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Quantum squeezing and entanglement of spins can be used to improve the sensitivity in quantum metrology.
Here we propose a scheme to create collective coupling of an ensemble of spins to mechanical vibrational mode
actuated by an external magnetic field. We find an evolution time where the mechanical motion decouples
from the spins, and the accumulated geometric phase yields a squeezing of 5.9 dB for 20 spins. We also show
the creation of a Greenberger-Horne-Zeilinger spin state for 20 spins with a fidelity of ∼ 0.62 at cryogenic
temperature. The numerical simulations show that the geometric-phase based scheme is mostly immune to
thermal mechanical noise.

PACS numbers: 42.50.Lc, 42.50.Dv, 03.65.Ud, 85.85.+j

I. INTRODUCTION

Electronic spins associated with nitrogen-vacancy(NV)
centers in diamond posses ultralong coherent times in their
ground states at room temperature1,2, and can be initial-
ized, controlled and read out using magnetic and optical
fields. These features motivate intensive interest in NV-
based quantum information processing3 and sensing applica-
tions. For instance the NV center has been used for quantum
computing4,5, cavity quantum electrodynamics system6, hy-
brid quantum interface7, nanoscale magnetometry8–10, ultra-
high precise solid-magnetometry11–13, thermometer14–16, and
nanoscale imaging17,18 etc..

The application of the squeezed spin state (SSS) and the
Greenberger-Horne-Zeilinger (GHZ) spin state can boost the
precision of quantum metrology19. Spin squeezing has been
typically realized in atomic ensembles20–23, while the state-of-
the-art experiment has achieved 20 dB squeezing using half a
million ultracold Rb atoms in a natural atomic trap21. It is of
interest to squeeze solid-state spins as this can lead to poten-
tially novel sensor applications. The NV center has a solid-
state spin-1 triplet ground state. The squeezing of NV cen-
ters has been proposed with the help of strain-induced spin-
phonon Tavis-Cummings type interaction24, however small
amounts of thermal excitation can completely inhibit the
squeezing. The standard quantum limit in quantum metrology
can also be surpassed by using an entangled GHZ state. To
date, entangled Bell’s states and small GHZ states25–27 have
been generated in various systems, but a GHZ spin state with
more than 10 spins has yet to be demonstrated in the literature.

In this paper we describe an approach to engineer the col-
lective coupling of an ensemble of NV centers to a mechanical
resonator, mediated by an external magnetic field. Using our
protocol, at time tm = 2mπ/ωm, where ωm is the mechanical
oscillation frequency and m is an integer, the mechanical res-
onator decouples from the NV spin ensemble. We find that
the accumulated geometric phase on the NV centers can cre-
ates a SSS up to 20 spins whose squeezing is ∼ 5.9 dB at a
large m. We also find that our protocol can generate with high
fidelity the GHZ state up to 20 electronic spins. This paper
provides a precise numerical investigation of the influence of

thermal mechanical noise on the squeezing and the fidelity of
the achieved GHZ spin state. In contrast to Bennett’s work24,
our geometric-phase based scheme is robust against thermal
mechanical noise. We note that Zhang et al., very recently,
analytically studied the squeezing of 10 NV centers coupling
to mechanical motion28. However, our method is more ac-
curate and can provide a useful prediction for larger spin en-
sembles. Moreover, in contrast to previous work28 exploring
the trapped nanodiamond, our scheme for spin squeezing and
entanglement uses a diamond nanowire. We also discuss the
generation of GHZ states.

II. SYSTEM AND MODEL

The schematic setup for squeezing and entanglement of an
ensemble of NV spin centers in a nanodiamond is depicted
in Fig. 1(a). In the setup a nanodiamond oscillates along the
x−axis with a mechanical frequency ωm corresponding to an
oscillation period of Tm = 2π/ωm. The nanodiamond can be a
part of a micro/nano cantilever29, or attached to a nanotube30.
Alternatively, the nanodiamond can be optically trapped in
near vacuum31,32. Instead, we choose a single-crystal dia-
mond nanowire with a diameter d and length L for the me-
chanical resonator33–36. We assume the mass of the entire me-
chanical resonator to be m, yielding a zero-point fluctuation of
xzp =

√
~/2mωm and a mechanical quality factor of Qm cor-

responding to a delay rate of γm = ωm/Qm. The mechanical
motion can be quantized as x = xzp(b† + b), where b† and b
are the creator and annihilation operators of mechanical os-
cillation. At temperature T , the mechanical decoherence due
to the thermal excitation is n̄γm with n̄ =

[
e~ωm/kBT − 1

]−1
,

where kB is the Boltzman constant. Recent experiments29

have demonstrated various diamond micro/nanomechanical
resonators with frequencies ranging from 2 kHz to several
MHz and with quality factors Qm up to ∼ 107. The qual-
ity factor, Qm, of a diamond nanowire can also surpass 10633,
but the resonance frequency is higher. These high-Q nanome-
chanical resonators allow us to obtain the required geometric
phase with a reasonable magnetic gradient. To make a spin-
mechanical hybrid system we can embed NV centers in the
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FIG. 1. (Color online) Schematic diagrams for system squeezing
and entangling an ensemble of electron spins in a nanodiamond. (a)
An ensemble of NV centers in a nanodiamond oscillates along the
x-direction with a resonance frequency ωm. The principal axes of
nanodiamond is cut along the z-direction. A magnetic field Bz is
parallel to z axis, while the magnetic field Bx(x) is applied along
the x direction and has a giant gradient along the x direction. (b)
The level diagram of a NV centers in a nanodiamond. (c) The Bloch
sphere representation of squeezed N = 20 NV centers. (d) The Bloch
sphere representation of the GHZ state of N = 20 NV centers.

end of the diamond nanowire.
We use a magnetic field B = Bx(x)x̂ + Bzẑ to engineer the

quantum coupling between the ground states of the NV cen-
ters and the mechanical motion, where x̂(ẑ) is the unit vector
along the x(z) direction. Each NV center has a triplet ground
state with levels |ms = 0,±1〉, as shown in Fig. 1(b). The
Hamiltonian of the ground states of the jth NV center in the
magnetic field can be described by (~ = 1)

H j = D jS 2
z, j + γBS · B , (1)

where D j ≈ 2π × 2.87 GHz37,38, γB ≈ 2π × 28 GHz/T is the
gyromagnetic ratio of electron, and S the electron spin oper-
ator. The homogeneous magnetic field component Bz shifts
the state |ms = −1〉 = |1〉(|ms = +1〉 = |2〉) down (up) by
γBBz, while |ms = 0〉 = |0〉 is unshifted, as shown in Fig.1(b).
Here we neglect the hyperfine interaction of which the cou-
pling strengths are typically few MHz39,40. It is reasonable
because the nuclear spins can be polarized to a selective nu-
clear spin state and only allow one hyperfine transition41–43.
We consider the magnetic field B to possess a giant gradient
GB =

∂Bx(x)
∂x along the x direction. We engineer this field so

that Bx(x0) = 0 at the equilibrium position x0 = 0 of the me-
chanical resonator. We expand the Hamiltonian in Eq. (1) to
the first order of magnetic field gradient that

H j = D jS 2
z, j + γBBz(|2〉 j〈2| − |1〉 j〈1|)

+ (b† + b)
[
g( j)

1 |1〉 j〈0| + g( j)
2 |2〉 j〈0| + H.c.

]
,

(2)

where g( j)
1 (g( j)

2 ) is the magnetic coupling to the transition
|1〉(|2〉) ↔ |0〉 of the jth spin. In this arrangement the in-
teraction between the mechanical motion and the NV spin en-
semble mediated by the magnetic field gradient GB can be de-
scribed by the interaction Hamiltonian

H(x)
I =

∑
j

(b† + b)
[
g( j)

1 |1〉 j〈0| + g( j)
2 |2〉 j〈0| + H.c.

]
. (3)

For simplicity, we assume identical coupling that gx = g( j)
1 =

g( j)
2 = γBGBxzp. Taking Bz ∼ 0.1 T, the frequency ω j =

D j−γBBz indicating the energy gap between the ground states
|ms = −1〉(|1〉) and |ms = 0〉 is vanishing small but that be-
tween |ms = 1〉(|2〉) and |ms = 0〉 can be about 2π × 5.6 GHz.
Here we neglect the inhomogeneous broadening in D j because
it is about 1kHz, much smaller than the mechanical vibration
frequency1,2. For the purpose of squeezing and entanglement,
at Bz = 0.1 T, we can neglect the coupling to the transition be-
tween |2〉 and |0〉 due to the high energy gap. After dropping
the state |2〉, the Hamiltonian describing the dynamics of the
system reduces to

Hx =
∑

j

ω j|1〉 j〈1| + ωmb†b

+
∑

j

gx(b† + b)(|1〉 j〈0| + |0〉 j〈1|) .
(4)

We set ω j = ω0 and ∆ = ω0 − ωm. We define collective spin
operator Jz =

∑
j(|ms = −1〉 j〈ms = −1|−|ms = 0〉 j〈ms = 0|)/2,

J+ =
∑

j |ms = −1〉 j〈ms = 0| and J− =
∑

j |ms = 0〉 j〈ms = −1|
to obtain

Hx = ω0(Jz + I/2) + 2gx(b† + b)Jx + ωmb†b , (5)

with I =
∑

j(|ms = −1〉 j〈ms = −1| + |ms = 0〉 j〈ms = 0|),
and Jx = (J+ + J−)/2. We now neglect the term ω0I/2
as it only yields a geometric phase in the evolution. To
accommodate the extensively large Hilbert space spanned
by a large ensemble of NV centers we apply the Holstein-
Primakoff (HP) transformation44,45, yielding Jz = (a†a − N

2 ),
J+ = a†

√
N − a†a, and J− =

√
N − a†aa with N = NI. In

the HP picture the Hamiltonian Hx in Eq. (5) becomes

HHP = ω0a†a + λ(b† + b)J̄x + ωmb†b , (6)

with λ = 2
√

Ngx and J̄x = (a†
√
I − a†a/N+

√
I − a†a/Na)/2

is the Dicke-model collective spin operator. In the limit N →
∞ and 〈a†a〉/N � 1, the Hamiltonian HHP reduces to

HDicke = ω0a†a +
λ

2
(b† + b)(a† + a) + ωmb†b . (7)

If we set the magnetic field component Bz = 0.1 T so that
one works at the level crossing ω0 = 0, the Hamiltonian in the
interaction picture of ωmb†b becomes

Vx = λ(b†eiδt + be−iδt)J̄x , (8)

with δ = ωm. By applying the Magnus’ formula46, the dynam-
ics for the system can be described exactly, in the absence of
decoherence, by the unitary evolution operator

Ux(t) = eiNθ(t)J̄2
x eλ/δ[α(t)b†−α∗(t)b]J̄x , (9)
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with α(t) = 1 − eiδt and θ(t) =
(

2gx
δ

)2
(δt − sin δt). θ(t) is the

unconventional geometric phase which depends only on the
global geometric features of operators and is robust again ran-
dom operation errors47. α(t) is a periodic function modulating
the spin-mechanical coupling. At tm = 2mπ/δ for an integer
m, α(t) vanishes, θ(tm) = 2mπ

(
2gx
δ

)2
and the mechanical mo-

tion decouples from the NV centers. As a result, the evolution
operator for the spin ensemble can be explicitly expressed as

Ux(tm) = eiNθ(tm)J̄2
x . (10)

Starting from an initial state |ψ0〉 the generated state at tm is
|ψ(tm)〉 = Ux(tm)|ψ0〉. Note that the squeezing degree of the
SSS is only dependent on the available θ(tm), which can be
controlled with the coupling rate gx as normal and the number
of mechanical period m.

Below we will use this evolution operator to squeeze an
ensemble of electronic spins for a small θ(tm) = 2mπ

(
2gx
δ

)2
,

see Fig. 1(c). The scheme can also generate the GHZ state
of N ∼ 20 electron spins if θ(tm) = π/2 is obtainable, see
Fig. 1(d)48,49. In contrast to the previous scheme using a
Tavis-Cummings type strain-spin interaction in the disper-
sive regime24, whose coupling results from a small phononic
AC Stark shift, our scheme is superior since the coupling
strength is not suppressed by a large detuning. Importantly,
our geometric-phase based scheme is immune to many type of
noise such as dephasing noise and to first order of spin relax-
ation since it squeezes the spins via geometric phase control
which is known to be quite robust to noise47. Moreover, the
coupling strength λ can be tuned by engineering the gradient
of the magnetic field. Throughout the further investigation,
we will focus on the first cycle of mechanical vibration, i.e.
m = 1 in tm. Later on, we will discuss the operation at a larger
integer m requiring a longer evolution time. If the decoher-
ence of the NV centers and the mechanical resonator is small
enough, then a large number m > 1 is preferable because a
smaller magnetic field gradient and a larger size of the me-
chanical resonator are applicable.

The explicit evolution operator in Eq. (10) can provide an
apparent picture for understanding the unitary evolution of the
system. It shows that the initial thermal mechanical occupa-
tion is decoupled from spins at t1 = 2π/ωm. Here, we set
m = 1 for using the first cycle of mechanical vibration. How-
ever it is difficult to include the effect of the mechanical re-
laxation. The effect may be considerable in some cases due to
thermal excitation of the mechanical motion. To consider the
mechanical relaxation, we numerically study the evolution of
the combined system by solving the quantum Langevin equa-
tion in the Bosonic picture after the Holstein-Primakoff trans-
formation

∂ρ/∂t = − i[HHP, ρ] + L {(nth + 1)γm, b, ρ}

+ L {nthγm, b†, ρ} ,
(11)

where L {γ, A, ρ} = γ/2{2AρA† − A†Aρ − ρA†A} for γ ∈
{nthγm, (nth + 1)γm} and A ∈ {b, b†}. Recent experiments have
demonstrated ultralong coherence times T2 ∼ 1 ms in ensem-
bles of electron spins in diamond even at room temperature1,2.

The relaxation time, T1, of NV spin ensemble has also been
reported to be much longer, up to several minutes at low
temperature50. Obviously, both T1 and T2 is much longer than
our operation time. Moreover, our geometric-phase based
scheme is robust again dephasing47, so we ignore the decoher-
ence of the spin ensemble in the quantum Langevin equation.
The noise is dominated by the mechanical thermal noise. As
long as mnthγm/ωm � 1, we will achieve a highly squeezed
spin state and a high fidelity GHZ state.

In the case where the inhomogeneity of the couplings and
the transition frequencies ω j are negligible, Dark states are
rarely excited. The state of the system can be fully described
by the Dicke model defined in Eqs. (10) and (11). The
Dicke state |J,m〉 with m ∈ {−J,−J + 1, · · · , J + 1, J} in the
spin picture is equivalent to the Fock state |J + m〉 in the
Bosonic picture19. Thus, a GHZ state of spin, |GHZspin〉 =

(|0〉⊗N + |1〉⊗N)/
√

2, corresponds to the cat state |GHZa〉 =

(|0〉 + |N〉)/
√

2 in the Bosonic picture.
In the Bosonic picture, the squeezing degree of spin states

{|0〉, |1〉} of NV centers can be evaluated by the squeezing
parameter ξ2

s given by Kitagawa and Ueda as19 ξ2
s = 1 +

2〈a†a〉 − 2〈(a†a)2〉

N − 2|〈J̄2
x〉|. Correspondingly, the squeezing

parameter defined by Wineland et al. is related to ξ2
s via

ξ2
R =

(
N

2|〈 ~J〉|

)2
ξ2

s with |〈 ~J〉| =
√
〈Jx〉

2 + 〈Jy〉
2 + 〈Jz〉

219. While
the fidelity of generated GHZ state can be directly calculated
as F = Tr[ρ|GHZa〉〈GHZa|]19.

Before preparation of the squeezing and GHZ states we first
optically polarize the NV centers to their ground states |ms =

0〉. Then we apply Bz = 0.1 T to bring ω0 = 0. Since then, the
system begins to evolve under the Hamiltonian Eq. (6).

III. RESULTS

A. Preparation of squeezing spin states

Without noise from mechanical motion, the squeezing of
the NV spin ensemble is maximal when θ is the so-called op-
timal phase θopt = 6−1/6(N/2)−2/3 (see Appendix). The corre-
sponding squeezing parameter defined by Kitagawa and Ueda
is ξ2

opt = N−2/319. θopt can be very small for a large number of

NV−s. Noting that θ =
(

2gx
ωm

)2
ωmtm, we find that the coupling

gx can be quite small in order to squeeze a large ensemble
of spins. For a large integer m, gx can be further reduced by
a factor of

√
m. This allows the squeezing of an ensemble

of spins even for a relative small spin-phonon coupling. A
nanomechanical resonator with small mass but high quality
factor is preferable because it promises a large coupling under
a relative small magnetic gradient and small noise. For our
general numerical investigations we choose Qm = 106 for our
mechanical resonator29. We first investigate the target state
at the time t1 = 2π/ωm when the mechanical motion and the
spins separate. Then we will look into the target state at a
large m which allows a small coupling rate gx to achieve the
optimal phase. The phase θ can be adjusted at the fixed time
tm by controlling the gradient of the magnetic field.
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FIG. 2. (Color online) (a) Squeezing parameter ξ2
R for N = 50 spins

as a function of θ for different thermal noise nth/Qm. (b) Optimal
squeezing parameter ξ2

R (dB) as a function of number of spins, N at
different thermal noises nth/Qm = 0, 0.01, 0.1. The numerical results
are fitted by 1.4N−2/3, 1.4N−0.64, and 1.4N−0.48.

Now we investigate the attainable squeezing by numeri-
cally solving the master equation taking into account the me-
chanical thermal noise. Firstly, we study the effect of me-
chanical noise on the squeezing parameter ξ2

R at the optimal
phase θopt = 0.087 rad at fixed time t1 for N = 50 spins, see
Fig. 2(a). This optimal phase requires gx/2π = 29.4 kHz
for N = 50 NV centers. Such coupling strength is obtain-
able in a nanomechanical resonator system51,52. As can be
seen in Fig. 2(a), the squeezing parameter first decreases
as the phase θ (or the coupling gx) increases. After reach-
ing the maximal squeezing, it increases as θ continues to in-
crease. At a low temperature n̄/Qm = n̄γm/ωm ≤ 0.01 cor-
responding to n̄ = 104, our scheme can achieve the optimal
squeezing ξ2

s = N−2/3 and ξ2
R = 1.4N−2/3 at θopt, as shown by

the black circle. Even for n̄/Qm = 0.1, ξ2
R(ξ2

s ) only increases
to 0.23(0.15) from 0.1(0.074) for n̄/Qm = 0. Moreover, the
optimal phase decreases very slightly with order variations in
n̄/Qm, indicating robust squeezing against mechanical thermal
noise. This is an important advantage of this geometric-phase-
based squeezing scheme. Even n̄/Qm = 0.5 we are still able
to squeeze the spins by ξ2

R ∼ 1.67 dB.
By numerically solving the master equation for N up to 105

we study the dependence of the squeezing on the spin num-
ber and the thermal noise. Then we provide an estimate of
achievable squeezing for large ensemble of spins, as shown
in Fig. 2(b). We calculate the squeezing ξ2

R for different N
at the phase θ = θopt. When n̄ = 0, the ideal squeezing is
ξ2

R = 1.4N−2/3, as shown by the blue line and its fitting. The
available squeezing slightly reduces to ξ2

R = 1.4N−0.64 when
the thermal noise dramatically increases to n̄/Qm = 0.01,
and can still reach 1.4N−0.48 when the thermal noise reaches
n̄/Qm = 0.1. Remarkably, the phase uncertainty in measure-
ment, ∆φ = ξR/

√
N, can be reduced as increasing the number

of spins. Note that such squeezing degree of many spins is
crucially dependent on the available large gradient,GB, of the
magnetic field.

As mentioned above, applying a large integer m can relax
the required magnetic gradient. As long as mn̄/Qm � 1, we
can obtain mostly the optimal squeezing. As shown in Fig. 3
as an example for N = 10 spins, the squeezing is close to the
optimal squeezing ξ2

R = 0.35 when m < 2×103. Even when m
increases to 104, we still have ξ2

R < 0.4 corresponding to 4 dB

FIG. 3. (Color online) Squeezing parameter ξ2
R for N = 10 spins at

different m but fixed θ(tm). Here Qm = 106, n̄ = 10.

squeezing.

B. Preparation of GHZ states

In contrast to squeezing only requiring small θ, the gener-
ation of GHZ state requires θ = π/2 which requires a large
coupling strength gx.

We first compare the fidelity of the numerically evaluated
GHZ state for N = 10 and N = 20 NV centers under mechan-
ical thermal noise, see Fig.4(a). When the number of spins is
doubled, the fidelity as a function of n̄/Qm shifts to the left
slightly. In both cases the fidelity can be larger than 0.95 if
n̄/Qm < 10−3 is available. The fidelity is still higher than 0.5
as n̄/Qm decreases to 0.03 or 0.05 for 20 or 10 spins, respec-
tively. Figure 4(b) shows the limit of the mechanical thermal
noise to achieve a fidelity of F = 0.5 and 0.9 for different
numbers of spins. It can be clearly seen that we can prepare
the GHZ state with a fidelity of F = 0.9 for up to 20 NV−s if
n̄/Qm < 3 × 10−3 is possible. The fidelity can still be larger
than 0.5 if the thermal noise increases to n̄/Qm = 2 × 10−2.
Note that this geometric phase protocol can generate GHZ
state only for even number of spins.

As the generation of the SSS, we can create with a high
fidelity the GHZ state at a large integer m as well if mn̄/Qm �

1 is met. As shown in Fig. 5, increasing m will introduce
more noise in the target state and subsequently lead to smaller
fidelity. However, the fidelity of the GHZ state can be larger
than 0.8 when m < 4 × 103, i.e. mn̄/Qm < 0.04.

IV. MAGNETIC FIELD

In this section, we simulate the distribution of the x-
component of the magnetic field generated by a permanent
magnetic tip. We do the two-dimensional simulation with
FEMM 4.2. The magnetic field generated by a real three-
dimensional magnetic tip is axis symmetrical. We use the ma-
terial S mCo27MGOe from the material library of FEMM for
the magnetic tip. The structure of the tip is shown in Fig. 6(a)
(blue box). The tip is 2 µm thick and 3 µm wide. The transver-
sal component of the magnetic field (Bz) is negligible in the
region we are interested in. If we use a plane surface for the
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FIG. 4. (Color online) (a) Fidelity of the generated GHZ state as a
function of thermal noise, nth/Qm for N = 10 (blue line) and N = 20
(red line) fitted two-term exponential functions, aebn̄/Qm +cedn̄/Qm with
{a = 0.5208, b = −32.58, c = 0.4722, d = −4.241} (dashed black
lines) and {a = 0.5182, b = −54.21, c = 0.4704, d = −6.016} (dotted-
dashed black lines) respectively. Green lines are guide to eyes at F =

0.5, 0.9. (b) The mechanical thermal decoherence limit for achieving
the set fidelity (F=0.5,0.9) for different number of NV−s. Blue lines
are numerical results by solving the Master equation. Dashed red
lines are the two-term exponential fitting by aebN + cedN with {a =

0.063, b = −0.229, c = 0.058, d = −0.032} for F = 0.5 and {a =

9.248−3, b = −0.277, c = 6.816−3, d = −0.042} for F = 0.9.

FIG. 5. (Color online) Fidelity of the GHZ state for N = 10 spins at
different m but a fixed θ = π/2. Here Qm = 106, n̄ = 10.

tip (see the right hand side of the tip), then the magnetic field
in the middle region is weaker than that in edge, and subse-
quently its transversal distribution is considerably curved. To
create a uniform distribution of the field Bx, we design a con-
vex curved surface of which the cross section is a 30◦ arc con-
necting the two points, (−1µm, 1.5µm) and (−1µm,−1.5µm).
As seen in Fig. 6(b) and (d), the transversal distribution of the
field Bx is very uniform over about 180 nm. Its fluctuation is
much smaller than 0.1 mT. The gradient of the field Bx is uni-
form over 500 nm as well, and ∂Bx/∂x ≈ 2.3 × 105 T/m, see
Fig. 6(c). Such design can provide us a practical implemen-
tation for our proposal. Through simulation we find that the
bigger the diameter of the tip is, the smaller the gradient and
the wider the transversal uniform region. If we only require
a uniform field over ∼ 50 nm in the transversal section, the
available gradient can be much larger.

V. DISCUSSION AND CONCLUSION

Our scheme for squeezing and entangling an ensem-
ble of electronic spins can be realized using a diamond

FIG. 6. (Color online) Magnetic field Bx generated by a two-
dimensional permanent magnetic tip made from SmCo27MGOe
(simulated with FEMM 4.2). The coordinates of four points are
{(−1µm, 1.5µm), (1µm, 1.5µm), (1µm,−1.5µm), (−1µm,−1.5µm), }.
A 30◦ convex arc connects the points (−1µm, 1.5µm) and
(−1µm,−1.5µm). Therefore, the diameter and the width of
the tip is 3 µm and 2 µm, respectively. (a) The density and contour
plots of the magnetic field surrounding the magnetic tip. The arrows
show the direction of the magnetic field. (b) Zoom-in plot of the
magnetic field in the dashed white box in (a). (c) The component Bx

along the dashed white line in (b). (d) The component Bx along the
dashed green line in (b), 100nm away from the top of the arc.

nanowire33–36. We consider a single-crystal diamond
nanowire with a diameter of d ∼ 9.2 nm and a length
of L ∼ 1.45 µm33. The existing experimental technol-
ogy can even make a thiner and lighter DNW to allow a
stronger coupling35,36. The mass density of diamond is typ-
ically ρm ∼ 3000 kg/m3. Thus the mass of the DNW is
∼ 2 × 10−19 kg. The Young’s modulus, E, of diamond can
very from ∼ 40 to ∼ 900 GPa36,53. We choose the typical
value, E = 300 GPa, for our DNW yielding a resonance fre-

quency of ωm = 1.882 d
L2

√
E

16ρm
≈ 2π× 6.1 MHz for its funda-

mental mode. The zero-point fluctuation is correspondingly
xzp ∼ 2.2 pm. The quality factor of the DNW can be over one
million33. So, it is reasonable to take Qm = 106. At a cryo-
genic temperature T = 10 mK, we have the thermal excitation
of n̄ = 33.

We assume the distance of the closest NV centers along the
axis of DNW to be 6 nm corresponding to a energy shift of
about 2π × 0.3 MHz due to the dipole-dipole interaction54,
which is negligible in comparison with the mechanical reso-
nance frequency. The NV centers can be arranged as an ar-
ray with precise position in an ultrathin film of diamond55–57.
A large magnetic field gradient up to 4 × 107 T/m has been
reported in the magnetic disk drive system58,59. In magnetic
resonance force microscopy systems, the gradient larger than
106 T/m has been realized60–63. The magnetic field gradient
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can be nearly constant over 100 nm in depth60. Below we will
apply a gradient about 2 × 105 T/m or less.

Now we discuss the experimental implementation for the
squeezed spin state and the creation of the GHZ state. We
consider 20 spins embedded in the DNW over 120 nm along
the axis. With choosing a magnetic gradient GB = 7.5 ×
104 T · m−1. The optimal phase for squeezing, θopt = 0.16 rad,
can be achieved at tm = 3×103Tm corresponding to mnth/Qm ≈

0.1. The spins can be squeezed by 5.9 dB as a result. The GHZ
state can only be generated at θ = π/2. Such large geometric
phase requires a large magnetic gradient and a large zero-point
fluctuation. Using a magnetic gradient GB = 2.3×105 T · m−1,
we have gx/ωm ≈ 0.0046 (gx/2π ≈ 28 kHz) yielding θx(tm) =

π/2 at tm = 3 × 103Tm. As a minimum test, lets choose 4
spins implanted in the DNW requiring a length of at least
18 nm along the axis of the DNW, then we obtain the fidelity
of F = 0.62. If we can create a uniform magnetic field Bx over
∼ 120 nm allowing to embed 20 spins in the DNW, then we
can generate the GHZ state with the same fidelity of F = 0.62
at tm = 3 × 103Tm. It is noticeable that, however, the geo-
metric phase protocol can only create the GHZ state for even
number of spins. On the other hand, if we are interested in
squeezing and entangling a few spins, e.g. 4 spins, then the
applied gradient can be 106 T/m order and the operation can
be completely within a few cycles of mechanical vibration. As
a result, the squeezing and the fidelity of the GHZ state can be
larger.

The evolution period is 2π/ωm = 0.16 µs for ωm = 2π ×
6.1 MHz. At tm, the mechanical resonator is decoupled from
the spins. So, we need read out the state of spins within time
much smaller than 160 ns.

The large but detrimental Zeeman splitting of the ground
states of spins caused by a large magnetic gradient limits the
usable number of spins. In the discussion above, we neglect
the inhomogeneous broadening of the coupling, gx, caused by
the fluctuation of the magnetic field in the transversal direc-
tion. It is reasonable only over tens of nm if GB = 106 T/m is
applied. Actually, the fluctuation of the magnetic field in the
transversal direction will also reduce the fidelity of the target
state. These factors limits the obtainable squeezing degree,
and the number of entangled spins, and the fidelity as well.
By applying smaller gradient GB, the area of uniform field in-
creases. However, the coupling rate reduces. As a result, we
need longer evolution time, which is in turn limited by the me-
chanical quality factor and the thermal excitation. Therefore,

the generation of the SSS state and the GHZ state for N > 20
spins is quite challenging.

In summary, we couple up to 20 spins in nanodiamond to a
nanomechanical resonator mediated by a magnetic field gra-
dient. At cryogenic temperature, we show a squeezing of
∼ 5.9 dB and the generation of GHZ state with fidelity of
F ∼ 0.62 at the particular time when the mechanical motion
decouples from the spins. Our scheme is based on the geo-
metric phase control and therefore is robust against thermal
noise, and many other types of noise.
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APPENDIX A: OPTIMAL PHASE FOR MAXIMAL
SQUEEZING

We numerically study the optimal geometric phase and the
corresponding maximal squeezing parameter ξ2

s as a func-
tion of number of spins. Rather than the formula θopt =

241/6(N/2)−2/364, we find the optimal phase in our case to be
θopt = 6−1/6(N/2)−2/3 by fitting the numerical results, see Fig.
7.

FIG. 7. (Color online) Checking the optimal phase θopt for achieving
the maximal squeezing in the absence of mechanical decay. (a) The
optimal phase θopt for different spin number N. The dashed line is
fitted by θopt = 6−1/6N−2/3. (a) The maximal squeezing at θopt for
different spin number N. The dashed line is fitted by ξ2

s = N−2/3.
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