRFR : +
2πvH
n+ 2

: jLjL : +JKFRjL

H(Lr)
s = (15)

2πvF
n+ 2

: FLFL : +
2πvH
n+ 2

: jRjR : +JKFLjR

Here vF , vH = πJH/2 are the Fermi velocity of the
1DEGs and the spinon velocity of the TBC respectively.
This factorization of the spin sector into two part with
one being a mirror image of another is the key feature of
the KHC model (1) from which everything else will fol-
low. Such factorization can be easily generalized for any
other Lie group symmetry besides SU(2) and any other
representation of the spin operators.

Models (14,15) are strongly interacting and inte-
grable [15]. These are WZNW models perturbed
by a marginally relevant current -current interaction.
Their Bethe ansatz solution has many common features
with the solution of the multi-channel Kondo model
[16],[17],[18] with the difference that in the case when
the spins are represented by a single impurity the spec-
tral gaps cannot be formed. At JK > 0 the spectrum
consists of gapped non-Abelian solitons. Each soliton
carries a zero mode of Zn parafermion. The further de-
tails are provided in Section IV B and Appendix A. The
dispersion relations E(k)Lr = E(−k)Rl = E(k) are

E(k) = k(vH − vF )/2 +
√
k2(vF + vH)2/4 + ∆2, (16)



4

where ∆ = Λg exp(−π/g), g = JK/(vF + vH), with
Λ being the ultraviolet cut-off, is the spin gap. Hence
they describe spin liquids. Since these models are mirror
images of each other, under open boundary conditions
the many-body wave functions of the two copies coincide
at the boundaries.

FIG. 1: The dispersion of the solitons in the KH chain (16).

e = E/∆, q = kx(vHvF )1/2/∆ and vF /vH = 1/4.

B. Continuum limit of model (2)

The derivation here is very similar to the one given in
the previous subsection. Therefore I will concentrate on
differences. The first one is that the continuum limit of
the SU(N) spin chain is now given by the SU1(N) WZNW
model. The SU(N) spin operators are expressed as

T ln = [jlR(x) + jlL(x)] +

N−1∑
q=1

e2πnq/NTr
(
τ l : hq :

)
+ ...,(17)

where h is the SU(N) matrix field of the SU1(N) WZNW
model and τ l are generators of the su(N) algebra. The
primary fields : hq : are obtained by fusion of the funda-
mental one their scaling dimensions are dq = q(N−q)/N .

The resulting continuum limit Hamiltonian density is

H =
vF
2

[(∂xΘc)
2 + (∂xΦc)

2] +H(Rl)
s +H(Lr)

s (18)

H(Rl)
s = (19)

2πvF
N + 1

: F lRF
l
R : +

2πvH
N + 1

: jlLjlL : +J lKF
l
Rj

l
L

H(Lr)
s = (20)

2πvF
N + 1

: F lLF
l
L : +

2πvH
N + 1

: jlRj
l
R : +J lKF

l
Lj

l
R

Models (19,20) can be written is a more familiar
fermionic form. One can take advantage of the fact that
SU1(N) currents can be written in terms of fermionic bi-
linears and write the currents of the spin chain in terms

of the auxiliary right- and left moving fermions ρ, λ. The
resulting model constitutes the spin sector of the SU(N)
Chiral Gross-Neveu model so that for (19) we have

H(Rl)
s = (21)

−ivFR
+
a ∂xRa + ivHλ

+
a ∂xλa + J lK(R+τ lR)(λ+τ lλ),

where a = 1, 2, ...N with a similar expression with x →
−x and R replaced by L and ρ replaced by λ.

When all coupling constants are equal J lK = JK mod-
els (19,20) are integrable [20], but now the spectrum con-
tains N − 1 branches of gapped excitations with spectral
gaps ∆j :

∆j = ∆1
sin(πj/N)

sin(π/N)
, j = 1, 2, ...N − 1, (22)

∆1 ∼ exp[−π(vF + vH)/NJK ]

These excitations transform according to single column
j-box irreducible representations of the SU(N) group. So
they are fractional number particles. The spectrum of
each branch is given by (16) with ∆ replaced by ∆j .

When J lK are different the picture remains qualita-
tively the same since the SU(N) symmetry is restored
in the low energy limit [21].

III. COMPOSITE ORDER PARAMETERS

In D = 1 critical points are located at T = 0 and
there is only quasi long range order. Hence by order
parameter (OP) operators I mean the operators whose
susceptibilities diverge at T = 0. At T = 0 their cor-
relation functions have a power law decay in space and
time, at T = 0 they decay exponentially with the cor-
relation length ∼ 1/T . In the core cable models such
quasi long range order is expressed in term of OPs which
include delocalized and localized fermions - composite
order parameters (COPs). Ones 1D cables are arranged
in a three dimensional array real long range order will
be established. This will be discussed in more detail in
Section V.

A. COPs in model (1)

.
For simplicity sake I will consider the case n = 2 in

detail and discuss other cases briefly.
I will use the remarkable fact established in [22] that

two noninteracting 1DEG with equal Fermi velocities can
be described by the theory of eight Majorana fermions
with O(8) symmetry. At the same time the SU2(2)
WZNW is equivalent to the theory of three noninteract-
ing Majoranas. So the O(8) theory can be factorized into
5+3 Majoranas: O1(8) = O1(5)⊕O1(3).

Remarkable properties of the SU2(2) WZWN model
has been first studied in [23]. The reader can also find
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details in [13],[14]. The SU2(2) currents can be repre-
sented as products of Majorana fermions:

ja =
i

2
εabcκbκc, F a =

i

2
εabcχbχc, (23)

As a consequence the two independent Gross-Neveu mod-
els (14,15) become the O(3) Gross-Neveu models of Ma-
jorana fermions:

H(Rl)
s = − ivF

2
χaR∂xχ

a
R +

ivH
2
κaL∂xκ

a
L +

JK
∑
a>b

(κaLχ
a
R)(κbLχ

b
R), (24)

H(Lr)
s =

ivF
2
χaL∂xχ

a
L −

ivH
2
κaR∂xκ

a
R +

JK
∑
a>b

(κaRχ
a
l )(κbRχ

b
l ). (25)

The gapless sector given by the sum of (11) and the U(1)
Gaussian model can be described as a model of 5 gapless
Majoranas:

Hcharge−orb =
i

2

5∑
a=1

(−ηaR∂xηaR + ηaL∂xη
a
L). (26)

For convenience we can group these fermions as follows:
η1,2 will correspond to fermionization of the charge sec-
tor, the other three η’s will describe the orbital sector.

At criticality the SU2(2) WZNW model can also be
represented as a sum of three critical quantum Ising mod-
els. This representation is particularly useful since the
spin S=1/2 primary field (the matrix h) can be expressed
in terms of order σa and disorder µa parameter fields of
the Ising models [23]:

ĥ = (27)

τ̂0σ1σ2σ3 + i(τ̂1µ1σ2σ3 + τ̂2σ1µ2σ3 + τ̂3σ1σ2µ3).

Here τa, a = 0, 1...3 are unit and Pauli matrices.
As is clear from (14,15), the spectral gaps are gener-

ated by paring of Majoranas of a given chirality from the
1DEG with their partners of opposite chirality from the
TBC. To clarify this it is instructive to do the Hubbard-
Stratonovich transformation for, for instance, model (24).
For JK > 0 the interaction is decoupled as

JK
∑
a>b

(κaLχ
a
R)(κbLχ

b
R)→ ∆2

2JK
+ i∆(κaLχ

a
R), (28)

Integration over the fermions creates a double-well po-
tential for field ∆. The minima of the potential corre-
spond to degenerate vacua for the Majorana fermions
where 〈(κaLχaR)〉 6= 0. As far as the operators of the
original model (1) are concerned, the structure of the
vacuum is more subtle since the local operators of this
model are expressed not just in terms of the Majorana
fermion bilinears, but also in terms of Ising model oper-
ators (see Appendix B). A vacuum with one sign of ∆

corresponds to the disordered phase of the Ising models
where 〈σa〉 = 0, the other one corresponds to the ordered
phase where 〈σa〉 6= 0 and may have any sign. Therefore
the vacuum has a triple degeneracy. I will talk more
about it in Section IV.

The important point is that since the Majoranas from
the 1DEGs do not pair to each other, there are no order
parameters formed solely from the electronic operators
or spin operators. Instead, there are composite order
parameters (COPs) whose correlation functions have a
power law decay.

As a preliminary step towards formulation of the COPs
I will organize the fermions into Nambu spinors:

Ψaσ =
( ψσ,a
εσσ′ψ

+
σ′,a

)
. (29)

This reflects the orthogonal symmetry of the low energy
sector. The spinor has 8 components; their quantum
numbers include charge q = ±1, spin σ = ±1 and chain
index p = ±1. Products of the Nambu spinor compo-
nents with the right- and left chirality give rise to 8 × 8
real matrix with 64 entries:

∆(q,p,σ),(q′,p′,σ′) = r̄(q,p,σ)l(q′,p′,σ′) (30)

Fusing it with the 4×4 h-matrix spin field of the WZNW
model one is left with the matrix COP containing 16 real
entries:

O(q,p),(q′,p′) = r̄(q,p,σ)hσσ′ l(q′,p′,σ′). (31)

As it is discussed in Appendix B, this operator can be
factorized into the part which condenses, acquiring a fi-
nite vacuum expectation value, and the part which fluc-
tuates. The former one constitutes an amplitude of the
fluctuating COP. The fluctuating part is a primary field
of the critical O1(5) theory with a scaling dimension 5/8.
COP (31) contains charge density wave (q = −q′) and
superconducting (q = q′) components. A given matrix
element carries the wave vector

Q(q,p),(q′,p′) = qkF,p − q′kF,p′ + π/a0. (32)

Operators (31) constitute a reducible representation
of the SO(5) group. This representation consists of an
SO(5) scalar, vector, and antisymmetric tensor represen-
tations. To obtain the latter representations, one has to
define five Dirac Γa (a=1,...5) matrices, for instance,

Γ1 =

(
0 iI
−iI 0

)
, Γ2,3,4 =

(
σ 0
0 −σ

)
,

Γ5 =

(
0 −I
−I 0

)
, (33)

where unit and Pauli matrices I,σ act on the chain in-
dices. Then the ten SO(5) generators are defined as

Γab = − i
2 [Γa,Γb]. The corresponding COPs are defined

as TrO (with wave vector π/a0), TrΓaO and TrΓabO.
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Notice that besides the scalar COP which carries wave
vector π/a0, all others contain components with differ-
ent wave vectors. The vector components with a =
1, 5 contain CDW order parameters with wave vectors
±[π/a0 + 2(kF,1 + kF,−1)] (mod[2π/a0]) corresponding
to the total electron density (which includes the density
of localized electrons). The same vector multiplet con-
tains the a = 2 component corresponding to the SC COP
with π/a0 wave vector and a = 3, 4 components corre-
sponding to CDWs with incommensurate wave vectors
±[kF,1 − kF,−1 + π/a0].

The above COPs (31) are not the only ones. One can
make COPs by fusing products of fermionic bilinears with
the higher spin primary fields of the SUn(2) WZNW. For
general n these are the fields with spin J ≤ n/2. For
n = 2 there are two such primary fields with J = 1/2, 1
and hence there is only one extra operator:

Φab = iκaRκ
b
L (34)

As I have pointed out, the trace of this operator describes
a smooth part of (SlSl+1) lattice field. One can fuse (34)
with either of the two operators

(R+
1 σL1)(R+

−1σL−1) ∼ ei
√

4πΦc

(
ξaRξ

a
L − 3η5

Rη
5
L

)
,

(R+
1 L1)(R+

−1R−1) ∼ ei
√

4πΦc

(
ξaRξ

a
L + η5

Rη
5
L

)
(35)

to get

OCDW [2(kF,1 + kF,2)] = (36)

(SlSl+1)(ψ+
1 σψ1)(ψ+

−1σψ−1)e−2i(kF,1+kF,2)x ∼ ei
√

4πΦc ,

or with the product of two SC order parameter operators

(R1σ
yL1)(R−1σ

yL−1) ∼ ei
√

4πΘc

(
ξaRξ

a
L + η5

Rη
5
L

)
, (37)

to get a charge-4 “bipairing” operator

OSC = (ψ1σ
yψ1)(ψ−1σ

yψ−1)(SlSl+1) ∼ ei
√

4πΘc , (38)

which existence of in four-leg ladders was discussed in
[24],[25]. This operator carries zero momentum. To get
other products one fuse, for instance

(R+
1 σL−1)(L+

−1σR−1), (R+
1 L1)(L+

−1R−1) ∼

ei
√

4πΦf

(
ξaRξ

a
L + η5

Rη
5
L

)
. (39)

This operator carries zero charge and momentum 2(kF,1−
kF,−1).

All operators (36,38,39) have scaling dimension 1.
They are components of the SO(5) symmetric tensor rep-
resentation; in the Majorana language they are biprod-
ucts of right and left Majorana fermions ηaRη

b
L.

For higher n one can fuse 2J fermionic bilinears with
J ≤ n/2-spin primary field of the spin chain to get oper-
ators with scaling dimension

dJ = 2
[
J − J(J + 1)

n+ 2

]
, (40)

some of which will carry charge Q = 4J . However, for
J > 1 these operators have nonsingular susceptibilities.

B. COPs in model (2)

Below I will discuss only the case N > 2, since the case
N = 2 is discussed at length in [5].

The primary fields of the SU1(N) WZNW model are
tensors in the antisymmetric representations described
by a single column Young tableau with q ≤ N boxes.
They can be considered as products of fermion bilinears
with the charge sector being factored out:

Φ(q) = ρ+
a1 ...ρ

+
aqλbq ...λb1eq

√
4π/Nψ, (41)

where ρ, λ are right and left moving Dirac fermions with
velocity vH and ψ is a real Gaussian bosonic field. Its
correlation functions cancel the correlators of the charge
field of the fermions. The scaling dimensions of (41) are

dq =
q(N − q)

N
, (42)

and they carry wave vectors Qq = ±2πq/Na0.
The COPs are SU(N) singlets and carry wave vectors

Q = (2kF + 2π/Na0)q:

Oq = (R+
a1Lb1)...(R+

aqLbq )Φ
(q)
a1,...aq ;b1...bq

=

[(R+
a1λa1)(ρ+

b1
Lb1)]qeq

√
4πψ = Aeiq

√
4π/NΦc . (43)

The wave vector (2kF + 2π/Na0) includes the density
of localized and delocalized electrons in agreement with
Oshikawa theorem [26]. Ones the spin gaps are formed
the amplitude A is finite. The scaling dimensions are

dq = q2/N, (44)

Notice that for N > 2 the COPs are of the charge density
wave type and does not include superconducting ones.

IV. ROBUSTNESS AGAINST
PERTURBATIONS

The spin liquid states described above represent only
a part of the Hilbert space of the original models (1,2).
The rest of it belongs to gapless excitations. Hence the
current models describe conducting states. Nevertheless
since the spin sector is decoupled from the gapless modes
(the charge and orbital ones for (1) and the charge one
for (2)) it is instructive to find out how robust are its
fractionalized excitations against various perturbations.
Below I will consider several perturbations concentrat-
ing mostly on model (1) and show that the fractional-
ized gapped excitations are robust against perturbations
which do not violate the SU(2) (for model (1)) and the
SU(N) (for model (2)) symmetry of the spin chain and
do not break the translational invariance.

Such perturbations fall into several categories which
will be considered below. First, there are electron-
electron interactions of the band electrons. Away from
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half filling they generate only current-current interac-
tions. In Subsection A it will be demonstrated that such
interactions together with current-current interactions in
the spin sector will need to exceed some critical value to
radically modify the spin liquid state. Second, there are
perturbations in the spin chain which would destroy the
SUn(2) critical point of an isolated chain. They will be
analysed in Subsection B. If not too strong such pertur-
bations are ineffective since ones the spin liquid is formed
its stability is protected by the spectral gap. Third, there
are perturbations corresponding to channel anisotropy
J11 6= J22 which will be discussed in Subsection C. At
last, there is external magnetic field, but the spin liq-
uid is protected against it by the spin gap. These four
categories exhaust the list of the symmetry preserving
perturbations.

A. Electron-electron interactions of the band
electrons

It is instructive to find out whether the gapped state
described in the previous Section can be adiabatically
connected to a topologically trivial state of decoupled
band electrons and a gapped TBC. To show this I intro-
duce a deformation of the original model adding to it the
additional interaction

V = γ(FRFL + jRjL), (45)

and consider a trajectory in the JK−γ plane from (JK , 0)
to (0, γ). Since the charge-orbital sector remains decou-
pled the trajectory lies entirely inside of the spin sector
which remains gapped except, as we will see, at one crit-
ical point separating the two phases. One of those is the
phase of interest and the other one is phase where TBC
and 1DEGs are disconnected. The spin excitations are
gapped; at JK = 0 and γ > 0 both the band electrons
and the TBC are perturbed by the marginally relevant
products of the currents. These are integrable pertur-
bations of the same kind as in (14,15); they generate
spectral gaps. For the spin chain there is also OP local
in the spin operators:

O = 〈(SjSj+1)〉 ∼ 〈TrhTrh+〉, (46)

which describes a spontaneously generated deviation
from the integrable point. On the other hand, the phase
γ = 0 has no local OPs, there is only a quasi long range
order (see Section III). As we will see, the two phases are
separated by a quantum critical point.

For simplicity I set vF = vH . Let us introduce new
operators

J = F + j, K = F− j. (47)

The operators JR,L are SU2n(2) Kac-Moody currents.
Then the total interaction becomes

Vex + V =
1

2
(JK + γ)JRJL +

1

2
(γ − JK)KRKL (48)

The part of the Hamiltonian describing the critical point
can be represented as the sum of the SU2n(2) WZNW and
the SUn(2)×SUn(2)/SU2n(2) coset theory. At γ = JK
the product of the K-operators vanishes and the lat-
ter theory decouples and becomes critical; so the entire
theory has a critical point. At this point only SU2n(2)
part of the spin Hilbert space is gapped, the remaining
SUn(2)×SUn(2)/SU2n(2) one is gapless. Hence the phase
with small γ is separated from the topologically trivial
phase with JK = 0 by a quantum critical point described
by the SUn(2)×SUn(2)/SU2n(2) coset theory.

In my opinion it is possible that the gapped spin state
described above is topologically nontrivial. Indeed, it
has nonlocal OP of the string type and is likely to have
zero modes located on a boundary with the topologically
trivial phase γ > JK . However, in order to determine a
place of this model in the general classification of topo-
logical phases [27], I have to consider the edge zero energy
modes. I leave this problem for future studies.

B. Deviations from the SUn(2) critical point

In this Subsection I demonstrate that the deviations of
the spin chain from the TBC integrable point do not con-
fine the non-Abelian massive excitations. For simplicity
I do it for the n = 2 KHC model. If the perturbation
is not too strong it just creates bound states of the non-
Abelian solitons, but these particles still remain in the
spectrum.

I start with the unperturbed model for n = 2. The
spin sector is described by a sum of two copies of the
O(3) Gross-Neveu model (24,25). The exact solution of
the O(3) GN model was first found in [28] as a par-
ticular limit of the supersymmetric sine-Gordon model
and was later analyzed in detail in [29],[30]. The reader
can find an excellent and pedagogical analysis of (1+1)-
dimensional supersymmetric theories in a recent paper
by Mussardo [31]. As I have stated above (see the
text around (16)), the excitations are massive and non-
Abelian. Their nature can be visualized with a help of
Hubbard-Stratonovich transformation (28). Then, as I
have mentioned above, the integration over the Majorana
fermions creates a double-well potential for field ∆. The
Majorana fermions have zero energy modes on the kinks
of ∆-field; the kinks with attached zero modes constitute
excitations of the O(3) GN model, so called Bohomol’nyi-
Prasad-Sommerfield (BPS) solitons [29]. A multi-kink
state is a highly entangled one and cannot be factorized
into a product of states even when the kinks are far from
each other. This becomes clear when one considers a
Hilbert space of Majorana zero modes. These modes γa
obey Clifford algebra

{γa, γb} = δab, (49)

and the Hilbert space of N kinks have 2[3N/2] states.
According to the exact solution [28],[29],[30] the exci-

tation spectrum does not contain vector particles. Hence
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the Majorana fermions themselves do not survive as co-
herent excitations; this fact is important for the survival
of the fractionalized particles.

For the following analysis it will be convenient to use
the relativistic parameterization of the soliton spectrum
(16):

Ep =
∆

2

(√
vF /vHepθ +

√
vH/vF e−pθ

)
,

P = ∆(vHvF )−1/2 sinh θ, (50)

where parameter θ is called rapidity. Different signs cor-
respond to different copies of the O(3) GN model: p = +
for (24) and p = − for (25).

In description of the excitations I will follow [32]. The
ground state of a single O(3) GN model is triple degen-
erate. The excitations are solitons interpolating between
differet vacua. A soliton with rapidity θ interpolating be-
tween the vacua a and b is created by operator Kσ

ab(p, θ)
with σ = ±1/2 for soliton and antisoliton (sz = ±1/2)
respectively. The vacuum indices a, b take values 0, 1/2
and 1 with |a − b| = 1/2. The latter restriction is re-
sponsible for the fact that a multisoliton state cannot be
disentangled into a product of single-particle states even
if solitons are far from each other. Multi-soliton state of
a given model with total spin projection Sz =

∑
j σj is

given by

|Kσ1
a0a1(p, θ1)Kσ2

a1a2(p, θ2)...KσN
aN−1aN (p, θN )|0aN 〉, (51)

where θ1 > θ2 > ... > θN for an in and θ1 < θ2 < ... < θN
for an out state. The 2-particle scattering process

Kσ1

ab (p, θ1) +Kσ2

bc (p, θ2)→ K
σ′2
ad (p, θ2) +K

σ′1
dc (p, θ1),(52)

is described by the scattering matrix

SSUSY

(
a d
b c
|θ1 − θ2

)
× Sσ

′
1,σ
′
2

σ1,σ2 (θ1 − θ2), (53)

where SSUSY is described in [32] and the other S-matrix
is the one of the SU(2) Thirring model:

S
σ′1,σ

′
2

σ1,σ2 (θ) = −S0(θ)

(
θδσ1,σ′1

δσ2,σ′2
+ iπδσ1,σ′2

δσ2,σ′1

)
θ + iπ

,

S0(θ) =
Γ(1/2− θ/2π)Γ(1 + iθ/2π)

Γ(1/2 + θ/2π)Γ(1− iθ/2π)
(54)

The relevant operators of the SU2(2) WZNW model
include spin S = 1/2, 1 primary fields and the product of
the left and right currents. As is obvious from (5), the
S = 1/2 operator breaks the translational invariance. If
we do not allow this, the most relevant perturbation is
the S = 1 primary field which is local in the Majorana
fermions:

Vpert = imκaRκ
a
L (55)

For JK = 0 this perturbation would lead to a confinement
of the fractionalized excitations of the TBC [33],[34].

However, as I am going to show, for finite JK > 0 this is
no longer the case provided |m| << ∆.

For the following we will need to obtain some informa-
tion about matrix elements of the perturbing operator
(55). Leaving a complete calculation for the future, I
will just establish the properties necessary to resolve the
problem of confinement. This can be done on the basis
of Lorentz invariance and crossing symmetry.

From the exact solution we know that the Majoranas
are not coherent particles. Hence operator κR (κL) has
matrix elements between a vacuum and states of even
number of solitons of model (25)(respectively of (24)).
The minimal matrix elements corresponding to annihila-
tion of two solitons are

〈0a|κlR(τ, x)|Kσ1

ab (−, θ1)Kσ2

ba (−, θ2)|0a〉 =

exp
{
− τ [ELr(θ1) + ELr(θ2)]− ix[P (θ1) + P (θ2)]

}
×

∆1/2e(θ1+θ2)/4ga(θ1 − θ2)Clσ1σ2
, (56)

〈0a|κlL(τ, x)|Kσ1

ab (+, θ1)Kσ2

ba (+, θ2)|0a〉 =

exp
{
− τ [ERl(θ1) + ERl(θ2)]− ix[P (θ1) + P (θ2)]

}
×

∆1/2e−(θ1+θ2)/4ga(θ1 − θ2)Clσ1σ2
(57)

where C is the Klebsh-Gordon factor and ga(θ) is a di-
mensionless function to be determined. This form is dic-
tated by the fact that (i) κl has spin 1 under the SU(2)
group and the solitons have spin 1/2, (ii) κR,L are com-
ponents of a spinor, that is they have Lorentz spin ±1/2.
The latter fact explains the presence of the exponential
factors: under a Lorentz boost θi → θi + α the matrix
elements must acquire a factor e±α/2.

We can extract more specific information about the
matrix elements from the crossing symmetry. It allows
one to extract another matrix element:

〈0a|K−σ1

ab (p; θ2)|κlR(0, 0)|Kσ2

ab (p; θ1)|0a〉 =

∆1/2iep(θ1+θ2)/4ga(iπ − θ1 + θ2)Clσ1σ2
, (58)

As we shall see, the issue of the soliton confinement is de-
cided by the behavior of this matrix element at θ1 → θ2.
The solitons are confined if the function g(θ) has a pole
at θ = iπ. In that case the effective potential between
the kinks grows with distance (see below). However, ac-
cording to the general theorem (see, for instance, [31]) at
the pole we have

ga(iπ − θ) ∼
〈0a|κlR,L|0a〉

θ
. (59)

and the residue is zero since κR,L are fermion operators
and cannot have a nonzero vacuum average. This con-
clusion is also supported by the semiclassical calculation
for the supersymmetric sine-Gordon model done in [31]
(see Eqs.(43,44)) which gives an explicit expression for
ga(θ).

Now we can use all this accumulated information to
write down the Schrödinger equation for two solitons be-
longing to the sectors with different parity. Their wave
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function is

Bσ1,σ2

∫
dθ1dθ2Ψab;cd(θ1, θ2)Kσ1

ab (+; θ1)Kσ2

cd (−; θ2)|0b, 0d〉

Acting on this state by (55) we create a two-soliton state

plus multi-soliton states. Since the latter ones lay higher
in energy we can neglect them when m << ∆.

In the reference frame with the total zero momentum
we have

(
− E + 2M cosh θ

)
Ψ(θ,−θ) + (m∆/M)P̂S=1

∫
du

coshu
e(θ+u)/2|g(iπ + θ − u)|2Ψ(u,−u) = 0, (60)

where M = ∆(vH + vF )/
√
vHvF and P̂S=1 is a projector

to spin S = 1 space which sets the spins of the solitons
into a triplet configuration.

For m << M one can expand the kernels in small
rapidities and obtain the Schrödinger equation:

[
− E + 2M − 1

4M

∂2

∂x2
+ V (x)P̂S=1

]
Ψ̃(x) = 0,

V (x) = (m∆/M)

∫ ∞
−∞

du

2π
e2iMux|g(u+ iπ)|2,

Ψ̃(x) =

∫ ∞
−∞

du

2π
e2iMuxΨ(u,−u). (61)

The potential V (x) decays at large distances unless func-
tion g(θ) has a pole at iπ. As we have already established,
there is no pole. For m < 0 the potential is attractive and
there is at least one bound state below the two-particle
continuum. Bound states do not kill the fractionalized
excitations, they remain in the spectrum. The topologi-
cally nontrivial state survives.

C. Asymmetry of the Kondo exchange

The asymmetry of the Kondo couplings is a marginally
irrelevant perturbation which dies out under renormal-
ization. This is the case for both types of models. The
renormalization group dynamics of the KHC model (1) is
identical to the one of the Kondo impurity. For the impu-
rity problem it has been well known from the late 70-ties
(see [35]) that the stable exchange configuration is the
one when the impurity spin is completely screened. This
means that when the impurity spin S interacts with sev-
eral screening channels with different exchange integrals,
the renormalization selects 2S channels with strongest
couplings which become identical under the RG flow and
suppresses all weaker ones. Likewise, the SU(N) symme-
try is restored in strong coupling limit for model (2), as
was shown in [21].

V. THE KONDO-HEISENBERG ARRAYS

In this Section I will discuss a generalization of the
”wire construction” of Kondo-Heisenberg arrays devel-
oped in my previous publication [5]. Namely, I briefly
consider an array of parallel KHC models connected by
interchain electron tunneling and exchange interactions.

As it was discussed in [5], the effect of these inter-
actions is twofold. First, they couple the COPs which
eventually leads to a real long range order. Second, the
interchain tunneling and exchange create coherent exci-
tations. In particular, the tunneling create bound states
of holons and spinons (quasiparticles) whose dispersion
is located inside of the spinon gap. When the tunnel-
ing matrix elements are sufficiently large (of order of the
spinon gap) the quasiparticle dispersion crosses the chem-
ical potential and a Fermi surface appears in the form of
electron and hole pockets [5] and formation of Fermi liq-
uid. Likewise, the interchain exchange interaction leads
to creation of bound states from fractionalized spin exci-
tations which can propagate in the bulk. The fractional-
ized particles themselves remain confined to the chains,
at least in the model I consider. I will not discuss these
subjects further not to distract attention from the main
subject of this paper which is composite order. Instead
I will consruct several possible Ginzburg-Landau (GL)
functionals for the COPs.

Model (2) provides the simplest example due to the
simplicity of the order parameters (43). Here they are
just bosonic exponents with U(1) symmetry. Hence the
GL Hamiltonian for the array of (2) cables is

H =
∑
r

∫
dx
{vF

2
[(∂xΘr)

2 + (∂xΦr)
2] +∑

q

∑
r′

J
(q)
r,r′ cos[q

√
4π/N(Φr − Φ′r)]

}
, (62)

where indices r, r′ mark positions of different chains. As
was noticed in [5], the interchain couplings J are gener-
ated not just by the electron hopping, but also by the
interchain spin exchange. This feature may lead to some
interesting consequences as far as the ordering is con-
cerned. For example, due to the composite nature of the
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OP it will not be so easy to pin the phase by disorder. In-
deed, the pinning operator must simultaneosly act on the
spins located on the central chains and on the electrons
located on their own chains.

For model (2) the situation is reacher due to the pres-
ence of the orbital degrees of freedom related to spa-
tial position of the 1DEGs around the central spin chain.
Hence the coupling of the cables will in general break all
symmetries except of the U(1) charge.

It would be too tedious to discuss here all possible
Ginzburg-Landau theories. I will just discuss one which
is sufficiently exotic and interesting, namely, the theory
of charge-4 “biparing” superconductivity related to con-
densation of COP (38). This is the only relevant COP
which has zero momentum. To suppress coupling be-
tween all other COPs one should arrange the cables in
such a way that their mutual positions prevent a cou-
pling of COPs with finite wave vectors. An example of
such arrangement is a pyroclore lattice where all chains
intersect each other at finite angles. The resulting GL
Hamiltonian is

H =
∑
r

∫
dx
{vF

2
[(∂xΘr)

2 + (∂xΦr)
2] +∑

r′

Jr,r′ cos[
√

4π(Θr −Θr′)]
}
, (63)

where Θr is 4e charged phase field on chain r.

A. Influence of perturbations on the ordering

The presence of various perturbations can generate ad-
ditional couplings between COPs from different cables.
For instance, since the fusion of operator (55) with four
conduction electron operators gives rise to COPs (36,38),
the deviation from the quantum critical point of the spin
model helps to establish an interchain coupling of the
quartic operators. In the presence of such perturbation
these COPs couple by the interchain hopping alone. On
the other hand the perturbations which break the trans-
lational invariance of the spin chain generate operators
Tr(h+h+) or iTr[σ(h−h+)] and hence through (31) gen-
erate a coupling between the conventional CDW and su-
perconducting order parameters. Here it is again enough
to have the interchain hopping to generate the coupling.

VI. CONCLUSIONS AND
ACKNOWLEDGMENTS

In this paper I have shown that the models which com-
bine conduction and localized electrons provide a plat-

form for very intricate types of order where the con-
duction electrons bind to slow collective modes of the
spin subsystem. As a result the localized spins and the
conduction electrons together create spin liquids with
gapped fractionalized excitations. The local order pa-
rameters (COPs) include bound states of more than two
electrons and are not amenable to analysis based on per-
turbative methods. The discussion has rotated around
quasi-one-dimensional models (the ones I dubbed Kondo-
Heisenberg Cable arrays) where these fractionalized exci-
tations remain one-dimensional even when different KH
cables are coupled in D > 1 array.

Composite orders naturally give rise to rich order pa-
rameter manifolds which include various types of den-
sity waves, including those of pairs and quartets of elec-
trons. The formation of the spin liquid is accompanied
by a simultaneous formation of the order parameter am-
plitudes, but the phase coherence is established only by
three-dimensional interactions in the cable array. As a
consequence the magnitudes of the transition tempera-
tures are not related to the spin gaps.

If the electron hopping matrix elements between differ-
ent cables exceed the spin gap, pockets of quasiparticle
Fermi surface appear. As it has been pointed out in [5],
KHC model reproduces many features found in the pseu-
dogap phase of the cuprates.

It remains to be seen whether the present ideas can
be generalized for isotropic models in D > 1. As we
know from the literature on spin liquids, to propagate
in D > 1 dimensions fractional particles need to have
companions in the form of visons. For instance, in the
exactly solvable Kitaev model [36] of spin liquid the role
of visons for propagating Majorana fermions is played by
static Z2 gauge field fluxes. They facilitate a propagation
of the Majorana fermions in all lattice directions. As far
as I can see there are no visons in the present construction
and the fractional particles remain one dimensional.

I am grateful to E. Fradkin for asking the right ques-
tion, for C. Chamon, L. Fidkowski, G. Kotliar, P. Le-
cheminant, G. Mussardo and T. M. Rice for interesting
discussions. The work was supported by Center for Com-
putational Design of Functional Strongly Correlated Ma-
terials and Theoretical Spectroscopy under DOE grant
DE-FOA-0001276.
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Appendix A: Exact solution of the WZNW model perturbed by the current-current interaction

The exact solution of the WZNW model perturbed by the current-current interaction can be derived from the
relativistic limit of the fermion model

H =

∫
dx
(
− 1

2m
ψ+
jα∂

2
xψjα − µψ+

jαψjα − Uψ
+
jαψ

+
jβψiβψiα

)
, (A1)

where j, i = 1, ...n;α, β = 1, 2 and U > 0. This model is exactly solvable by the Bethe ansatz [15]. The relativistic
limit is obtained by the spectrum linearization (3,4). The interaction then becomes

−Uψ+
jαψ

+
jβψiβψiα → UFRFL − UJaRJaL, (A2)

where F aR, F
a
L are SUn(2) and JaR, J

a
L (a = 1, ...n2 − 1) are SU2(n) currents. The latter interaction is marginally

irrelevant and can be discarded. As a result the only gapped sector is the one described by the SUn(2) WZNW
perturbed by the current-current interaction.

The solution can be also extracted from the following Bethe ansatz equations:

[en(ua − vF /JK)]L[en(ua + vH/JK)]L =

M∏
b=1

e2(ua − ub), Sz = nL/2−M,

E =
1

2i

∑
a

[
vF ln en(ua − vF /JK)− vH ln en(ua + vH/JK)

]
(A3)

where

ej(x) =
x− ij/2

x+ ij/2
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The Thermodynamic Bethe ansatz equations in the continuum limit are [15]:

εj(θ) = Ts ∗ ln[1 + eεj−1(θ)/T ][1 + eεj+1(θ)/T ]− δj,nE(θ), j = 1, 2, ... (A4)

F/L = E0 − T
∫

dP (θ)

2π
ln[1 + eεn(θ)/T ], (A5)

s ∗ f(x) =

∫
dy

π cosh(x− y)
f(y) (A6)

where E(θ), P (θ) are given by Eq.(50). Expanding at T << ∆ one obtains

F/L = −TQ
∫

dP

2π
e−E(θ)/T , Q = 2 cos

( π

n+ 2

)
, (A7)

with Q being the so-called quantum dimension. This number indicates that the state of N >> 1 particles with energy
E is degenerate and the degeneracy is approximately QN . The fact that Q is not an integer is an indication of the
non-Abelian nature of the excitations.

Appendix B: Useful facts about n = 2 KHC model.

In classification of fermionic fields of the n = 2 1DEG I follow the scheme described in [22]. Namely, one introduce
four bosonic holomorphic fields

ϕc, ϕf , ϕs, ϕsf , (B1)

with their antiholomorphic counterparts ϕ̄a (a = c, f, s, sf) to bosonize the fermions:

Rp,σ =
λpσ√
2πa0

exp[i
√
π(ϕc + pϕf + σϕs + pσϕsf )],

Lp,σ =
λpσ√
2πa0

exp[−i
√
π(ϕ̄c + pϕ̄f + σϕ̄s + pσϕ̄sf )], (B2)

where λpσ are anticommuting Klein factors. Then right-moving the Majorana fermions are

η1 =
ξc√
2πa0

cos(
√

4πϕc), η2 =
ξc√
2πa0

sin(
√

4πϕc),

η3 =
ξf√
2πa0

cos(
√

4πϕf ), η4 =
ξf√
2πa0

sin(
√

4πϕf ),

η5 =
ξsf√
2πa0

cos(
√

4πϕsf ), (B3)

where ξa are anticommuting Klein factors and

χ1 =
ξs√
2πa0

cos(
√

4πϕs), χ2 =
ξs√
2πa0

sin(
√

4πϕs), χ3 =
ξsf√
2πa0

sin(
√

4πϕsf ) (B4)

It is assumed that the bosonic fields are governed by the Gaussian action.
The Ising order and disorder parameters are related to Φ = ϕ+ ϕ̄, Θ = ϕ− ϕ̄ fields. If one takes two copies of the

critical Ising model we have [37]

σ1σ2 =
1

(πa0)1/4
sin(
√
πΦ), µ1µ2 =

1

(πa0)1/4
cos(
√
πΦ),

σ1µ2 =
1

(πa0)1/4
sin(
√
πΘ), µ1σ2 =

1

(πa0)1/4
cos(
√
πΘ). (B5)

The most convenient and economic way to establish a correspondence between different representations of the

2-leg problem is to use the SUs
2(2)×SUf

2 (2) basis and employ the non-Abelian bosonization. One SU(2) group
represents rotations generated by currents of total spin and the other by chain currents. Transition from chain to
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band representation can be viewed as a rotation basis in SUf (2) space. To make sure this approach is sound I will
make a cross-check with the Abelian bosonization.

There is one subtlety discussed in [14]. Namely, the group we are dealing with is not really SU(2), but its complex-
ification SU(2,C).

Below there are examples of OPs which are spin singlets. Being fused with the spin matrix h they will leave

e±i
√
πΦG, e±i

√
πΘG (B6)

as the fluctuating COPs. All this can be expressed as products of 5 Ising fields which constitutes the 16-dimensional
spinor representation of the SO(5) group. An important qualitative difference with the single chain case is that the
COPs include pairs with momentum 6= π.

Using the standard bosonization rules I derived the following formulae.
The s-wave CDW order parameter. In the chain representation we have

R+
1σL1σ +R+

2σL2σ = 2iei
√
πΦc

[
ei
√
πΦf cos

√
π(Φs + Φsf ) + e−i

√
πΦf cos

√
π(Φs − Φsf )

]
4iei
√
πΦc

(
cos
√
πΦf cos

√
πΦs cos

√
πΦsf + i sin

√
πΦf sin

√
πΦs sin

√
πΦsf

)
=

−4ei
√
πΦc

(
M1M2M3µ1µ2µ3 + iΣ1Σ2Σ3σ1σ2σ3

)
=

−1

4
e−i
√
πΦc

[
Tr(G+G+)Tr(g + g+)− iTr(G−G+)Tr(g − g+)

]
. (B7)

Here M,µ are disorder and Σ, σ order parameter fields of the Ising models describing the flavor and spin sectors, G
and g are matrices from the flavor and spin sector respectively. In the band representation the expression in terms of
fermions looks the same with chain indices 1, 2 being replaced by band indices a, b. Naturally the expression in terms
of matrices looks the same, as it should be.

Now let us consider a more general CDW OP:

OaCDW = R+
jστ

a
jkLkσ. (B8)

The simplest member of this family is

O3 = 2iei
√
πΦc

[
ei
√
πΦf cos

√
π(Φs + Φsf )− e−i

√
πΦf cos

√
π(Φs − Φsf )

]
=

4ei
√
πΦc

(
− sin

√
πΦf cos

√
πΦs cos

√
πΦsf − i cos

√
πΦf sin

√
πΦs sin

√
πΦsf

)
=

−4ei
√
πΦc

(
Σ1Σ2M3µ1µ2µ3 + iM1M2Σ3σ1σ2σ3

)
=

1

4
ei
√
πΦc

{
Tr(g − g+)Tr[τ3(G−G+)] + iTr(g + g+)Tr[τ3(G+G+)]

}
. (B9)

The superconducting SCd (λ2↑λ1↓ = λ1↑λ2↓ = i):

∆d = R1↑L2↓ +R2↑L1↓ − (↑→↓) =

λ1↑λ2↓

[
ei
√

4π(ϕ1↑−ϕ̄2↓) + ei
√

4π(ϕ2↑−ϕ̄1↓)
]

+ λ2↑λ1↓

[
ei
√

4π(ϕ1↓−ϕ̄2↑) + ei
√

4π(ϕ2↓−ϕ̄1↑)
]

=

2ei
√
πΘc

[
ei
√
πΦf cos

√
π(Φs + Θsf ) + e−i

√
πΦf cos

√
π(Φs −Θsf )

]
=

4ei
√
πΘc

(
M1M2Σ3µ1µ2µ3 + iΣ1Σ2M3σ1σ2σ3

)
=

1

4
ei
√
πΘc

{
Tr(g + g+)Tr[τ3(G−G+)] + iTr(g − g+)Tr[τ3(G+G+)]

}
. (B10)

Appendix C: The detailed description of the composite OPs

In this Appendix I discuss the formation of the simplest COP (31) for the case n = 2. As the first step of the proof I
recast the products of the OPs of the 1DEGs and the TBC in terms of the operators of the GN models (24,25). More
precisely, we have to express the order and disorder parameters of the band fermions and the TBC antiferromagnet
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(they carry labels F and H respectively) in terms of the corresponding operators of models (24,25) labeled R and L.
I will use the Abelian bosonization formulae (B5). Consider, for instance the product

(σ1σ2)F (σ1σ2)H ∼ 2 sin(
√
πΦF ) sin(

√
πΦH) = cos[

√
π(ϕF + ϕ̄F − ϕH − ϕ̄H)]− cos[

√
π(ϕF + ϕ̄F + ϕH + ϕ̄H)] =

cos[
√
π(ΘL −ΘR)]− cos[

√
π(ΦL + ΦR)] = (µ1σ2)L(µ1σ2)R − (σ1µ2)L(σ1µ2)R − (µ1µ2)L(µ1µ2)R −

(σ1σ2)L(σ1σ2)R. (C1)

Hence it is plausible that the product of F and H OPs contains products

(µ1µ2µ3)L(µ1µ2µ3)R, (σ1σ2σ3)L(σ1σ2σ3)R (C2)

Such products have nonzero expectation values at least in some of the degenerate vacua of (14,15). These expectation
values may have a different sign in different vacua, but this does not affect the correlation functions of the COPs,
since the two-point functions contains only squares of the amplitudes:

〈0j |(σ1σ2σ3)L(1)(σ1σ2σ3)L(2)|0j〉 = [〈0j |(σ1σ2σ3)L(0)|0j〉]2. (C3)


