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We present a new method for describing the electronic structure of graphene, by treating the
honeycomb lattice as an arrangement of criss-crossing one-dimensional quantum wires. The electrons
travel as free particles along the wires and interfere at the three-way junctions formed by the carbon
atoms. The approach produces the linearly dispersive Dirac band structure as well as the chiral
pseudo-spin wave functions. When vacancies are incorporated, the model reproduces the well known
zero mode states.

PACS numbers: 73.22.Pr

Graphene, a two-dimensional honeycomb lattice of car-
bon atoms, has been the subject of enormous interest in
condensed matter physics in recent years on account of its
interesting electronic properties, such as the linearly dis-
persive Dirac bands and their associated chiral wave func-
tions, which in turn lead to a variety of intriguing phe-
nomena such as the Klein paradox, the half-integer quan-
tum Hall effect, Berry phase effects, and many others.1–3

The band structure of graphene is typically described
by the tight-binding model4, by density-functional band
calculations5, or by solving the Schrödinger equation for
the hexagonally periodic potential6, all of which produce
the linear energy dispersion centered around the Brillouin
zone corners K and K ′. Here, we describe a new way
of obtaining the graphene band structure, where elec-
trons propagate as one-dimensional (1D) waves along the
bonds of the honeycomb lattice. The characteristic linear
dispersion of the electron states as well as the chirality
of the pseudo-spin wave functions are produced by inter-
ference of the wave functions at the three-way junctions
formed by the carbon atoms.
In our treatment, graphene is considered as a hexago-

nal lattice of 1D wires, so that the Schrödinger equation
in each wire has simply the plane wave solution

ψi = aie
ik̄xi + bie

−ik̄xi , (1)

where the electron energy is E = (2m)−1
~
2k̄2, xi is the

position defined along the i-th wire (0 ≤ xi ≤ a, a being
the C-C bond length), and m is the effective mass of the
electron in the graphene lattice. The wave function on
the entire lattice can be generated from wave functions on
three wires, which constitute the unit cell of the crystal,
using the Bloch symmetry

ψi = ei
~k·~Tψj , (2)

where wires i, j are connected by the lattice translation

vector ~T and ~k is the Bloch momentum, so that for
a given Bloch momentum, we have just six unknowns
(ai, bi, i = 1, 2, 3) that describe the full solution on the
entire lattice. The wave functions must satisfy the stan-
dard boundary conditions at the junctions. The conti-
nuity of the wave function and the conservation of the

particle current lead to the conditions

ψ1 = ψ2 = ... = ψn, (3)

n
∑

i=1

dψi/dxi = 0, (4)

where i labels the n branches forming the junction
(n = 3 for graphene), all coordinates in the deriva-
tive ψ′

i = dψi/dxi point either away or towards the
junction by convention, and ψi and ψ′

i are evaluated
at the junction points. These boundary conditions
were originally developed7 for the study of conjugated
molecules and have been used to study transmission
through quantum nanostructures8,9 as well as through
photonic molecules.10 Here we extend the method for the
first time to study electronic band structure in crystalline
solids, using graphene as the example.
For transmission through a three-way junction (Fig.

1), these boundary conditions readily lead to the scatter-
ing matrix

S =





−1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3



 , (5)
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FIG. 1. (Color online) Transmission through a single three-
way junction (top left). There are two such junctions, A
and B, in the unit cell corresponding to the two sublattices
(right), while the (bottom left) shows the Brillouin zone of the
graphene lattice.
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FIG. 2. (Color online) Energy dispersion for graphene ob-
tained from Eq. (12) (black line) compared with the re-
sults from the third nearest-neighbor tight-binding model5

(red dashed line).

which relates the amplitudes of the incoming to the out-

going waves, viz., ~a = S~b, where ~a = (a1, a2, a3) and
~b = (b1, b2, b3). Turning now to the hexagonal graphene
lattice, we get three equations for each of the two junc-
tions (corresponding to the two sublattices) in the unit
cell from the boundary conditions, viz., two equations
from Eq. (3) and one from Eq. (4). These six linear
equations may be written in the matrix form

M ~X = 0, (6)

M(k̄, ~k) =

(

I −S
I −λB−1SB

)

, (7)

where ~X = (a1, a2, a3, b1, b2, b3), I is the 3×3 unit matrix,

λ = e−2ik̄a, and B is the Bloch factor matrix

B =





e−i~k·~T2 0 0

0 e−i~k·~T1 0
0 0 1



 , (8)

~T1, ~T2 being the two primitive translation vectors con-
necting the second-neighbor atoms as indicated in Fig.
1. For a non-trivial solution for the wave function, the
determinant of M must vanish, viz.,

detM(k̄, ~k) = 0. (9)

The determinant can be readily evaluated to yield the
result, which is of the form detM = sin(k̄a) × D. It
can be shown that equating the first term to zero does
not produce any non-trivial solutions except at the Γ
point, where it coincides with one of the solutions ob-
tained from the second term. Thus, all distinct solutions
are contained in the second term, viz.,

D = 9 cos2(k̄a)− 3− f(~k) = 0, (10)

where f(~k) =
∑

j e
i~k·~Tj is the summation running over

the six lattice translation vectors ~Tj connecting the cen-
tral cell to the six nearest-neighbor cells in the graphene

lattice. Evaluating the sum, we get the result

f(~k) = 2 cos(
√
3kxa) + 4 cos(

√
3kxa/2) cos(3kya/2),

(11)
where a is the bond length. Inverting Eq. (10) for a given

Bloch momentum ~k, we get the result

k̄a = cos−1[3−1(3 + f(~k))1/2], (12)

which yields the band structure energy E(~k) =
~
2k̄2/(2m). We note here that in the low energy limit

(k̄a ≪ 1), Eq. (12) leads to the same result as the
nearest-neighbor tight-binding theory, viz.,

E − E0 = ±t
√

3 + f(~k), (13)

where E0 = ~
2m−1a−2 and t = ~

2(3ma2)−1.
Alternatively, the linear equations, Eq. (6), may be

cast as an eigenvalue problem. Expressing ~b in terms of
~a, one can rewrite the linear equations as

[SB−1SB]~b = λ~b, (14)

where the matrix product on the left hand side is a func-

tion of ~k only and λ = exp(−2ik̄a). Omitting the triv-
ial solution λ = 1 in the eigenvalue problem, one finds
the equation that yields the remaining two eigenvalues:

λ2 − λ(g(~k)− 1) + 1 = 0, with g(~k) = (3 + 4f(~k))/9, the
solution of which yields the same band structure energy
as Eq. (12).

For a given ~k, Eq. (12) yields multiple bands due to
the multi-valued solutions of the arc cosine function, cor-
responding to the low lying as well as the higher-energy
states. The low-energy band structure obtained from Eq.
(12) is plotted in Fig. 2, which clearly shows the well-
known linear dispersion of the graphene bands at the
Brillouin zone corner points K and K ′.
The linear dispersion can be obtained by a small mo-

mentum expansion of Eq. (12) around theK orK ′ point,
~k = ~K + ~q, where ~K = (4π(3

√
3a)−1, 0) and ~q is small.

The result is

k̄ = 2−1q ± (2a)−1π, (15)

with the corresponding energy

E =
π2

~
2

8ma2
± ~vF q, (16)

where the Fermi velocity is vF = (3/8)1/2 π~(2ma)−1,
and the ± sign corresponds to the upper (lower) band
forming the Dirac cone. A comparison with the density-
functional result,5 where vF = 8.2 × 105 m/s, yields
the effective electron mass of m/me = 0.78. Fig. (3)
shows the computed density of states, which shows the
well known van Hove singularities for graphene and the
linear density of states near the Dirac point.
Chiral Wave Functions – The wave functions corre-

sponding to a specific solution k̄(~k) in the Brillouin zone
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FIG. 3. Density of states for the graphene lattice, correspond-
ing to the solution, Eq. (12), with the energy of the Dirac
point defined as zero.

are obtained by using the standard Gaussian elimination
and back substitution method to solve the set of linear
equations M ~X = 0, Eq. (6). Focusing on the solutions
close to the Brillouin zone corner points K and K ′, we
reduce the matrix M to the upper triangular form, take
the arbitrary coefficient b3 to be of the form b3 = α+βq,
where α and β are constants and the lowest order terms
in the small-q expansion have been kept, and use the back
substitution to find the result

~XK(~q) =















a1
a2
a3
b1
b2
b3















=















g cos ζ+
g∗ cos ζ−
cos ζ

ig sin ζ−
ig∗ sin ζ+
i sin ζ















+O(q2), (17)

where g = exp(i2π/3), ζ = γ/2 + π/4, ζ± = ζ ± 2π/3,
and γ = tan−1(qy/qx) as defined in Fig. 1. Note that
the phase shifts appearing in the trigonometric part of
the coefficients are shifted for each wire in the unit cell
by 4π/3 relative to each other. The amplitudes of the
wave function for the two sublattices may be obtained
from the propagating solutions on one of the wires using
Eq. (1). For example, in terms of the the wave functions
on the first wire, we have

(

ψA

ψB

)

K

=

(

a1 + b1
a1e

ik̄a + b1e
−ik̄a

)

. (18)

Substituting the coefficients from the expression for
~XK(~q), Eq. (17), it is straightforward to show that
this can be cast in the pseudo-spin form: (ψA, ψB) =
(cos(θ/2), sin(θ/2)eiφ), with the spinor pointing along
along (θ, φ). After renormalization, we readily find

(

ψA

ψB

)

K

=
1√
2

(

eiγ/2

±e−iγ/2

)

(19)

where +(-) refers to the upper (lower) band. Proceeding

similarly for the K ′ point, we find

(

ψA

ψB

)

K′

=
1√
2

(

e−iγ/2

∓eiγ/2
)

(20)

These solutions correspond precisely to the chiral wave
functions in graphene. For states in the vicinity of K, we
have θ = π/2 and φ = −γ or φ = −γ + π, for the upper
and the lower band, respectively. Similarly for K ′, we
have φ = γ or φ = γ+π, so that the chirality is switched
between K and K ′.
These ideas can be extended to other situations such as

the finite graphene lattices, e. g., the graphene nanorib-
bons and carbon nanotubes. We consider below the
states produced by an isolated vacancy in graphene as
another illustration of the method. The vacancy in
graphene has been of considerable interest because of the
possibility of it being a magnetic center,11,13 in spite of
the fact that there is no magnetic atom present.
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FIG. 4. (Color online) Density of states for the graphene
lattice with a vacancy obtained from the supercell calculation
(black line) compared to the same without the vacancy (red
dashed line). The vacancy-induced zero mode states appear
as a δ-function peak at the Dirac point energy E = 0 as
discussed in the text.

Vacancy states – According to the so called “zero mode
theorem,” originally due to Lieb12 (and rediscovered in
the literature with alternative proofs13,14): In a bipartite
lattice with nearest-neighbor tight-binding interaction,
the number of zero mode states is at leastN = |NA−NB|,
where NA(NB) are the number of occupied A(B) sublat-
tice sites. In the context of the graphene lattice with a
vacancy, the theorem immediately leads to a single zero-
mode state at the Dirac point energy, which has been
discussed in detail in the literature.13,14 In a periodic su-
percell structure with a single vacancy in the supercell,
the zero mode theorem leads to a flat band at the Dirac
point energy and consequently to a δ-function peak at
zero energy in a density-of-states plot.13

We have studied the vacancy states using the present
method for a 3× 3 supercell containing a single vacancy
in the supercell. The resulting linear equations similar to
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Eq. (6) were solved numerically and the results are shown
in the density of states plot in Fig. (4), which clearly
shows the presence of the zero-mode states at the Dirac
point energy. In addition to the zero-mode states, the
two peaks due to the van Hove singularities in the orig-
inal graphene bands are seen in the supercell results as
well; the other peaks and valleys are specific to the finite
supercell used and would not be present in the infinite
graphene lattice with a single vacancy (See, for example,
Ref.13 ).
In summary, we presented a new way of describing the

electronic structure of graphene. The method is not lim-
ited to graphene, but can be extended to other periodic
crystalline structures as well. The simplest application is

for the electronic structure of a single band solid as was
illustrated for graphene, but the method may be devel-
oped to generalize to multi-band systems. The method
might have advantages over other methods in many situ-
ations such as transport through graphene nanoribbons,
where reflection and transmission coefficients may be
computed directly. Furthermore, our work suggests new
ways of constructing Dirac band materials through nano-
patterning techniques.
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