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Many-body localization (MBL) in a one-dimensional Fermi Hubbard model with random on-site
interactions is studied. While for this model all single-particle states are trivially delocalized, it is
shown that for sufficiently strong disordered interactions the model is many-body localized. It is
therefore argued that MBL does not necessarily rely on localization of the single-particle spectrum.
This model provides a convenient platform to study pure MBL phenomenology, since Anderson
localization in this model does not exist. By examining various forms of the interaction term a
dramatic effect of symmetries on charge transport is demonstrated. A possible realization in a cold
atom experiments is proposed.
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Introduction.–It is one of the fundamental assump-
tions of statistical mechanics that generic interacting
systems are ergodic. However, a decade ago a class of
systems which defy this assumption was found1. For
these systems, non-ergodicity and interactions coexist,
a phenomenon currently known as many-body localiza-
tion (MBL)2–4. While the realization of MBL systems
presents challenges in condensed matter systems due to
inevitable presence of phonons5,6, recent experiments in
cold atoms have provided evidence of the existence of
MBL in both one-dimensional7–9 and two-dimensional
systems10.

To establish the existence of MBL, the seminal work
of Basko, Aleiner and Altshuler assumes the presence of
quenched disorder and localization of all single-particle
states in the noninteracting limit1. It is currently un-
der debate whether quenched disorder is necessary for
the existence of MBL. A number of numerical studies of
translationally invariant systems with no quenched dis-
order have been carried out. However, due to large finite
size effects these studies are inconclusive with respect to
localization11–19. A related question, whether MBL can
exist in a system where only some of the single-particle
states are delocalized, such as systems with a mobility
edge in the single-particle spectrum20–23, or systems with
coexisting localized and delocalized states24, has been af-
firmatively answered. In our work, we go one step be-
yond, and completely abolish the assumption of localiza-
tion of single-particle states in the limit of no interac-
tion. We show that many-body localization is possible
when the non-interacting limit is trivial, namely when
all single-particle states are completely delocalized. A
related result has been discussed from a different perspec-
tive in a recent study of the XXZ model (see Appendix
of Ref.25). While previously studied MBL systems could
be viewed as continuous deformations of the Anderson
insulator26–28, much in the same vein as a Fermi liquid is
a continuous deformation of a Fermi gas, our work sug-
gests that there are distinct classes of systems exhibiting

Figure 1. A schematic of the model considered in this work.
The lower portion of the figure shows a random configuration
of particles. The red (dark) particles are doublons, and the
orange (light) particles are singlons. The upper portion of the
figure is a cartoon of the charge distribution, with localized
doublons and delocalized singlons.

MBL that differ in their global symmetries.
Model.–We study the dynamical properties of one-

dimensional Fermi Hubbard model with a random inter-
action term,

Ĥns = −th
L−1∑
σ,i=1

(
ĉ†iσ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+

L∑
i=1

Uin̂↑in̂↓i,

(1)
where L is the length of the lattice, ĉ†iσ (ĉiσ) is the cre-
ation (annihilation) operator of site i and spin σ obeying
the usual anti-commutation relations, n̂iσ = ĉ†iσ ĉiσ is the
number operator, th is the hopping strength, which we
will set to one, the interaction terms Ui are random and
uniformly distributed on the interval −∆U ≤ Ui ≤ 0. We
use a definite (attractive) sign of the interaction, but for
the infinite temperature limit considered here, we have
verified that the sign of the interaction does not change
the conclusions of our work. For ∆U = 0 the single
particle states of this model are simple plane waves and
therefore without interactions this model is trivially de-
localized and thus cannot be studied by the perturba-
tion theory developed in Ref.1. It also cannot be studied
by the local unitary diagonalization technique of Ref.27,
since the starting diagonal Hamiltonian is highly degener-
ate. While it appears that the effective disorder potential
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generated in this model within the Hartree approxima-
tion will localize the system this is not the case29. Never-
theless, some intuition can be acquired by considering the
hopping term as a perturbation. At the lowest non-trivial
order in the hopping, the model effectively contains two
species (see Fig. 1): doubly charge excitations - doublons,
and singly charge excitations - singlons. The singlons are
light and hop at a rate, th, while the doublons are heavy
and hop at the average rate ∼ 4t2h/∆U . Since the in-
teraction is random, the doublons are strongly localized,
while, the singlons do not see an effective disordered po-
tential, and thus are delocalized. Nevertheless, for any
initial state with a finite doublon density, the doublons
serve as “random barriers” to the singlons, which leads to
their localization.

Results.–To verify that over time the singlons do not
delocalize the doublons we use numerically exact meth-
ods: exact diagonalization (ED) and time-dependent
density matrix renormalization group (tDMRG)30. We
calculate the spread of a charge excitation at infinite tem-
perature, by evaluating the correlation function,

Ci (t) =
1

Tr P̂
Tr P̂ (n̂i (t)− 1) (n̂0 − 1) , (2)

where P̂ is a projector, which we define as P̂s (no dou-
blons), P̂d (no singlons) and Î (infinite temperature), and
n̂i ≡ n̂i↑ + n̂i↓, measures the total charge (or total num-
ber of atoms, in the case of neutral ultracold atoms) at
site i. Since we aim to demonstrate localization, we fix
the disordered interaction to be large enough (see Ref.29),
∆U = 30, and leave the exploration of transport across
the MBL transition for a subsequent work. To charac-
terize the spread of the charge excitation we calculate its
width as a function of time,

σ2 (t) =
∑
i

i2Ci (t) , (3)

and average it over random initial configurations of the
particles as well as the disordered interaction. To elimi-
nate finite size effects, we make sure that the excitation
has not reached the boundaries of the system for the
simulation times, which is achieved by correspondingly
increasing the size of the system. Thus the dynamics
we calculate correspond to the bulk limit up to all times
observed. In Fig. 2 we present results of tDMRG sim-
ulations for a system of size L = 20 with an average of
one particle per site. For this simulation we have used
a discarded weight of χ = 10−9, a second order Trotter
decomposition, and a step size of δt = 0.05. We have en-
sured that within statistical error the result is converged
with respect to the time step and the discarded weight.
On the left side of Fig. 2 we compare the spread of charge
excitation starting from two different initial conditions.
On the bottom panel we exclude singlons

(
P̂ = P̂d

)
from

the initial random configurations of charges, while on the
top panel singlons are not excluded

(
P̂ = Î

)
. With sin-
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Figure 2. Charge excitation dynamics of the random inter-
action Fermi-Hubbard model (1) with and without singlons
in the initial state. The left panels display contour plots of
the correlation function, Ci (t), as a function of space and
time. The solid white line corresponds to the contour line,
Ci (t) = 7.5 × 10−3, and the dashed white lines highlight bal-
listic jets of singlons. The top right panel presents the width
of the excitation as a function of time on a log-log plot, and
the bottom right panel the entanglement entropy S as a func-
tion of time on a semi-log plot. The data has been obtained
using tDMRG for L = 20 and ∆U = 30, and averaged over a
minimum of 300 realizations.

glons the excitation has initial ballistic jets which dis-
appear on length scales longer than the mean free path
of the singlons, which for infinite temperatures consid-
ered here, corresponds to the average distance between
the blocking doublons (le ≈ 4). As can be seen from the
bottom left panel, the ballistic jets vanish after singlons
are removed from the initial configurations. For both ini-
tial conditions, the width of the excitation of the charge
initially grows ballistically, but then saturates to a finite
plateau value, indicating localization (right top panel).
The entanglement entropy grows logarithmically, which
is typical for many-body localized systems31,32. For ran-
dom initial charge configurations without doublons the
excitation appears delocalized for timescales on which
bulk transport is accessible (data not shown). While the
putative delocalization of this initial condition could be
a result of a mobility edge, the strength of the disordered
interaction was chosen such that all many-body states
are localized, namely there is no mobility edge (see Supp.
Matt.29). After a short time (see next paragraph) a finite
density of doublons of the order of O (1/U) will be gen-
erated, which will result in eventual localization of the
singlons. The expected localization length should be at



3

−4 −2 0 2 4
sites

0.0

0.5

1.0

1.5
C

i(
t)

t = 0
clean, t = 30
L = 7, t = 100
L = 9, t = 100

100 101 102

t
[
t−1
h

]
10−2

10−1

100

101

σ
2

(t )

clean
L = 7
L = 9

Figure 3. Left panel : Excitation profile Ci (t) for the initial
(full black line) and final times (gray, and dashed black lines).
Right panel : charge excitation width as a function of time
for disordered (orange, gray lines) and clean Hubbard models
(black dashed line) on a log-log plot. The parameters used
for the disordered case are −30 ≤ Ui ≤ 0, and for the clean
case Ui = −30.

least of the order of the distance between the doublons,
λs ≈ U = 30, and is beyond the system sizes and times
available in our simulations. The dramatic difference in
short time dynamics, highlights the importance of proper
selection of initial conditions for cold atom experiments.
While the system is localized for a typical initial condi-
tion (as we see from Fig. 2), the initial configurations
without doublons can show putative delocalization for
quite long times. Although these states are of measure
zero in the thermodynamic limit, they are still realizable
in cold atom experiments, where the density of doublons
or singlons can be effectively controlled7.

There are three different simple time-scales in model
(1): ts = t−1h , which corresponds to hopping of the sin-
glons, td ∼ U/

(
4t2h
)
, which corresponds to hopping of

the doublons and for temperatures, T � U ,33 there is
a time scale which corresponds to the decay (genera-
tion) of the doublons. This timescale can be formidably
long, tdecay ∼ exp (cU) (where c is some constant)34,35,
however, for infinite temperatures studied here, thermal
fluctuations provide the necessary energy to break the
doublon apart, such that doublons decay occurs at the
timescale of ts. For large enough interaction the doublon
density does not decay to zero29. Therefore the longest
time-scale in our problem is td. To verify that the ob-
served localization exists also for times much larger than
this timescale namely, t� td ≈ 7, we utilize exact diag-
onalization. As is clear from Fig. 2, without the singlons
the excitation is effectively contained in a region of less
than 10 sites. We therefore limit our exact diagonaliza-
tion simulations to system sizes L = 7 and L = 9. In
Fig. 3 we show the width of the excitation as a func-
tion of time up to time t = 100, starting from an initial
state without singlons. Clearly, localization persists up
to this time, and finite size effects are negligible. This

can be also inferred from the profile of the excitation at
the final time of the simulation, which lies away from
the boundaries (see left panel). We can also compare to
the dynamics in the clean case, with same interaction
strength, Ui = −30. In this case, the model can be ef-
fectively described by the Heisenberg model36. Over the
same timescale for which localization persists in the dis-
ordered system, in the clean system the excitation rapidly
spreads over the entire lattice (see left panel). The en-
tanglement entropy spreads ballistically (not shown), and
bulk charge transport (before the excitation has reached
the boundaries) is super-diffusive, σ2 (t) ∝ t1.65, consis-
tent with previous studies3738. We therefore conclude
that the observed localization is not related to the slow
drift of the doublons over timescale, td, but is true many-
body localization.

After establishing localization for the model (1) we
consider the effect of symmetries on non-equilibrium dy-
namics. We add an additional SU(2) symmetry in the
charge sector by changing the interaction term (see Supp.
Matt.29),

∑
i

Uin̂↑in̂↓i →
∑
i

Ui

(
n̂↑i −

1

2

)(
n̂↓i −

1

2

)
. (4)

For a spatially independent interaction, Ui = U , this
change corresponds to a shift in the chemical poten-
tial, which leaves the non-equilibrium dynamics unaf-
fected. This is however not the case for a spatially depen-
dent interaction, where the additional symmetry dramat-
ically affects the dynamics. Naively, by expanding the
RHS of (4) we obtain an effective disordered potential,∑
i Uin̂i/2, which might lead one to suspect that the sys-

tem is localized (note that the single-particle spectrum is
still trivial). This reasoning is however misleading, since
the potential and the disordered interaction are perfectly
correlated and therefore a more detailed analysis is in or-
der. If the hopping term is set to zero, the eigenstates
of the system including the ground state are highly de-
generate, since moving a doublon to an empty site does
not cost energy. Therefore the doublons do not “feel”
the presence of an effective disordered potential. In the
limit of zero hopping the system is trivially localized; for
small, but non-zero hopping, ∆U � th, and for initial
condition without singlons, the dynamics of the system
is effectively described by the random Heisenberg model,

Ĥeff =
∑
ij

2t2h
|Uij |

(
Ŝi · Ŝj −

1

4

)
, (5)

where the Ŝi are spin-1/2 operators, Uij ≡ (Ui + Uj) /2,
and the derivation was performed along the lines of
the derivation of the Heisenberg model from the Hub-
bard model29,36. The random Heisenberg model was
previously studied using strong disorder renormalization
group. While the ground state is a localized random sin-
glet state39, at finite temperatures the renormalization
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Figure 4. Same as Fig. 2 but with interaction term of
Eq. (4). The data has been obtained using ED for L = 11 and
∆U = 30, and averaged over at least 300 realizations. Note
that the simulation time was t = 1000 for initial conditions
with singlons, and t = 100 for the initial conditions without
singlons.

group breaks down, which previously was interpreted as
the onset of delocalization40,41. Our results are consis-
tent with this prediction. By projecting away all the sin-
glons from the random initial configurations, we use ED
to study transport42. We find (see Fig. 4) that entangle-
ment entropy spreads ballistically, and charge excitations
propagate super-diffusively. However, the super-diffusive
propagation of the charge is likely a result of the relatively
short times for which bulk transport is accessible in our
simulations (t ≈ 25), and the asymptotic charge trans-
port is probably diffusive. Indeed for domain wall initial
conditions we were able to observe diffusion even on this
short timescale29. By performing a canonical transforma-
tion, ĉi↑ → ĉ†i↑, ĉi↓ → (−1)

i
ĉ†i↓, the Hamiltonian maps

to −H, namely, the many-body spectrum of this model
is symmetric with respect to zero energy. Moreover, this
transformation maps doublons and holons (empty sites)
into singlons, which suggests that if doublons are delocal-
ized (as we have shown), also singlons are delocalized for
the transformed problem. Since the dynamics under −H
is equivalent to dynamics under H with a reversed direc-
tion of time, and since H is time-reversal invariant, we
conclude that singlons are delocalized for H itself. Inter-
estingly, starting with an initial condition which includes
all possible charge configurations, namely a mix of dou-
blons, holons and singlons, renders the charge transport
slower. After a a relatively short diffusive regime, trans-
port becomes sub-diffusive, or perhaps even logarithmic.

Correspondingly, the entanglement entropy crosses-over
from ballistic growth to a growth which is slightly faster
than logarithmic (see Fig. 4). The mechanism behind the
observed slow charge transport is currently not clear, and
more detailed consideration of finite size effects in this
regime is needed. It is however clear that the seemingly
minor change in the form of the interaction (4) dramati-
cally changes the system dynamics and leads to delocal-
ization.

Experimental implementation.–The Fermi-Hubbard
model has been extensively studied with ultracold
atoms43. Tight-binding is achieved by loading the atoms
to the lowest band of an optical lattice and the strength
of interaction is controlled by tuning the s-wave scatter-
ing length using a magnetic Fano-Feshbach resonance.
We suggest here to implement spatially random inter-
actions between particles by means of optical Feshbach
resonance with a random optical control. With the recent
advances in quantum gas microscopy, this will allow the
scattering strength to be controlled on a sub-micron spa-
tial resolution. Optical Feshbach resonances are known
to incur excess heating due to spontaneous emission from
the excited state, and that could be detrimental for re-
alizing many-body localization. To mitigate this effect,
we suggest to use a scheme in which the light couples the
bound Feshbach molecular state to an excited molecular
state off-resonantly44,45. Using this scheme the heating
time can be as long as 10ms46, which is about 50t−1h

7.
Since our numerical results show that localization occurs
in less than 10t−1h we conclude that losses incurred by the
optical control technique should not prevent one from ob-
serving and detecting the MBL phase.

Discussion.– We have established many-body local-
ization in the one-dimensional random Fermi-Hubbard
model with a completely delocalized single-particle spec-
trum which is not amenable to the theoretical analysis of
Refs.1,27. We proposed a realization of this model in cold
atom experiments using spatially resolved optical Fes-
hbach resonances44,45. Our results are consistent with
many-body localization which follows from fragmenta-
tion of particles into slow and fast species (doublons and
singlons), which is a result of the strong interactions.
One species is Anderson localized by the quenched dis-
ordered potential and localizes the other species by cre-
ating an effective chain of randomly distributed barriers.
The mechanism for localization that we posit here follows
from “symbiotic” localization of two species of particles,
similarly to the mechanism discussed in Ref.47 and to
proposals for MBL in clean systems, where two differ-
ent species are introduced from the outset12–15,17,19,48,49.
The crucial difference with clean systems is that the ef-
fective disorder in our case is quenched and not annealed.
This distinction is likely responsible for the fact that the
observation of MBL is challenging in the clean case17,
unless one of the species is completely immobile49,50.
We demonstrated the importance of the initial condi-
tions for observation of MBL in experimentally attain-
able timescales, and have shown that localization is ab-
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sent when the model has an additional SU (2) symmetry
in the charge sector.

ACKNOWLEDGMENTS

Note added.– During the completion of the manuscript
three studies have appeared with relevance to the work
presented here. Ref.51 presents a numerical study of a
distinct model with a completely delocalized single par-
ticle spectrum. In Ref.52 a related translationally invari-
ant model, which is also SU (2) symmetric, was numer-
ically studied. For sufficiently high interaction strength
and generic initial conditions the authors show evidence
of nonergodic behavior, consistent with our observations
here. The work of Ref.53 advocates for the impossibility
of MBL in a system with non-Abelian continuous sym-

metry, which is inconsistent with that apparent localiza-
tion of our SU(2) symmetric model. For this reason we
present an extensive analysis of possible finite time and
size effects in the Supplementary Materials29. It remains
unclear if all arguments of Ref.53 apply to our model.
In particular, we work with initial charge configurations
which individually dynamically break the SU (2) sym-
metry, such that the symmetry is only satisfied after an
average over all charge configuration is performed.

Acknowledgments.– YBL would like to thank Igor
Aleiner for many enlightening and helpful discussions.
DRR would like to thank Romain Vasseur for a useful
correspondence. This work was supported by National
Science Foundation Grant No. CHE-1464802. DMRG
calculations were performed using the ITensor library,
http://itensor.org.

∗ yb2296@columbia.edu
1 D. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys.
(N. Y). 321, 1126 (2006)

2 E. Altman and R. Vosk, Annu. Rev. Condens. Matter
Phys. 6, 383 (2015)

3 R. Nandkishore and D. A. Huse, Annu. Rev. Condens.
Matter Phys. 6, 15 (2015)

4 R. Vasseur and J. E. Moore, J. Stat. Mech. Theory Exp.
2016, 064010 (2016), arXiv:1603.06618

5 D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Phys.
Rev. B 76, 052203 (2007)

6 M. Ovadia, D. Kalok, I. Tamir, S. Mitra, B. Sacépé, and
D. Shahar, Sci. Rep. 5, 13503 (2015)

7 M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Luschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015)

8 P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber,
I. Bloch, and U. Schneider, Phys. Rev. Lett. 116, 140401
(2016)

9 J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,
P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat.
Phys. (2016), 10.1038/nphys3783

10 J.-y. Choi, S. Hild, J. Zeiher, P. Schauss, A. Rubio-Abadal,
T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and
C. Gross, Science 352, 1547 (2016)

11 G. Carleo, F. Becca, M. Schiró, and M. Fabrizio, Sci. Rep.
2, 243 (2012)

12 M. Schiulaz and M. Müller, in AIP Conf. Proc. (2014) pp.
11–23

13 T. Grover and M. P. A. Fisher, J. Stat. Mech. Theory Exp.
2014, P10010 (2013)

14 M. Schiulaz, A. Silva, and M. Müller, Phys. Rev. B 91,
184202 (2015)

15 N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and
J. E. Moore, (2014), arXiv:1410.7407

16 J. M. Hickey, S. Genway, and J. P. Garrahan, (2014),
arXiv:1405.5780

17 Z. Papić, E. M. Stoudenmire, and D. A. Abanin, Ann.
Phys. (N. Y). 362, 714 (2015)

18 M. van Horssen, E. Levi, and J. P. Garrahan, Phys. Rev.
B 92, 100305 (2015)

19 M. Pino, L. B. Ioffe, and B. L. Altshuler, Proc. Nat. Acad.
Sci. 113, 536 (2016)

20 X. Li, S. Ganeshan, J. H. Pixley, and S. Das Sarma, Phys.
Rev. Lett. 115, 186601 (2015)

21 X. Li, J. H. Pixley, D.-L. Deng, S. Ganeshan, and S. Das
Sarma, Phys. Rev. B 93, 184204 (2016)

22 R. Modak and S. Mukerjee, (2016), arXiv:1602.02067
23 R. Modak and S. Mukerjee, Phys. Rev. Lett. 115, 230401

(2015)
24 K. Hyatt, J. R. Garrison, A. C. Potter, and B. Bauer,

(2016), arXiv:1601.07184
25 R. Vasseur, A. J. Friedman, S. A. Parameswaran, and

A. C. Potter, Phys. Rev. B 93, 134207 (2016)
26 B. Bauer and C. Nayak, J. Stat. Mech. Theory Exp. 2013,

P09005 (2013)
27 J. Z. Imbrie, J. Stat. Phys. 163, 998 (2016)
28 S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H.

Bardarson, Phys. Rev. Lett. 115, 046603 (2015)
29 “See supplemental material at [url] for a discussion of sym-

metries in the studied model, explanation of the chosen
interaction strength, and additional discussion of finite
size/time effects,”

30 G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)
31 M. Žnidarič, T. Prosen, and P. Prelovšek, Phys. Rev. B

77, 064426 (2008)
32 J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys.

Rev. Lett. 109, 017202 (2012)
33 The temperature is defined from the equality,(

TrP̂
)−1

Tr
(
P̂ Ĥ
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