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Abstract

Doping a Mott-insulating Z2 spin liquid can lead to a fractionalized Fermi liquid (FL*). Such

a phase has several favorable features that make it a candidate for the pseudogap metal for the

underdoped cuprates. We focus on a particular, simple Z2-FL* state which can undergo a confine-

ment transition to a spatially uniform superconductor which is smoothly connected to the ‘plain

vanilla’ BCS superconductor with d-wave pairing. Such a transition occurs by the condensation

of bosonic particles carrying +e charge but no spin (‘chargons’). We show that modifying the

dispersion of the bosonic chargons can lead to confinement transitions with charge density waves

and pair density waves at the same wave-vector K, co-existing with d-wave superconductivity. We

also compute the evolution of the Hall number in the normal state during the transition from the

plain vanilla FL* state to a Fermi liquid, and argue, following Coleman et al.,1 that it exhibits a

discontinuous jump near optimal doping. We note the distinction between these results and those

obtained from models of the pseudogap with fermionic chargons.
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I. INTRODUCTION

Recent experiments on the hole-doped cuprates have demonstrated that the pseudogap

(PG) phase behaves remarkably like a Fermi liquid. For example, both the temperature and

frequency dependence of the optical conductivity [σ(ω) ∼ 1/(−iω + τ−1) with τ−1 ∼ ω2 + T 2],2

as well as the consistency of magnetoresistance with Kohler’s rule (ρxx ∼ τ−1[1 + (Hτ)2]),3

are behavior typical of Fermi liquids. However, more recent measurements of Hall coefficient

at high magnetic fields and low T 4,5 provides evidence for a crucial difference of this phase

from a conventional Fermi liquid (FL). Doping a half-filled Mott insulator with a density

of p holes should lead to a hole-like Fermi surface of size 1 + p. Although this is indeed
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seen for large doping, the situation is different in the PG regime. In this regime, when

additional Fermi surface reconstruction due to density waves are absent, the Hall coefficient

corresponds to a Fermi surface of size p, which violates Luttinger’s theorem.6 In absence

of any symmetry breaking long-range order, this can be possible only in the presence of

excitations of emergent gauge fields. A phase which realizes such a Fermi surface is called

a fractionalized Fermi liquid (FL*).7–13

The Z2-FL* is a viable candidate for the PG metal, as several properties of the phase can

be understood from this point of view. Firstly, the presence of the emergent Z2 gauge field

allows it to violate Luttinger’s theorem7,14 without any long range symmetry-breaking or-

der. Model calculations15 yield hole-pockets centered near (±π/2,±π/2) with an anisotropic

electron quasiparticle residue, which can explain the observation of Fermi arcs in photoe-

mission experiments.16,17 Further, density wave instabilities of the Z2-FL* naturally lead to

d-form factor bond density wave with charge modulation on the bonds and a wave-vector

similar to STM observations.18,19 Such density waves were also shown to arise via a different

route from a Z2-FL*, through a confinement transition that destroys topological order.20

Superconductivity also appears naturally as a descendant of a Z2-FL*, as pairing between

emergent fractionalized excitations spinons are an inherent characteristic of such a phase,

and this can mediate pairing between the electron-like quasiparticles which form the small

Fermi surface.7

While the above are rather general properties of the Z2-FL* state, more thorough con-

siderations lead to significant observable differences between different realizations of such a

state. In particular, it is useful to distinguish between Z2-FL* states in which the lowest

energy excitations which carry charge but no spin (‘chargons’) are fermionic or bosonic.

Models with fermionic chargons have been studied elsewhere,21–23 and more recent work has

examined the evolution of the Hall co-efficient as a function of electron density.24 Our focus

in the present paper is on Z2-FL* states with low energy bosonic chargons. One such Z2-FL*

state with incommensurate spin correlations and Ising-nematic order was studied recently,25

and it exhibited a confinement transition to a superconducting state which is usually of

the Fulde-Ferrell-Larkin-Ovchinnikov type, with spatial modulation of the superconducting

order.

Here, we will turn our attention to a simpler Z2-FL* state with bosonic chargons: this

exhibits a direct confinement transition to a spatially uniform d-wave superconductor which
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is smoothly connected to the conventional BCS state. Indeed, our model for the supercon-

ducting state so obtained may be viewed as a realization of the variational ‘plain vanilla

RVB’ theory.26 A related model has been studied by Wen and collaborators.9–11 We will

present results on the evolution of the electronic spectrum of this plain vanilla Z2-FL* state

as a function of p, both within the superconducting and normal states. In the supercon-

ducting state, we find that the number of gapless nodal points in the Brillouin zone (BZ)

is initially 12 upon exiting the Z2-FL* state, but reduces to 4 once we are well within the

confinement region.

We also present the evolution of the Hall co-efficient in the normal state, and contrast it

with the results obtained from models of fermionic chargons. To obtain a direct transition

between metallic FL* and FL states, we have to assume a vanishing spinon pair amplitude

in the FL* state at higher temperatures or fields—it is more appropriate to call this a

U(1)-FL*, although there is no formal distinction between different FL* states at non-zero

temperatures. Starting from such a U(1)-FL* state with bosonic chargons, we find, following

the results of Coleman et al.,1 a discrete jump in the Hall co-efficient from p to 1 + p at

the transition from the FL* to a FL in presence of a strong magnetic field that destroys

superconductivity. No such jump was found in the fermionic chargon approach.23,24

We also discuss a modification of the plain vanilla Z2-FL* theory to allow for translational

symmetry breaking in the confining state: this is achieved by modifying the dispersion of

the bosonic chargons. Condensing such chargons, we find a superconductor with co-existing

bond density waves and pair density waves at the same wavevector K.

We emphasize that our model is a phenomenological description of the PG phase of the

underdoped cuprates, motivated by evidence of a small Fermi surface (without a broken sym-

metry) from transport measurements. We assume that the Z2-FL* with bosonic chargons

is a parent state. We then show via concrete calculations that appropriate low-temperature

instabilities of such a parent state can lead to d-wave superconductivity, as well as further

density wave orders which have been observed in spectroscopic experiments. We also pro-

vide a numerical evaluation of the Hall-coefficient across a transition from a FL* to a Fermi

liquid. The Z2-FL* phase can only arise in presence of strong interactions between the elec-

trons, and therefore it is quite non-trivial to establish a quantitative connection between the

parameters of this phase and some more conventional model of interacting electrons, such

as the t-J-V model on the square lattice. As described in Ref. 13, a quantitative connection
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between the t-J model and a particular dimer model of the Z2 FL* can be made in certain

limiting regimes. In the present paper we work with a more general model of the plain

vanilla Z2-FL* state, where the parameters are fixed by demanding that the shapes of our

Fermi surfaces are consistent with spectroscopic data. We hope that numerical methods like

DMFT would yield accurate values of such parameters in the future.

The rest of the paper is organized as follows. In Section II we discuss and review the

Z2-FL* theory with bosonic chargons, and introduce the plain vanilla model we will focus

on. In Section III we analyze translation symmetry preserving confinement transitions that

lead to superconductivity, and the spectral function of quasiparticle excitations in the su-

perconducting phase. In Section IV we calculate the evolution of the Hall coefficient across

the confinement transition after suppressing superconductivity by a strong magnetic field.

Finally, in Section V we discuss the phases obtained from confinement transitions with

translation symmetry breaking. We end with a discussion of the merits and demerits of the

Z2-FL* with bosonic chargons as a candidate for the PG metal, and compare with models

of the Z2-FL* with fermionic chargons.

II. MODEL OF Z2-FL* WITH BOSONIC CHARGONS

We begin with a brief review of the topological aspects of the Z2-FL*, following Ref. 25.

For a time-reversal invariant insulating Z2 spin liquid, the spectrum can be described in

terms of four ‘superselection’ sectors, labeled as 1, e, m and ε.27 In Schwinger boson theories

of spin liquids, the S = 1/2 bosonic spinon, carrying Z2 gauge charge, itself belongs to the

e sector. The spinless Z2 gauge flux, or the vison, belongs to the m sector. The fused state

of the bosonic spinon e and the vison m is the fermionic spinon or the ε particle, which

also carries a Z2 gauge charge. In the metallic Z2-FL* state, we can augment the insulating

classification by counting the charge, Q, of fermionic electron-like quasiparticles. To each

insulating sector, we can add a spectator electron c, and label the resulting states as 1c, ec,

mc and εc. The above discussion is summarized in Table I.

Following the discussion of topological aspects, we introduce the following Hamiltonian

which realizes the plain vanilla Z2-FL* to study the dynamics:

H = Hf +Hc +Hb (2.1)

Hf is a mean-field Hamiltonian which describes the fermionic spinons f of the Z2 spin liquid
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1 e m ε 1c ec mc εc

S 0 1/2 0 1/2 1/2 0 1/2 0

Statistics boson boson boson fermion fermion fermion fermion boson

Mutual semions − m, ε, mc, εc e, ε, ec, εc e, m, ec, mc − m, ε, mc, εc e, ε, ec, εc e, m, ec, mc

Q 0 0 0 0 1 1 1 1

Field operator − b φ f c − − B

TABLE I: Table of characteristics of sectors of the spectrum of the Z2-FL* state. The first

four columns are the familiar sectors of an insulating spin liquid. The value of S indicates

integer or half-integer representations of the SU(2) spin-rotation symmetry. The “mutual

semion” row lists the particles which have mutual seminionic statistics with the particle

labelling the column. The electromagnetic charge is Q. The last four columns represent

Q = 1 sectors present in Z2-FL*, and these are obtained by adding an electron-like

quasiparticle, 1c, to the first four sectors. The bottom row denotes the fields operators

used in the present paper to annihilate/create particles in the sectors.

at p = 0.

Hf = −
∑
rr′,σ

(χrr′ + µf δrr′)f
†
rσfr′σ +

∑
rr′

∆f
rr′εαβf

†
rαf

†
r′β + H.c. (2.2)

where the chemical potential µf is adjusted so that 〈f †rσfrσ〉 = 1 on every site, and the

spinon-hopping χrr′ and spinon-pairing ∆f
rr′ need to be determined self-consistently. We

will take the spinon hopping to be descended directly from the electron dispersion in the

cuprates, and so have no background flux. The spinon pairing will be taken to have a d-wave

form, as specified below.

In the FL* phase, we also require dopant charge carriers which have the same quantum

number as the electron and are neutral under the internal Z2 gauge field. These are the c

fermions, which are analogous to the green dimers in the lattice model described in Ref. 13.

For these fermions, we choose a phenomenological dispersion Ec(k) which has hole pockets

centered at (±π/2,±π/2); most of the remaining discussion (barring section IV) will not

require the explicit nature of the dispersion.

Hc =
∑
k,σ

ξk c
†
kσckσ, ξk = Ec(k)− µc (2.3)
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FIG. 1: (Color online) Schematic phase diagram of some phases arising from the Z2-FL*.

A FL* state with a spinon Fermi surface can be obtained at large magnetic fields by

having both 〈∆〉 and 〈B〉 vanish (such a state would be a U(1)-FL* at zero T ).

Finally, we need to consider the coupling between the f spinons and the c electrons. This

can be obtained from a decoupling of the Kondo coupling between the f and c spins via a

Coqblin Shrieffer transformation28 appealing to a large N generalization of SU(2) spins.29

However, here we restrict ourselves to a simple mean-field decoupling in terms of the spin

singlet bosonic chargons B1/2 (the the εc particle of Table I) with spatially local form factors

F/F̃ :

Hb =
∑
r,r′

(B1Frr′)
∗f †rσcr′σ + (B2F̃rr′)

∗εαβcrαfr′β + H.c.

B1Frr′ ∼ f †rσcr′σ, B2F̃rr′ ∼ εαβcrαfr′β (2.4)

Now we can discuss the phases of the Hamitonian in Eq. (2.1) which are of interest to

us in this paper. The Z2-FL* is realized when ∆f
rr′ 6= 0, and the bosonic chargons are

gapped, i.e, 〈B1/2〉 = 0. This is the phase with Fermi pockets of the c fermions. The

condensation of B1/2 (the εc particle in Table I) leads to confinement of the Z2 gauge field

and induces superconductivity of the electron-like c fermions. At high magnetic fields, we

expect a suppression of superconductivity, which leads to a FL with a large Fermi surface.

This phase has ∆f
rr′ = 0 and 〈B1〉 6= 0 (but 〈B2〉 = 0), and the f spinon acquires a charge1

and therefore contributes to charge transport together with the c electron. A mean-field

phase diagram is presented in Fig. 1.

One may ask whether the phases we have described are stable beyond the mean-field

level, once we include the effects of fluctuations. Here, we argue that this is indeed the case

at T = 0. As long as the Kondo coupling between the c and the f fermions is weak, the gap

to the vison (m) excitation persists, and therefore the quantum numbers of the excitations
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of the Z2 FL* state are topologically protected at T = 0 in d = 2 spatial dimensions.7

Once we are in any of the confined phases (superconductor or Fermi liquid), the appearance

of the Higgs condensate 〈B1/2〉 implies that the gauge fluctuations are strongly quenched.

Hence, these phases are expected to be stable as well. The only point of concern is the

U(1) FL* which is obtained by destroying the spinon-pairing in Section IV. Such a phase is

known to be unstable in d = 2 to confinement with translation symmetry breaking on the

square lattice.30 However, if the confinement length scale is very large, the fermions should

effectively realize a U(1) FL* state. This picture of an effective deconfined phase has been

supported by DMRG studies of a particular dimer model of the U(1) FL*.31

We end this section with a brief discussion of existing literature on confinement transitions

out of a FL* phase with concomitant destruction of topological order. A superconducting

transition from a specific Z2-FL*, corresponding to a Z2 spin liquid with favorable energetics

and Ising-nematic order on the square lattice,30,32,33 was studied in Ref. 25. The projective

transformations of the fermionic spinon ε under lattice symmetry operations typically led to

spontaneous breaking of translation symmetry, time reversal symmetry or both. In contrast,

in this paper we look for transitions to superconducting phases which arise from the plain

vanilla Z2-FL* state described above. We also note that separate confinement transitions

out of the Z2-FL* can lead to long range antiferromagnetic order34–36 when the e-boson

(see Table I) condenses, or to a metallic phase with density wave order20 when the m-boson

condenses. Quite remarkably, all three confinement transitions, obtained by condensing

the bosons in Table I, correspond to observed instabilities in the hole-doped cuprates. A

detailed discussion of such unconventional metallic phases, quantum phase transitions and

their relevance to the cuprate phase diagram appeared recently in Ref. 23.

III. CONFINEMENT TRANSITIONS TO TRANSLATION INVARIANT SUPER-

CONDUCTORS

In this section, we describe the superconducting state obtained by a confinement tran-

sition that preserves translation invariance for generic spinon-pairing. Later, we assume

that the spinon-pairing form-factor ∆f
k is d-wave, and demonstrate that the resulting super-

conductor is also a d-wave superconductor that has spectral properties consistent with the

cuprates.
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A. Induced superconductivity of the c fermions

The B bosons carry both Z2 gauge charge and electromagnetic charge e. Therefore, their

condensation is a Higgs transition that results in loss of the Z2 topological order. Further,

the pairing of the f fermions now induce a pairing between the c fermions, and therefore

the confined state is a superconductor. For the plain vanilla projective symmetry group

(PSG)37 of the Z2-FL*, we can construct an effective bosonic Hamiltonian hB(k) (described

in detail in Ref. 25), and look at its dispersion. The minima of the boson dispersion would

determine the wave-vector at which the B bosons condense. Here we analyze the effects of

condensation of B at Q = 0, so that we end up with translation invariant superconductors.

Note that this is allowed by the trivial PSG of the f fermions in Eq. (2.2) for the plain

vanilla Z2-FL* state. The discussion of translation symmetry broken superconductors is

presented in section V.

Using translation invariance to go to momentum space, the Hamiltonian in Eq. (2.1) can

be recast in terms of a 4-component Nambu spinor Ψk as follows (neglecting a constant

energy off-set):

Hmf =
∑
k

Ψ†kh(k)Ψk, where h(k) =


ξk 0 B1 −B2

0 −ξk −B∗2 −B∗1
B∗1 −B2 εk ∆f

k

−B∗2 −B1 ∆f∗
k −εk

 , Ψk =


ck↑

c†−k↓

fk↑

f †−k↓

 (3.1)

where we have restricted ourselves to simple on-site form factors (Frr′ , F̃rr′ ∼ δrr′). Now, we

can write down the partition function in imaginary time as follows:

Z =

∫
D(Ψ̄,Ψ)e−S, where S =

∑
k,iωn

Ψ̄(k, iωn) [−iωn + h(k)] Ψ(k, iωn) (3.2)

Since this is a Gaussian theory, we can integrate out the f spinons and find an effective action

for the c fermions. In order to do so, we write the 4-component Nambu spinor Ψ(k, iωn) in

terms of two 2-component spinors ψc and ψf as follows:

Ψ(k, iωn) =

ψc(k, iωn)

ψf (k, iωn)

 where ψc(k, iωn) =

 ck↑(iωn)

c†−k↓(−iωn)

 and ψf is defined analogously

(3.3)
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In terms of this the imaginary time action can be recast as (suppressing the indices (k, iωn)

for clarity):

S =
∑
k,iωn

(
ψ̄c ψ̄f

)G−1c B

B† G−1f

ψc
ψf

 , where

G−1c =

−iωn + ξk 0

0 −iωn − ξk

 , G−1f =

−iωn + εk ∆f
k

∆f∗
k −iωn − εk

 , and B =

 B1 −B2

−B∗2 −B∗1


(3.4)

Now we integrate out the f spinons using standard Grassman integration, resulting in the

following effective action for the c fermions:

Seffc =
∑
k,iωn

ψ̄c
(
G−1c −BGfB

†)ψc (3.5)

The diagonal elements of the second term result in self-energy corrections to the c fermion

pcropagator, whereas the off-diagonal elements contain information about the induced paring

of the c fermions. We interpret the upper off diagonal element in the effective action Seffc

as: ∑
k,iωn

∆c(k, iωn)c†k,↑(iωn)c†−k,↓(−iωn), where ∆c(k, iωn) =
B2

1∆f
k −B2

2∆f∗
k − 2B1B2εk

ε2k +
∣∣∆f

k

∣∣2 − (iωn)2

(3.6)

For temperatures much smaller than the Fermi energy, we can ignore the frequency (ωn)

dependence at small frequencies, since the pairing will be induced between the low-energy c

fermions near the Fermi surface which have finite momenta but nearly zero energy. There-

fore, we set iωn = 0 in the above expression to arrive at the main result of this section:

∆c(k) =
B2

1∆f
k −B2

2∆f∗
k − 2B1B2εk

ε2k +
∣∣∆f

k

∣∣2 , as T → 0 (3.7)

This shows that the pairing of the f spinons induces a pairing of the c fermions. In particular,

assuming that the spinon-pairing ∆f
k is real, in the regimes where one condensate is much

stronger than the other, i.e, B1/B2 � 1 or � 1, we can neglect the cross-term, and the c-

pairing has approximately the same form-factor as the f-pairing. For example, in the regime

B1/B2 � 1, we find that:

∆c(k) =
B2

1∆f
k

ε2k +
∣∣∆f

k

∣∣2 (3.8)
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On the c Fermi surface given by ξk = 0, which will generically be away from the f Fermi

surface given by εk = 0, the denominator causes a small amplitude modulation and the c

superconductivity will be roughly proportional to ∆f
k. Therefore, in this regime, d-wave

pairing between the spinons leads to d-wave pairing of the c fermions as well upon conden-

sation of the bosons. We comment that B1/B2 � 1 is also the regime with experimentally

observed spectral properties of the cuprates, as discussed in subsection III B.

B. Spectrum for nodal superconductivity

In this subsection, we discuss the spectrum of the d-wave superconductor obtained via

the confinement transition, with particular focus on the number of nodal quasiparticles.

In presence of superconductivity ∆f
k of the f fermions, we showed in the previous section

that superconductivity with an identical form factor will be induced in the c fermions as

well upon the confinement transition. Consider a large f Fermi surface (analogous to the

overdoped FL phase of the cuprates). Right after the transition, both c and f Fermi surfaces

correspond to zero-energy quasiparticles which have charge e and spin half. Hence, if the

f superconductivity is d-wave, i.e, ∆f
k = ∆d(coskx − cosky), then there will be four nodal

points on the f fermi surface, and eight more nodal points for the c pockets as the nodal

line intersects each pocket twice. We show that once one gets well into the confined phase

by increasing the condensate strength B1/2 the number of nodal points reduces to four, as

observed by spectroscopic probes. Since we preserve the full C4 square lattice symmetry, we

restrict ourselves to studying one quarter of the full BZ (0 ≤ kx, ky ≤ π).

We illustrate the evolution of the nodes with a generic model which has a c fermion

pocket centered at Ko = (π/2, π/2), coupled to the f spinons, with a large Fermi surface

plotted in Fig. 2. We now use the mean field Hamiltonian in Eq. (3.1) to find the nodes of

the excitations when we turn on ∆f
k and condense Bi. The resultant excitations have a pair

of doubly spin-degenerate bands, which are given by:

E2
± = ~B2 +

1

2

[
(∆f )2 + ε2 + ξ2

]
±1

2

√
[(∆f )2 + ε2 − ξ2]2 + 4 ~B2 [(∆f )2 + ε2 + ξ2] + 8ε ξ(B2

1 −B2
2) + 16B1B2 ∆f ξ ,

(3.9)

where ~B = (B1, B2), which we have assumed to be real under appropriate gauge choice, and
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(a) Fermi surface of the f fermions when

∆f = 0 (blue), Fermi pocket of c fermions

(yellow) and the nodal line kx = ky (green)

in part of the full BZ
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Energy

(b) Cuts of the dispersions ξk of the c

fermions (yellow) and εk of the f spinons

(blue) plotted along the nodal line kx = ky

with ∆f = 0

FIG. 2: (Color online) Simple model of the f and c Fermi surfaces when ∆f = 0 and Bi = 0

we have also suppressed the index k for clarity. From Eq. (3.9) we can see that E+(k) 6= 0

whenever ~B2 6= 0, so two degenerate bands are completely gapped. The condition for finding

a gapless point in E−(k) can be reduced to:

(B2
2 −B2

1 + ε ξ)2 + (2B1B2 −∆ ξ)2 = 0 (3.10)

Let us investigate Eq. (3.10) when B1 6= 0 and B2 = 0. This implies that a gapless point

has εk ξk = B2
1 > 0, and ∆k ξk = 0. From the first condition, ξk 6= 0, so we require

∆k = 0 and therefore any gapless point must lie on the nodal line kx = ky. Now we look

back at the dispersions on the nodal line given in Fig. 2. Since B2
1 6= 0, we require that

the product εk ξk
∣∣
kx=ky

= B2
1 > 0. For small B2

1 , the modulations in the product near

kx = ky = π/2 implies there are multiple solutions, as can be seen from Fig. 2. However,

for shallow c pockets and a generic large f Fermi surface which are required for consistency

with spectroscopic experiments (see section IV A for further details on the Fermi surface

evolution), only the solution corresponding to kx < π/2 survives large B2
1 . Therefore, we

have a single node of excitations per quadrant of the BZ (ignoring spin degeneracy). Since

Eq. (3.10) are analytic in B1 and B2, turning on a small B2 can shift the nodes away from
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the kx = ky line. However, it cannot change the number of nodes. Hence for large B1 and

small B2, we have the desired number of nodes. This is illustrated in Fig. 3.

π

2
π

kx

-0.15

0.15

0.3

FIG. 3: (Color online) This plot shows εk ξk along the nodal line kx = ky (dotted blue),

B2
1 = 0.25 (purple), B2

1 = 0.16 (brown) and B2
1 = 0.09 (orange). The intersection points,

corresponding to the nodes, are marked with red dots. As argued in the text, there are 3

nodes for small B1, and only one for large B1 for 0 ≤ kx ≤ π.

Similarly, one can also argue that for large B2 and small B1, we have a single nodal point

per quadrant, assuming that the c fermion band is quite shallow along the nodal line. In

this case, for B1 = 0 we require that εk ξk = −B2
2 < 0, which is only satisfied for kx > π/2

when B2 is large enough. This does not change when we turn on a small B1, as previously

argued. However, the experimentally observed nodes in the cuprates are at kx < π/2, so the

previous scenario is more relevant for the cuprates.

It is worthwhile to note here that even if the form factors Frr′ and F̃rr′ deviate from

on-site interactions and we have extra momentum-dependent pre-factors in B1/2(k), the

number of nodes will not change unless B1/2(k) go to zero near the nodal points. Therefore,

this disappearance of the extra nodes is quite robust. Further, the shift of the nodes from

the line kx = ky is parametrically small if either B1 or B2 is small. A recent work38 looked

at the dimer model of FL* presented in Ref. 13, and their mean-field treatment of bosonic

spinons as low energy excitations of the spin liquid led to a d-wave superconductor (more

accurately, an SC* with topological order) with eight nodes. But as our argument shows,

using fermionic spinons and driving a confinement transition will ultimately lead to a d-wave

superconductor with four nodes, as has been observed in photo-emission experiments.16,17

13



Finally, we also plot the full spectrum of the Bogoliubov quasiparticles in the d-wave

superconducting phase in this model in Fig. 4. In the parameter regime of the supercon-

ducting phase with 4 nodes, the spectrum has low energy Bogoliubov excitations in around

the nodes. Once we include the anisotropic quasiparticle residue Z for the c fermions,15

these can give rise to the Bogoliubov arcs observed in STM experiments.39
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0.50

0.75

1.00

1.25

FIG. 4: (Color online) Schematic density plot of the energy of the lower band of

quasiparticle excitations in the superconducting state, for 〈B1〉 6= 0. Note the four low

energy (dark blue) arcs through the nodal points.

IV. EVOLUTION OF THE HALL NUMBER

In this section, we investigate the FL* at high magnetic fields, which suppress super-

conductivity. We assume in this section that the spinon pairing ∆f vanishes in FL* state,

which makes it smoothly connected to a U(1)-FL* at zero T . In the confined FL phase,

self-consistency (Eq. (3.7)) implies that neither the c nor the f fermions have any pairing. In

absence of pairing of the f spinons, their number is conserved, and therefore they couple to

a U(1) internal gauge field. However the confinement transition locks this gauge field to the

14



external U(1) gauge field which couples to the c electrons.1 Therefore, the f fermions also

gain a charge and contribute to the Hall conductance. Ref. 23 proposed that this can be a

possible explanation for the transition of the Hall number nH (which measures the number

of carriers) from p to 1 + p near optimal doping. Here we consider a concrete model and

numerically evaluate nH in the FL* and FL phases to show this transition.

A. Evolution from a small Fermi surface to a large one

In the FL* phase, the only quasiparticles carrying charge are the c fermions. At the

optimal doping critical point pc, confinement to FL and subsequent acquirement of charge

by the f fermions result in co-existence of hole-pockets with a large Fermi surface, with both

quasiparticles coupling to the external electromagnetic field. As the chargon (B) condensate

grows stronger, the hole pockets grow smaller and disappear, and we are left with a large

Fermi surface.

In order to write down the c and f band structures and their coupling B, we note a few

desired features. Firstly, the f spinons should have a large Fermi surface that ultimately

resembles the generic cuprate Fermi surface in the confined phase on the overdoped side.

On the other hand, the c electrons should have hole-pockets around (±π/2,±π/2) in the

FL* phase. Such hole pockets can be obtained from a lattice model of the FL* as described

in Ref. 13, but we choose a slightly different phenomenological dispersion which has some

additional favorable features. Just into the confined phase, both the hole-pockets and the

large Fermi surface are present. We want the hole pockets to disappear for small enough

values of B since they would otherwise contribute extra nodes in the superconducting phase

which are not observed. The large Fermi surface should not get very distorted at the doping

where the hole pockets disappear, and this implies that the c and f Fermi surfaces have

similar curvature in the overlapping region. We also want the large Fermi surface to not

reconstruct into pockets or go past the Van Hove filling for some range of doping after the

disappearance of the hole-like Fermi pockets. All the above requirements are satisfied by
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the following dispersions:

Hc =
∑
k,σ

ξkc
†
kσckσ, and Hf =

∑
k,σ

εkf
†
kσfkσ where

ξk = −4t̃2 cos(kx) cos(ky)− 2t̃3 [cos(2kx) + cos(2ky)] +

√
4t̃21 ( cos(kx) + cos(ky))

2 + ∆2 − µc,

εk = −2t1(cos(kx) + cos(ky))− 4t2 cos(kx) cos(ky)− 2t3( cos(2kx) + cos(2ky))− µf (4.1)

These dispersions are plotted in Fig. 5.

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

ky

FIG. 5: (Color online) Plot of the Fermi surfaces from the dispersions in Eq. (4.1), using

t̃1 = 0.6, t̃2 = −0.2, t̃3 = 0.1,∆ = 0.2, µc = −0.21, t1 = 0.35, t2 = 0, t3 = 0.05, µf = −0.03.

Yellow curves denote the hole-like c pockets. The blue contour is the large f Fermi surface.

Further, we also need the hybridization to be maximum near the pockets to suppress

them quickly, and minimal at the antinodal regions to avoid significant distortion of the

large Fermi surface. This can be achieved by allowing the Kondo hybridization to include

further local terms in real space, beyond a simple on-site term. Moving to momentum space,

we postulate a momentum-dependent form factor of the form:

B1(k) ≡ Bk = B
[
sin2(kx) + sin2(ky)

]
(4.2)

Using Eqs. (4.1) and (4.2) we plot the evolution of the Fermi surfaces of the quasiparticles

in the FL phase for a phenomenological B that increases linearly with doping beyond the

optimal doping critical point pc. We first fix the chemical potentials µc and µf , given the
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hole-doping p, taking into account the effect of self-energies corrections to the occupancies

of c and f fermions in the FL phase. To do so, one can diagonalize the Hamiltonian in

Eq. (2.1) by the following unitary transformation in terms of new fermionic operators γkσ±:8

ckσ = ukγkσ+ + vkγkσ−, fkσ = vkγkσ+ − vkγkσ+ where (4.3)

Ek± =
εk + ξk

2
±

[(
εk − ξk

2

)2

+B2
k

]1/2
, uk =

Bkvk
Ek+ − ξk

, u2k + v2k = 1 (4.4)

The chemical potentials µc and µf are fixed by numerically solving the following equations:

1

V

∑
k,σ

〈c†kσckσ〉 =
2

V

∑
k

u2k nF (Ek+) + v2k nF (Ek−) = 2− p,

1

V

∑
k,σ

〈f †kσfkσ〉 =
2

V

∑
k

v2k nF (Ek+) + u2k nF (Ek−) = 1 (4.5)

We then use these chemical potentials to calculate and plot the dispersions of the two

quasiparticle bands in the FL phase in Fig. 6. We note from Fig. 6 that the large Fermi

surface remains smooth and resembles the generic cuprate Fermi surface for a range of doping

beyond p ∼ 0.2 when the hole pockets disappear.

B. Calculation of nH

The charge response of the system can be calculated in the relaxation time approximation

using the Boltzmann equation40 or Green’s functions.41 Consider a single band of charge e

free fermions with (grand-canonical) dispersion Ek. In both the above approaches, the Hall

conductivity of this band (for large lifetime τ) can be written down as follows in terms of

the velocity vα(k) = ∂kαεk and volume V of the system:

σxy = −e
3τ 2

V

∑
k,σ

[
∂2Ek

∂k2x

∂2Ek

∂k2y
−
(
∂2Ek

∂kx∂ky

)2
]
nF (Ek) (4.6)

whereas the diagonal conductivity is given by:

σαα =
e2τ

V

∑
k,σ

v2α(k)

(
−∂nF
∂Ek

)
=
e2τ

V

∑
k

(
∂2Ek

∂k2α

)
nF (Ek), where α = x, y (4.7)

In the FL* phase, only the c fermions couple to the external gauge field and contribute to

the Hall current. The Hall resistance RH can be calculated in terms of the band structure

of the c fermions using Eqs. (4.6) and (4.7):

RH =
σxy

σxxσyy
(4.8)
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FIG. 6: (Color online) Evolution of the Fermi surfaces in the FL phase, color-coded by

doping p. We chose B = 4(p− pc)Θ(p− pc), with pc = 0.16; hopping parameters are

identical to the ones used for Fig. 5

.

In the confined FL phase, we get two bands Ek± of charge-carrying quasiparticles, with

dispersion given by Eq. (4.4). If we neglect scattering between bands, we can just add the

individual conductivity contributions of the two bands to get:

RH =
σ+
xy + σ−xy

(σ+
xx + σ−xx)(σ

+
yy + σ−yy)

(4.9)

The Hall number nH , which is an approximate measure of the number of carriers, is then

given by:

nH = (RHe)
−1 (4.10)

We plot nH as a function of doping in Fig. 7, where we find that there is indeed a jump

from p in the underdoped regime (where we have ignored additional density wave orders) to

roughly 1 + p in the overdoped regime, at pc = 0.16, where we have the transition from FL*

to a Fermi liquid. The higher value of the Hall no. in both phases comes from the fact that

for non-circular Fermi pockets, the Hall no. nH overestimates the true density of careers in

the pocket (see Appendix. A).
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FIG. 7: (Color online) Numerically obtained nH as a function of doping p. Note the jump

at pc = 0.16. The purple line denotes p, and the red line denotes 1 + p

We note that nH changes discontinuously at the critical doping pc at T = 0. This is

generically true in a FL* with bosonic chargons,1 as half-filled band of fermionic spinons will

discontinuously gain a charge at the transition from FL* to FL. Upon including fluctuation

corrections to the present mean-field theory, we expect that the discontinuity will be rounded

at finite temperature, but will remain a discontinuity at zero temperature.

V. CONFINED PHASES WITH BROKEN TRANSLATION SYMMETRY

In this section, we discuss confinement transitions of the Z2-FL* with simultaneous break-

ing of translation symmetry. This happens when the bosons B1/2 condense at finite momenta

{Qi}. As discussed earlier, one can determine the momenta at which this condensation oc-

curs by a PSG analysis for a given spin liquid. However, here we restrict ourselves to a

systematic analysis of the generic consequences of such a phase transition, and show that

one can indeed find a phase with uniform d-wave superconductivity, co-existing with charge

density waves PK(k) and pair-density waves ∆K(k) at the same wave-vector K, as observed

in STM experiments. Well within the confined phase, the small pockets are suppressed

below the Fermi level and these density waves mainly affect the large Fermi surface.

For the sake of completeness, we recall the definitions of the generalized density-wave
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order parameters at momenta {Kl}.42–44

Prr′ = 〈c†rσcr′σ〉 =
∑
Kl

[
1

V

∑
k

eik·(r−r
′)PKl

(k)

]
eiKl·(r+r′)/2

∆rr′ = 〈εαβcrαcr′β〉 =
∑
Kl

[
1

V

∑
k

eik·(r−r
′)∆Kl

(k)

]
eiKl·(r+r′)/2 (5.1)

When PKl
(k) is independent of k (s-wave), then it corresponds to on-site charge density

oscillations at momentum Kl. When When PKl
(k) is a non-trivial function of k, then it

corresponds to charge density oscillations on the bonds, and has also been referred to as a

bond density wave in the literature.42–44 In particular, we focus on a few important form

factors for the bond density waves which will be relevant to this paper:

s′ form factor with PKl
(k) ∼ cos(kx) + cos(ky), and

d form factor with PKl
(k) ∼ cos(kx)− cos(ky) (5.2)

A similar characterization holds for the pair-density wave order parameter ∆K(k) as well.

We first analyze the simpler case with Ising nematic order where the fourfold rotational

symmetry of the square lattice is broken to C2, and then proceed to the full C4 symmetric

case.

A. Phases in presence of nematic order

Presence of an additional Ising nematic order in the FL* state breaks the C4 symmetry of

the square lattice. This lifts the degeneracy between the energy eigenstates of the effective

bosonic Hamiltonian hB at Q and ẑ × Q. However, as described in Ref. 25, inversion

acts linearly on the B bosons, so we must have hB(Q) = hB(−Q). This implies that the

condensate strengths (which are related to the components of the eigenvector of hB) at both

these momenta are the same.25 Therefore, we describe the condensates as:B1r

B2r

 =

B1

B2

 eiQ·r +

B1

B2

 e−iQ·r (5.3)

Using Eq. (5.3), we can rewrite the Hamiltonian in Eq. (2.4) as:

Hb =
∑
k

B∗1 f
†
kσck+Qσ +B∗2 εαβ ckαf−k−Qβ + (Q→ −Q) + H.c. (5.4)

20



In order to make further analytic progress, we choose Q to be commensurate, so that NQ

is an integer multiple of 2π for integer N . Therefore, we work with the reduced BZ, where

we can write the action in blocks as follows (suppressing the indices iωn for clarity):

S =
N−1∑
m=0

∑
k,iωn

(
ψ̄c,k+mQ ψ̄f,k+(m+1)Q

)G−1c,k+mQ B

B† G−1f,k+(m+1)Q

 ψc,k+mQ

ψf,k+(m+1)Q

 , where

G−1c,k =

−iωn + ξk 0

0 −iωn − ξk

 , G−1f,k =

−iωn + εk ∆f
k

∆f∗
k −iωn − εk

 , and B =

 B1 −B2

−B∗2 −B∗1


(5.5)

Now, we can integrate out the f fermions from the Gaussian action, and find an effective

action for the c fermions as we did in the previous section. We find that the effective action

is given by:

Seffc =
N−1∑
m=0

∑
k,iωn

ψ̄c,k+mQ

(
G−1c,k+mQ −B

[
Gf,k+(m+1)Q +Gf,k+(m−1)Q

]
B†
)
ψc,k+mQ

+ψ̄c,k+(m−1)Q
(
BGf,k+mQB

†)ψc,k+(m+1)Q + ψ̄c,k+(m+1)Q

(
BGf,k+mQB

†)ψc,k+(m−1)Q

(5.6)

The diagonal terms correspond to uniform superconductivity, whereas the off-diagonal terms

are responsible for density waves. Below, we describe each of these order parameters.

First, we look at uniform superconductivity. The c fermion pairing term in the low

frequency limit (iωn → 0) is given by:

∆c(k +mQ, iωn → 0) = (B2
1 −B2

2)

(
∆f

k+(m−1)Q

ε2k+(m−1)Q +
∣∣∆f

k+(m−1)Q

∣∣2 +
∆f

k+(m+1)Q

ε2k+(m+1)Q +
∣∣∆f

k+(m+1)Q

∣∣2
)

−2B1B2

(
εfk+(m−1)Q

ε2k+(m−1)Q +
∣∣∆f

k+(m−1)Q

∣∣2 +
εfk+(m+1)Q

ε2k+(m+1)Q +
∣∣∆f

k+(m+1)Q

∣∣2
)
(5.7)

If we let k belong to the full B.Z., we can re-write this term as:

∆c(k, iωn → 0) = (B2
1 −B2

2)

(
∆f

k−Q

ε2k +
∣∣∆f

k−Q
∣∣2 +

∆f
k+Q

ε2k +
∣∣∆f

k+Q

∣∣2
)
− 2B1B2

(
εfk−Q

ε2k +
∣∣∆f

k−Q
∣∣2 +

εfk+Q

ε2k +
∣∣∆f

k+Q

∣∣2
)

(5.8)

We again assume that the f Fermi surface, given by εk = 0, is far from the c Fermi surface,

and take the limit of B1/B2 � 1. Then, we can approximately estimate the form-factor of
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the induced superconducting order parameter as:

∆c(k, iωn → 0) ∼ ∆f
k−Q + ∆f

k+Q = 2∆d (cos Qx cos kx − cos Qy cos ky) (5.9)

This is a nodal superconductor, but the nodes are shifted from the diagonal kx = ±ky
lines unless the ordering wave-vector Q is diagonal. However, in STM experiments,19,45 the

observed ordering wave-vector is mainly axial — this would result in nodes away from the

diagonal lines which is inconsistent with spectroscopic data. In section V B, we show that in

presence of full C4 symmetry, this feature goes away and we can find a d-wave superconductor

with nodes along kx = ±ky.

In addition to uniform d-wave superconductivity we find that we also have Cooper pairing

at finite momentum K = 2Q, as the action Seffc explicitly contains off-diagonal terms which

are pairing between the c fermions at momenta k+Q and −k+Q. Analogous to the uniform

superconducting case, we look for the following term in Seffc to find the pair-density wave

(PDW) order parameter:∑
k,iωn

∆2Q(k, iωn)c†k−Q,↑(iωn)c†−k−Q,↓(−iωn) (5.10)

Such a term is indeed present, and the PDW order parameter at low frequency (iωn → 0)

is given by:

∆c
2Q(k, iωn → 0) =

(B2
1 −B2

2)∆f
k − 2B1B2εk

ε2k +
∣∣∆f

k

∣∣2 (5.11)

An analogous PDW term is present at momentum K = −2Q as well. Again, in the limit

where B1 � B2, we have a form-factor which is proportional to ∆f
k. Therefore, in this

regime, we have a PDW with a d-wave form factor.

Further, there is a charge density wave as the same wave-vector K = 2Q, as the off-

diagonal term in Seffc again break translation symmetry explicitly in the particle-hole chan-

nel as well. From a term in Seffc of the form:∑
k,iωn

P2Q(k, iωn)c†k−Q,σ(iωn)ck+Q,σ(iωn) (5.12)

we find that the density wave order parameter is given in the low frequency limit by:

P2Q(k, iωn → 0) =
(|B1|2 − |B2|2)εk − (B∗1B2 +B∗2B1)∆

f
k

ε2k +
∣∣∆f

k

∣∣2 (5.13)
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In particular, in the regime B1/B2 � 1, the term proportional to the s (s′)-wave εk domi-

nates. That εk is predominantly s′ follows from the dispersion of the f spinons which must

give rise to a C4 symmetric large Fermi surface in the overdoped regime (as shown in Fig. 5),

to be consistent with the Fermi liquid at large doping. Therefore, this is a state with a s (s′)-

wave charge density coexisting with d-wave superconductivity and d-wave PDW, provided

that the f superconductor has a d-wave form factor ∆f
k.

B. Phases with full C4 rotation symmetry

In presence of full C4 rotation symmetry, the simplest situation corresponds to the B

bosons transforming linearly (and not projectively) under π/2 rotations. This follows from

the trivial PSG of the f fermions in the plain vanilla Z2-FL*. In this case, the boson

dispersion will have four minima at ±Q and ±Q̃, where Q̃ = ẑ×Q. In the absence of extra

projective phase factors, we have hB(Q) = hB(−Q) = hB(Q̃) = hB(−Q̃). Therefore, we

have describe the condensate as:

B1r

B2r

 =

B1

B2

(eiQ·r + e−iQ·r + eiQ̃·r + e−iQ̃·r
)

(5.14)

Then, we can rewrite the Hamiltonian in Eq. (2.4) as:

Hb =
∑
k

[
B∗1 f

†
kσck+Qσ +B∗2 εαβ ckαf−k−Qβ + (Q→ −Q) + (Q→ Q̃) + (Q→ −Q̃)

]
+ H.c.

(5.15)

The rest of the calculations are analogous to subsection V A. In the reduced BZ, the action

is given by (using (k,m, n) to denote momentum k +mQ + nQ̃):

S =
N−1∑
m,n=0

∑
k,iωn

(
ψ̄c,k,m,n ψ̄f,k,m+1,n ψ̄f,k,m,n+1

)
G−1c,k,m B B

B† G−1f,k,m+1,n 0

B† 0 G−1f,k,m,n+1




ψc,k,m,n

ψf,k,m+1,n

ψf,k,m,n+1


(5.16)
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On integrating out the f fermions, we obtain the effective action:

Seffc =
N−1∑
m=0

∑
k,iωn

ψ̄c,k,m,n
(
G−1c,k,m,n −B [Gf,k,m+1,n +Gf,k,m−1,n +Gf,k,m,n+1 +Gf,k,m,n−1]B

†)ψc,k,m,n
+ψ̄c,k,m−1,n

(
BGf,k,m,nB

†)ψc,k,m+1,n + ψ̄c,k,m+1,n

(
BGf,k,m,nB

†)ψc,k,m−1,n
+ψ̄c,k,m,n−1

(
BGf,k,m,nB

†)ψc,k,m,n+1 + ψ̄c,k,m,n+1

(
BGf,k,m,nB

†)ψc,k,m,n−1
(5.17)

From this, we can deduce the form factor of the induced c superconductivity, in the iωn → 0

and B1/B2 � 1 limit when ∆f
k is d-wave:

∆c(k, iωn → 0) ∼ ∆f
k−Q + ∆f

k+Q + ∆f

k−Q̃
+ ∆f

k+Q̃

= 2∆d(cos Qx + cos Qy) (cos kx − cos ky) (5.18)

Therefore, we have induced d-wave superconductivity of the c fermions with nodes along the

diagonal lines kx = ±ky. This d-wave form factor is independent of the wave-vector Q, and

therefore here we can allow Q to be axial unlike the nematic case.

A calculation similar to section V A shows one also has co-existing charge density waves

and PDW at the same wave-vector K = 2Q (and also at momenta related by π/2 rotations).

Their descriptions are identical to the nematic case. In particular, in the iωn → 0 and

B1/B2 � 1 limit, the form factors are predominantly s (s′) for the charge density wave

and d for the PDW. Therefore, although the appearance of induced density waves in the

particle-particle and particle-hole channels at the same-wave vector are concommitant with

uniform d-wave superconductivity, their form factors are flipped — in STM experiments the

charge density wave has a d-form factor and the PDW has a s (s′) form factor.45

VI. CONCLUSION

We have analyzed several aspects of a plain vanilla Z2-FL* metal as a possible candidate

for the pseudogap phase of the high Tc cuprates (a related model was studied in Refs. 9–11).

In particular, we have shown how to obtain a d-wave superconductor with consistent spectral

properties via a confinement transition. This d-wave superconductor is very similar to that

obtained in the plain vanilla RVB theory.26

We also analyzed confinement transitions accompanied by spontaneous translation

symmetry-breaking, and found that a state with charge density waves and pair density

24



waves at the same wave-vector K, together with uniform d-wave superconductivity falls out

remarkably out of a confinement transition. A very similar state has been observed in recent

STM experiments,45 only differing in the form-factors of the associated density-wave orders.

Finally, we also calculated the evolution of the Hall coefficient in the normal state, and

demonstrated the jump from p to 1 + p across the critical point near optimal doping. We

argued that at T = 0, a FL* with bosonic chargons will always give a discontinuous jump

at the transition, even after accounting for fluctuations in the mean field theory.1 The jump

will be rounded by fluctuations at T > 0, though. The data of Refs. 4 and 5 show a smooth

evolution which does not sharpen upon lowering the temperature, and so appears to be

incompatible with the present model. Nevertheless, we need measurements at low T to

definitively rule out the present model of bosonic chargons.

Other theories can better match the evolution of the Hall effect in Refs. 4 and 5. The

simplest of these assumes the presence of the (π, π) antiferromagnetic order which van-

ishes at the quantum critical doping.46 Spiral antiferromagnetic order also yields a similar

evolution.24 While magnetic order is clearly not present near optimal doping in zero field,

the possibility of magnetic field induced antiferromagnetism has not yet been ruled out.

NMR or muon spin resonance experiments are promising routes to settling this issue.

However, these models suggest an attractive option in which the magnetic order is not

long-ranged, but quantum-fluctuating with only intermediate range correlations. Such a

model of quantum fluctuating order leads to a Z2-FL* model of the pseudogap with low

energy fermionic chargons.15,21,23 Indeed, the evolution of the Hall effect in one of such

models23 is essentially identical to that in the theory which assumes incommensurate spiral

order.24 So the current status is that a pseudogap model with fermionic chargons is in better

accord with recent Hall effect observations4,5 near optimal doping than the plain vanilla

Z2-FL* model with bosonic chargons considered in the present paper.
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Appendix A: Overestimation of carrier densities by nH for an elliptical pocket

We illustrate with a toy model that nH is overestimated for an elliptical pocket unless

the axes of the ellipse are exactly aligned along the measurement (x-y) axes. Consider the

following elliptical pocket with axes inclined at an angle α to the x-y axes, such that the

dispersion εk is given by:

εk =
(kx cos(α)− ky sin(α))2

2m1

+
(kx sin(α) + ky cos(α))2

2m2

(A1)

= k2x

(
cos2(α)

2m1

+
sin2(α)

2m2

)
+ k2y

(
sin2(α)

2m1

+
cos2(α)

2m2

)
+ kxky sin(2α)

(
− 1

2m1

+
1

2m2

)
(A2)

(A3)

We can now use Eqs. (4.6) and (4.7) to evaluate the conductivities exactly. Denoting by nc

the total number of carriers in the pocket (including spin degeneracy), we find that:

σxx = e2τ

(
cos2(α)

m1

+
sin2(α)

m2

)(∑
k,σ

nF (εk)

)
= e2τ

(
cos2(α)

m1

+
sin2(α)

m2

)
nc

(A4)

σyy = e2τ

(
sin2(α)

m1

+
cos2(α)

m2

)
nc

σxy = −e3τ 2
[(

cos2(α)

m1

+
sin2(α)

m2

)(
sin2(α)

m1

+
cos2(α)

m2

)
− sin2(2α)

(
− 1

2m1

+
1

2m2

)2
]
nc

(A5)

Therefore, the Hall resistance RH is given by

RH =
σxy

σxxσyy
= − 1

nce

1−
sin2(2α)

(
− 1

2m1
+ 1

2m2

)2(
cos2(α)
m1

+ sin2(α)
m2

)(
sin2(α)
m1

+ cos2(α)
m2

)


= − 1

nce

 1

1 +
(
µ− 1

µ

)2
sin2(α) cos2(α)

 , where µ =
m1

m2

(A6)

Therefore, |eRH |−1 = nc only if µ = 1, i.e, m1 = m2, which corresponds to a circular pocket,

or if α = 0 or π/2, which corresponds to having elliptical pockets with axes aligned along

26



the measurement (x-y) axes. Otherwise |RH | is smaller, implying that |nH | = |eRH |−1 is

larger than nc, the true carrier density. An additional feature to note is that the deviation

is larger the more anisotropic the pocket is, as well as if the angle subtended by the axes of

the ellipse to the measurement axes is around π/4. Both of these features are present in our

Fermi pockets, which push up the value of nH we see in the numerics.
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