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In polar semiconductors and oxides, the long-range nature of the electron-phonon (e-ph) interaction
is a bottleneck to compute charge transport from first principles. Here, we develop an efficient
ab initio scheme to compute and converge the e-ph relaxation times (RTs) and electron mobility
in polar materials. We apply our approach to GaAs, where using the Boltzmann equation with
state-dependent RTs, we compute mobilities in excellent agreement with experiment at 250−500 K.
The e-ph RTs and the phonon contributions to intra-valley and inter-valley e-ph scattering are also
analyzed. Our work enables efficient ab initio computations of transport and carrier dynamics in
polar materials.

Semiconductors with polar bonds, such as III-V and
II-VI compounds, and oxides, are important in con-
densed matter physics and for technological applications.
Charge transport in these polar materials plays a key role
in electronics, optoelectronic, photovoltaics, and photo-
catalysis. Novel experiments1,2 are dramatically advanc-
ing understanding of charge transport in polar materials.
Yet, their microscopic interpretation requires detailed
knowledge of the carrier scattering processes. Since fab-
ricating pure crystals is challenging for many polar ma-
terials, extracting intrinsic charge transport properties
from experiment is non-trivial; questions related to the
role of doping, impurities, and defects often arise when
interpreting transport measurements.

Ab initio computational approaches to study carrier
transport and scattering mechanisms are uniquely poised
to advance understanding of polar materials. Ab initio
calculations of carrier mobility3–9 and scattering10–13 are
a recent development, and have been reported so far only
for a few metals and non-polar semiconductors. However,
the mobility in polar semiconductors and oxides, which
is the focus of this work, is still typically investigated
with semi-empirical models1,14. One major challenge in
computing transport in polar materials is the Fröhlich
interaction15, a long-range coupling between electrons
and longitudinal optical (LO) phonons. Electron-phonon
(e-ph) scattering due to LO modes, and in general to po-
lar phonons (PP), is typically the main carrier scattering
mechanism in polar materials, but it cannot yet be in-
cluded in ab initio transport calculations.

When computed directly using density functional per-
turbation theory (DFPT)16, the e-ph matrix elements
correctly include the Fröhlich interaction for arbitrary
values of the phonon wavevector q. Yet, the very large
number of e-ph matrix elements necessary to converge
the mobility and the e-ph relaxation times (RTs)10–12

make direct DFPT calculations impractical due to com-
putational cost. For metals and non-polar semicon-
ductors, in which the e-ph interaction is short-ranged,
Wannier interpolation17 can be employed to obtain e-
ph matrix elements on fine Brillouin zone (BZ) grids.
In polar materials, Wannier interpolation is inconvenient
since the e-ph matrix elements for LO modes diverge

as 1/q for q→ 0. A method was recently proposed18,19

to split the e-ph matrix elements g into short- and long-
range parts, g = gS+ gL. The long range part gL con-
taining the 1/q singularity is the ab initio generalization
of the e-ph Fröhlich interaction19, and can be evaluated
using an analytical formula based on the Vogl model20.
The short-range part gS is well-behaved, and can be com-
puted by Wannier interpolation. This method can cor-
rectly reproduce the e-ph matrix elements computed with
DFPT for arbitrary values of q18,19. It has also been used
to compute the e-ph RTs for specific electronic states18,19

for showcasing the computations possible with this im-
portant novel approach. However, ab initio computations
of charge transport, which involve the daunting task of
computing and converging the e-ph RTs on fine grids in
the entire BZ, have not been carried out to date in polar
materials. Computations of e-ph scattering have recently
appeared for polar two-dimensional materials4,9,21, where
since the Fröhlich interaction is well-behaved at small q,
the computational challenges are similar to those of non-
polar bulk materials.

In this work, we present the first fully ab initio calcu-
lation of electron mobility in a polar bulk material. An
efficient scheme to compute and converge the e-ph RTs
on fine BZ grids is derived. We apply this approach to
GaAs, a polar material for which accurate mobility mea-
surements are available. The Boltzmann equation within
the RT approximation is employed, in combination with
temperature- and state-dependent RTs, to compute the
electron mobility for temperatures of 200−700 K, achiev-
ing excellent agreement with experiment (e.g., within
5% of experiment at 300 K). We analyze the phonon
mode contributions to the RTs and mobility, and find
that PP dominate intra-valley scattering and transport,
while acoustic phonons dominate inter-valley scattering
and hot carrier dynamics. Our work enables ab initio
transport calculations in polar materials at roughly the
same computational cost as in non-polar materials, and
advances microscopic understanding of carrier dynamics
in GaAs.

We carry out density functional theory (DFT) calcu-
lations on GaAs with a relaxed lattice constant of 5.55
Å, using the local density approximation (LDA)22 and
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a plane wave basis with the Quantum ESPRESSO
code23. Norm-conserving pseudopotentials24 and a
plane-wave kinetic energy cutoff of 72 Ry are employed
to obtain the ground state charge density and bandstruc-
ture. We use DFPT to compute the lattice dynamical
properties16 and the e-ph matrix elements, gnmν(k,q),
on coarse 8×8×8 k- and q-point BZ grids. These e-
ph matrix elements represent the transition amplitudes
from a Bloch state with band index n and crystal mo-
mentum k to a Bloch state with quantum numbers m
and k + q, mediated by the emission or absorption of a

phonon with branch index ν and wavevector q25,26. The
e-ph matrix elements for arbitrary k- and q-points are
then obtained by adding the short-range part gSnmν(k,q),
obtained by Wannier interpolation, and the long-range
part gLnmν(k,q), which we independently implement us-
ing the method in Ref.19. The band- and k-dependent

e-ph scattering rate Γe−ph
nk is computed with an in-house

modified version of the EPW code27, from the imaginary

part of the lowest order e-ph self-energy, ImΣe−ph
nk , using

Γe−ph
nk = 2/~ · ImΣe−ph

nk
25:

Γe−ph
nk (T ) =

2π

~
∑
mνq

|gnmν(k,q)|2 [(Nνq + 1− fmk+q) δ(εnk − εmk+q − ~ωνq) + (Nνq + fmk+q) δ(εnk − εmk+q + ~ωνq)]

(1)

where T is the temperature, εnk and ~ωνq the electron
and phonon energies, respectively, and fnk and Nνq the
corresponding occupations. Here, the temperature de-
pendence is included in the occupations, while the e-ph
matrix elements are computed in the ground state. The

e-ph RTs, τnk =(Γe−ph
nk )−1, are the inverse of the scatter-

ing rates. Finally, the electrical conductivity σ is com-
puted within the RT approximation of the Boltzmann
transport equation28,29:

σαβ = e2
∫ +∞

−∞
dE(−∂f/∂E)Σαβ(E, T ) . (2)

Σαβ(E, T ) is the transport distribution function (TDF):

Σαβ(E, T ) =
2

Vuc

∑
nk

τnk(T )vαnkv
β
nkδ(E − εnk), (3)

computed here with a tetrahedron integration method30,
using ab initio e-ph RTs and interpolated31,32 band ve-
locities vnk. The mobility is obtained as µ = σ/ne, where
n is the intrinsic carrier concentration.

We first discuss our approach for efficiently computing
the e-ph scattering rates in Eq. 1 in polar materials. Due
to the 1/q singularity of the long-range part gL (dropping

all the indices from now on), converging Γe−ph
nk when us-

ing g = gS + gL is computationally prohibitive since the
sum over q in Eq. 1 converges very slowly. We reason
that the matrix elements gL are inexpensive to compute,
as they merely require evaluating an analytical function

at one point19. While converging Γe−ph
nk using g = gL

alone requires as many as 106−107 q points due to the
singularity, this task is still relatively inexpensive. On
the other hand, computing each short-range e-ph matrix
element gS is rather costly as it requires Wannier inter-

polation. For example, converging Γe−ph
nk using g = gS

alone, as done for non-polar materials10–12, typically re-
quires ∼103−105 q points and is computationally very
expensive.
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FIG. 1. (Color online) (a) The converged scattering rate
in Eq. 1 (curve labeled as “Total”), expressed in terms of
ImΣe-ph in meV units. Shown are also the long-range and
remainder contributions, which add up to the total. (b) Con-
vergence of the scattering rate near the CBM. Shown are the
results for Lorentzian (L) and Gaussian (G) broadenings. The
broadening parameter, in meV units, is given in parentheses.

On this basis, we split |g|2 in Eq. 1 into two parts, the
long-range part |gL|2 and the remainder (|g|2 − |gL|2).
Eq. 1 with |g|2 = |gL|2 and |g|2 = (|g|2 − |gL|2) is then
used to separately compute the long-range and remain-

der contributions to Γe−ph
nk , respectively, which add up to

the total scattering rate. Fig. 1(a) shows the long-range,
remainder, and total scattering rates in GaAs at 300 K.
Each contribution is computed and converged separately,
with important advantages for the choice of the integra-
tion grids. For the long-range part, we treat the 1/q2 sin-
gularity of |gL|2 by using Monte Carlo integration with
importance sampling near the BZ center, using q points
randomly sampled from a Cauchy distribution33. For the
remainder part, convergence requires ∼103−105 q points
as in non-polar materials, and is achieved incrementally
using Monte Carlo integration over multiple random q-
point grids11,12.

Overall, the approach enables calculations of e-ph RTs
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in polar materials at roughly the same cost as in non-
polar materials, with a small overhead to compute the
long-range contribution. For comparison, converging

Γe−ph
nk in Eq. 1 directly with g = gS + gL is dramat-

ically more expensive, by a factor equal to the ratio
NL/NR ≈ 10−1,000 between the number of q points
needed to converge the long-range (NL ≈ 106−107) and
the remainder (NR ≈ 103−105) parts. Our idea of divid-
ing and conquering the long-range part thus enables fast
computations of the e-ph RTs in polar materials.

The approximation employed for the δ function in
Eq. 1 is also crucial to converge the scattering rate,
especially near the conduction band minimum (CBM).
We use δ(x) = limη→0 f(x, η), where η is a small broad-
ening parameter, and test both Lorentzian and Gaus-
sian broadenings, with distributions f(x, η) = 1

π
η

x2+η2

and f(x, η) = 1√
π

1
η e
−( xη )

2

, respectively. Convergence of

Γe−ph
nk in Eq. 1 is achieved by choosing a small value of
η (e.g., 10 meV) and using a number of q points Nq(η)
large enough to converge the sum over q for the given
value of η. Existence of the limit guarantees that upon
decreasing η to a new value, and increasing Nq(η) accord-
ingly, the scattering rate no longer varies as η is decreased
further. We employ broadening parameters of 2, 5, and
10 meV, and for each broadening method and parameter
converge the scattering rate with respect to the number
of q points.

The results of our convergence study are shown in
Fig. 1(b) for energies up to∼0.1 eV above the CBM (from
now on, we reference the electron energy to the CBM).
We find that the scattering rate for low energy electrons
in the Γ valley is highly sensitive to the broadening. In
particular, Lorentzian broadening tends to overestimate
the scattering rate even for a small value of η = 2 meV.
Gaussian broadening is easier to converge: a small pa-
rameter η ≈ 5 meV is sufficient to converge the scat-
tering rate in the Γ and L valleys. As shown below,
electronic states in this energy range play a crucial role
in transport. Note that even a relatively small 10 meV
Lorentzian broadening, as typically employed, would lead
to enormous errors in the mobility. On the other hand,
a 10 meV Lorentzian broadening is acceptable at energy
above ∼0.3 eV, as electronic states with higher energy
are less sensitive to broadening. In what follows, we em-
ploy a 5 meV Gaussian broadening.

The conduction band of GaAs has a multi-valley char-
acter, as sketched in the inset of Fig. 2(b). The minima
of the L and X valleys are at energies EL ≈ 0.25 eV
and EX ≈ 0.45 eV above the CBM at Γ, respectively34.
We first focus on e-ph scattering in the Γ and L val-
leys, which is of crucial importance to compute charge
transport in GaAs. Fig. 2(a) shows the e-ph scattering
rate at 300 K within ∼0.4 eV of the CBM, separately for
electronic states in the Γ and L valleys. For electrons
in the Γ valley, only intra-valley scattering is possible
for energies up to EL. Small-q LO phonon scattering
dominates in this energy range, as shown in Fig. 2(a)
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FIG. 2. (Color online) (a) e-ph scattering rate and (b) RT
for electrons in GaAs with energies within ∼0.4 eV of the
CBM, which is the origin of the energy axis. Data points in
blue (red) are for electronic states in the Γ (L) valley. The
scattering rate associated with LO phonon scattering alone is
also shown in (a). The inset in (b) shows a schematic of the
Γ and L valleys in GaAs, with energies of EL≈ 0.25 eV and
EX≈0.45 eV above the CBM, respectively.

by comparing the total e-ph scattering rate with the one
due to LO phonons alone. The scattering rate is nearly
constant over the 0.05−0.25 eV energy range, with an
associated RT [see Fig. 2(b)] of ∼168 fs. Our RT at 300
K is excellent agreement with room temperature exper-
iments, e.g., ∼165 fs in Ref.35. At energies below ∼0.05
eV the scattering rate drops sharply, and approaches the
CBM with a constant trend. Within ~ωLO ≈ 35 meV
of the CBM, the phase space for LO phonon emission
vanishes, and the scattering process is dominated by LO
phonon absorption. The scattering rate in this energy
range is roughly proportional to the LO phonon occupa-
tion, and is strongly temperature dependent. Our com-
puted RT for LO phonon absorption at 300 K is ∼600 fs
[Fig. 2(b)]. At energy higher than EL, Γ−L inter-valley
scattering becomes possible, and the scattering rate in-
creases rapidly as a result. Intra-valley scattering in the
L valley, also possible above EL, is dominated by PP
scattering. It exhibits a scattering rate with multiple
branches [Fig. 2(a)], and thus a strong k-dependence,
due to the anisotropy of the L valley.

To gain additional insight into e-ph scattering, we plot
in Fig. 3(a,b) the contributions from different phonon
modes to the total scattering rates, over a wider energy
range (up to ∼1 eV) than analyzed above. Though LO
scattering is dominant in the Γ and L valleys (below and
above EL, respectively), the longitudinal acoustic (LA)
mode also contributes to small-q intra-valley scattering
through the so-called piezoelectric interaction38,39. For
energies between EL and EX , the Γ−L inter-valley scat-
tering is dominated by large-q LA and transverse acous-
tic (TA) phonon scattering. At energy greater than EX ,
scattering by the TA modes is the main e-ph scattering
mechanism, consistent with recent results11.

Fig. 3(c) compares our computed e-ph RTs with those
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FIG. 3. (Color online) Mode resolved e-ph scattering rates.
(a) Total scattering rate, shown along with the contributions
from the LO and LA modes alone. (b) Contributions from
the transverse modes. (c) Comparison of ab initio RTs in-
cluding the PP scattering (red curve), as computed in this
work, with previous calculations in Ref.11 that neglect PP
scattering (black curve).

obtained in previous work11 that did not include PP scat-
tering as it focused on hot carriers with high energy above
the CBM. We note that hot carrier calculations in GaAs
have also appeared in Ref.13, which similar to Ref.11 fo-
cused on higher carrier energies than those of interest
here. For energies above EX , we find that the change in
the RTs due to PP scattering is rather small, consistent
with the fact that large-q scattering dominates in this
energy range. PP scattering is thus almost negligible in
hot carrier dynamics, and the conclusion that carriers
excited above EX in GaAs thermalize chiefly by emit-
ting acoustic phonons11 is still valid when PP scattering
is included. However, Fig. 3(c) also clearly shows that
for electronic states with energy lower than EL, the in-
clusion of PP scattering makes a dramatic difference in
the RTs. PP scattering additionally leads to a strong k-
dependence of the RTs for energies between EL and EX .
These effects are crucial to accurately compute electron
mobility and transport.

Next, we discuss the phonon-limited mobility in GaAs,
shown in Fig. 4(a) for temperatures between 200−500 K.
Our computed mobilities are in excellent agreement with
experiment between 250−500 K. For example, our room
temperature result is ∼8,900 cm2/Vs, versus experimen-
tal values of 8,200−8,900 cm2/Vs36,37. Converging the
electron mobility is highly non-trivial. Eq. 3 requires BZ
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FIG. 4. (Color online) (a) Electron mobilities close to
room temperature. The experimental values are taken from
Refs.36,37, and compared with our computed ab initio mobil-
ities (red line). (b) Convergence of the ab initio mobility at
300 K with respect to the fine k grids used for the tetrahedron
integration in Eq. 3. The blue, green, purple and red curves
are computed using fine grids 803, 1503, 3203, 6003 k points
in the BZ, respectively.

integration on very fine k-point grids, a task achieved
here using the tetrahedron method, which allows us to
converge the conductivity with high accuracy. To inves-
tigate the convergence of our mobility calculations, we
plot the integrand in Eq. 2, (−∂f/∂E) · Σαα(E, T ), at
T = 300 K; this function is proportional to the TDF, and
is employed to visualize the contributions to the conduc-
tivity from electronic states at different energies. The
integrand calculated using four different choices of the
k-point grids, together with the corresponding mobili-
ties, is shown in Fig. 4(b). The main contribution to
the mobility originates from electronic states in a small
energy window (at room temperature, ∼0.05 eV) above
the CBM, where scattering is dominated by LO phonon
absorption. Extremely fine grids are necessary to sam-
ple this small BZ region and capture the rapid changes
of the RTs near the CBM. Fig. 4(b) shows that conver-
gence of the mobilities is achieved only for extremely fine
grids with more than 6003 k points. Even fine grids with
1503 k points lead to large errors in the mobility calcula-
tion. Previous theoretical work36 using empirical models
concluded that iterative methods beyond the RT approx-
imation are necessary to obtain mobilities in agreement
with experiment. However, our results demonstrate that
if ab initio temperature- and state-dependent RTs are
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FIG. 5. (Color online) Electron mobilities computed using
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of the experimental data are the same as in Fig. 4(a).

employed, together with fine BZ sampling to converge
the mobilities, then the Boltzmann transport equation
within the RT approximation (Eq. 2) can yield highly
accurate results over a wide temperature range.

The computed mobility increasingly deviates from the
experimental result at high temperatures above 500 K.
Note that for each temperature we investigate, we employ
RTs computed at the same temperature, but the band
velocities are obtained from DFT without accounting for
finite-temperature corrections to the bandstructure. In
particular, we find that our computed mobilities are lower
than experiment at T > 500 K, a trend opposite to that
shown in previous work using empirical models36. A pos-
sible explanation for this difference is that most previous
studies neglected the Γ−L inter-valley scattering, which
is incorrect since the integrand in Eq. 3 extends well be-
yond EL at high temperature.

We attribute the deviation of our results at T > 500 K
to the lack of finite-temperature corrections to our band-
structure. To test this hypothesis, we compute the mobil-
ity using a thermal expansion corrected lattice parameter
(a ≈ 5.57 Å)40. Fig. 5 shows that agreement for the mo-
bilities at T > 500 K is improved by employing a lattice
parameter corrected for thermal expansion. Our simple
attempt to include finite temperature effects in the band-
structure suggests that bandstructure renormalization is

an important aspect of high temperature mobility calcu-
lations. On the other hand, we anticipate that combin-
ing ab initio temperature dependent bandstructures41–43

with our accurate RT and mobility calculations would be
computationally very challenging. Lastly, we note that
e-ph matrix elements can also be derived from the GW
self-energy rather than from DFPT based on semilocal
DFT as is done here. Recent work44 has shown that the
e-ph coupling strength can differ significantly in DFPT
and GW . Future work on carrier transport should inves-
tigate this point further.

In summary, our work demonstrates the crucial role
of BZ sampling and convergence in computing the e-ph
RTs and the mobility in polar materials. The algorithms
developed in this work reduce the computational cost sig-
nificantly by dividing and conquering the long range part
of the e-ph interaction, and optimizing BZ sampling. Our
calculations in GaAs achieve excellent agreement with ex-
periment, thus demonstrating that, contrary to previous
results, the RT approximation of the Boltzmann equation
contains the correct physics to compute the mobility in
GaAs at room temperature. Our approach enables ab
initio studies of charge transport and carrier dynamics in
polar materials, with broad applications in materials sci-
ence and condensed matter physics. Finally, the authors
are working toward releasing a new code incorporating
these novel workflows.
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Note added.– A related calculation for GaAs was re-

cently reported by Liu et al45. Their computed mobility
within the RT approximation is significantly lower than
our result, and their scattering rate in the Γ valley is
larger than ours. While convergence and broadening are
not discussed in their work, their results are consistent
with those found here for a too large Lorentzian broaden-
ing and for under-converged (∼1003) k-point grids in the
mobility calculation. These important differences lead to
different conclusions in their work.
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