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We show that the highly frustrated transverse-field Ising model on the three-dimensional py-
rochlore lattice realizes a first-order phase transition without symmetry breaking between the low-
field Coulomb quantum spin liquid and the high-field polarized phase. The quantum phase transition
is located quantitively by comparing low- and high-field series expansions. Furthermore, the intrigu-
ing properties of the elementary excitations in the polarized phase are investigated. We argue that
this model can be achieved experimentally by applying mechanical strain to a classical spin ice
material comprised of non-Kramers spins such as Ho2Ti2O7. Taken together with our results, this
provides a new experimental platform to study quantum spin liquid physics.

The appearance of new collective degrees of freedom
in strongly correlated systems is a pervasive theme in
physics, exemplified in magnetism by spin liquids – highly
correlated states of spins with novel excitations and emer-
gent gauge structures [1, 2]. Amongst the most sto-
ried examples of the latter are the spin ice pyrochlores,
Ho2Ti2O7 or Dy2Ti2O7 where strong geometric frustra-
tion among coupled magnetic moments gives rise to clas-
sical spin liquids with defects that behave like magnetic
monopoles [3–5].

Quantum effects are essentially zero in these spin-ice
compounds, which are described accurately by classical
Ising models – i.e. only the (local) σzi component of the
spins appears in the Hamiltonian. However, theoretically,
a quantum version of spin ice is highly desirable. One ex-
pects the presence of a so-called Coulomb quantum spin
liquid (CQSL) [1, 6, 7] with gapped electric and mag-
netic excitations as well as an emergent photon. Quan-
tum fluctuations may be introduced by additional ex-
change interactions involving spin flips (e.g. XY or more
complex couplings), which naturally occur in some other
pyrochlores like Yb2Ti2O7 [8, 9]. However, such quan-
tum exchange models are quite complex, and their phase
diagrams contain many other ground states in addition
to the desired CQSL [10, 11], so achieving the right type
of quantum exchange requires some serendipity.

At the model Hamiltonian level, a simpler route to
“quantum-ize” classical spin ice is to add a transverse
field. This is not achievable with a physical magnetic
field, however, because the latter couples most strongly
to the Ising spin components, i.e. it introduces longitudi-
nal fields which quench fluctuations instead of enhancing
them. However, it has been recently pointed out that
for non-Kramer’s rare earth ions like Ho3+ or Pr3+, local
electric field gradients play the role of transverse fields in
the spin Hamiltonian while preserving time-reversal sym-
metry [2]. This provides a mechanism to induce trans-
verse fields while protecting the system from longitudinal
fields. In Ref. 2, it was suggested to use disorder to induce

FIG. 1. Phase diagram of the TFIM on the pyrochlore lat-
tice as a function of h/J consisting of the low-field CQSL
and the high-field polarized phase separated by a first-order
phase transition at hc/Jc ≈ 0.6 shown as a black filled square.
Four-site unit cells of the pyrochlore lattice are shown as dark
tetrahedra. Left illustration: Dark arrows denote the three
unit cell vectors. Green hexagon exemplifies a hexagon on
which the ring-exchange K-term in Eq. (6) acts on alternat-
ing spins. Right illustration: Moving elementary spin-flip ex-
citation above the high-field polarized state.

random transverse fields. Here, we consider a simpler
possibility: straining a non-Kramers spin ice material to
lower the local symmetry and thereby create a uniform
transverse field. Large strains are achievable in thin films,
which for spin ice materials have recently been grown
[12]. The low-energy physics of such systems is expected
to be described to a good extent by the transverse-field
Ising model (TFIM) on the three-dimensional pyrochlore
lattice.

The TFIM is one of the archetypal models used in var-
ious areas in physics and is known to host a plethora
of interesting physical phenomena, especially on highly
frustrated lattices [13–16]. At the same time the theoret-
ical treatment of three-dimensional frustrated systems in-
cluding TFIMs represents a notable challenge and quan-
titative results are hard to extract. In this work we ap-
ply low- and high-field series expansions to determine the
phase diagram of the three-dimensional pyrochlore TFIM
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quantitatively as shown in Fig. 1. We find a first-order
quantum phase transition without symmetry breaking
separating the CQSL at low fields from the high-field po-
larized phase, and locate the quantum phase transition
point quantitatively.

Model: We study the Ising model in a transverse mag-
netic field on the pyrochlore lattice

H = J
∑
<i,j>

σzi σ
z
j − h

∑
i

σxi (1)

with Pauli matrices σαi acting on site i, the antiferromag-
netic nearest-neighbour exchange J > 0, and the strength
of the transverse magnetic field h. The pyrochlore lat-
tice has a four site unit cell and we use the three unit cell
vectors illustrated as black arrows in the left illustration
in Fig. 1 to define the three-dimensional momentum ~k.
In the limit of large fields the system is in the polarized
phase and elementary excitations are dressed spin flips
(see also right illustration in Fig. 1). The situation is
drastically different in the other limit of small fields. For
h = 0, one has extensively many ground states which ful-
fill the so-called “two-in-two-out” ice rule, i.e. if we regard
σzi as the spin component along the local 〈111〉 axis of site
i, then any state which has two spins pointing into and
two spins point out of each tetrahedron is a ground state.
In our variables, this simply corresponds to states with
two up (+1) and two down (-1) spins in each tetrahedron.
An infinitesimal field h introduces quantum fluctuations
into the classical spin liquid and lifts the extensive degen-
eracy. The resulting ground state, as argued in Ref.[2],
is a CQSL exhibiting exotic excitations like electric and
magnetic monopoles as well as an emerging photon. In
the following we consider both limits of the TFIM in or-
der to pinpoint the quantum phase transition between
the CQSL and the polarized phase.

High-field limit: We use perturbative continuous uni-
tary transformations (pCUTs) [21, 22] to set up the high-
order series expansions in the limit J/h → 0. To this
end we introduce hardcore boson creation and annihila-
tion operators b†i , bi , and n̂i ≡ b†i bi on site i using the
Matsubara-Matsuda transformation [23] in the x-basis

σzi = b†i + bi and σxi = 1 − 2n̂i. This allows to rewrite
Eq. (1) as

H
2h

= −N
2

+
∑
j

n̂j + x
∑
<i,j>

(
b†i b
†
j + b†i bj + H.c.

)
= −N

2
+ Q̂+ x

(
T̂+2 + T̂0 + T̂−2

)
, (2)

where N is the number of sites, x ≡ J/2h is the expan-
sion parameter in the high-field limit, and Q̂ counts the
number of hardcore bosons q. The unperturbed Hamil-
tonian H0 ≡ −N2 + Q̂ has therefore an equidistant lad-
der spectrum bounded from below. Each elementary en-
ergy quantum signals the presence of a hardcore boson
which corresponds to a spin flip above the fully polarized

spin state in the original spin language. The perturba-
tion V ≡ x

∑
n T̂n is written in terms of operators T̂n

which change the number of hardcore bosons by n. The
pCUT method maps Eq. (2), order by order in x, to
an effective Hamiltonian Heff which commutes with Q̂,
i.e. the effective Hamiltonian is block-diagonal and con-
serves the number of quasi-particles (qp). We have there-
fore mapped the complicated many-body problem to a
few-body problem so that each qp-block can be tackled
separately.

In this work we have focused on the 0qp and 1qp chan-
nel. The effective Hamiltonian in the 0qp channel is just
the ground-state energy per site εhf

0 . In the 1qp channel
one gets an effective one-particle hopping Hamiltonian

H1qp
eff

2h
=
∑
i

∑
δ

aδ

(
b†i bi+δ + H.c.

)
, (3)

where the aδ are the one-particle hopping amplitudes.
We have calculated εhf

0 and the aδ as high-order series
expansions up to order 11 in x. This is achieved by ex-
ploiting the linked-cluster theorem and a full-graph de-
composition. In the 1qp sector one has 1056 topologically
distinct graphs. The resulting ground-state energy per
site reads

εhf
0

2h
=− 1

2
− 3

2
x2 + 3x3 − 57

8
x4 +

93

4
x5 − 867

8
x6

+
5235

8
x7 − 589953

128
x8 +

8660373

256
x9

− 252903465

1024
x10 +

3696508953

2048
x11 . (4)

The 1qp channel can be simplified by applying a Fourier
transformation to momentum space. This results in the
four 1qp bands ωn(~k) due to the four-site unit cell of the
pyrochlore lattice. A representative plot for these bands
is shown in Fig. 2 for x = 0.1 using the bare order-11
series.

The 1qp band structure has several interesting features.
There are two dispersive high-energy bands while the two
low-energy bands are almost flat (see inset of Fig. 2). In
fact, the first process which selects the specific gap mo-
mentum ~k = (0, 0, 0) occur only at order 8 in perturba-
tion theory, similar to the TFIM on the kagome lattice
[15]. At ~k = (0, 0, 0), one has an exact three-fold degen-
eracy of the gap ∆hf and the series of the gap can be
extracted analytically

∆hf

2h
=1− 2x+ 4x2 − 6x3 + 6x4 − 25x5 +

901

4
x6

− 82783

32
x7 +

458339

16
x8 − 17244199

64
x9

+
872369819

384
x10 − 1361632112501

73728
x11 . (5)

In the following we would like to check whether the quan-
tum phase transition between the polarized phase and
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FIG. 2. Illustration of the four 1qp bands ωn(~k) with n ∈
{1, 2, 3, 4} in the polarized phase for x = 0.1 along a char-
acteristic path in the three-dimensional Brillioun zone using
the bare order-11 series expansion. The lowest band is two-

fold degenerate for all momenta except for ~k = (0, 0, 0) where
the degeneracy is three. Inset: Zoom on the two low-energy
bands.

the CQSL is second order. In this case it can be lo-
cated and characterized by the closing of the gap ∆hf .
We therefore analyze the bare series as well as DlogPadé
extrapolants DLog[n,m] with n + m ≤ 10 of ∆hf as a
function of u = x/(x+1) with u ∈ [0, 1] which are shown
in Fig. 3. DlogPadé is a tool to extrapolate high-order
series expansions. The key idea is to consider the loga-
rithmic derivative ∂x ln ∆hf and to build standard Padé
extrapolants [n,m] where n (m) is the polynomial degree
of the numerator (denominator) of the rational function
[n,m]. In contrast to Padé extrapolation, DlogPadés are
especially useful for quantum critical behavior, since they
behave as (x− xc)α close to poles xc of DLog[n,m]. For
an extensive review we refer to Ref. 25.

We find that the bare series is alternating and con-
verges only up to u ≈ 0.2. As a consequence, extrapola-
tions are indeed essential to investigate the full parameter
axis. Interestingly, there are no tendencies for a gap clos-
ing in all extrapolants. We stress that even the extrap-
olants in Fig. 3, which approach zero, do not possess any
poles. Overall, no indications for a second-order quan-
tum phase transition can be detected. However, a CQSL
is expected to be present for small fields and therefore at
least one phase transition must exist in the pyrochlore
TFIM, which is different to the disorder by disorder sce-
nario in the two-dimensional kagome TFIM [13, 15]. The
analysis of the gap in the polarized phase therefore sug-
gests that the quantum phase transition in the pyrochlore
TFIM is first order.

Low-field limit: In order to confirm and to locate the
first-order quantum phase transition we will compare the
ground-state energies of the CQSL and the polarized
phase.

The unperturbed Ising model has an extensive number
of ground states with energy per site −J , since each spin
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FIG. 3. High-field gap ∆/h as a function of u = x/(x+ 1)
using the bare order-11 series of the high-field expansion. The
bare series of order 10 and 11 are shown as dashed lines. Other
lines refer to various DlogPadé extrapolants [n,m].

is part of two tetrahedra and a tetrahedron fulfilling the
two-in-two-out rule, i.e. |σztot| = |σz1 + σz2 + σz3 + σz4 | = 0
for the four spins of this tetrahedron, exhibits an energy
−2J . Excited states correspond to spin configurations
containing tetrahedra with |σztot| = 2 or |σztot| = 4, e.g. a
single spin flip on a spin-ice ground state yields always
two tetrahedra with |σztot| = 2 attached to this spin and
thus enhances the energy by 4J .

The low-field expansion is performed as follows. We
use degenerate perturbation theory in h/J to derive an
effective Hamiltonian Hlf

eff which acts within the exten-
sive ground-state manifold of spin-ice states. It is found
that only even orders contribute to Hlf

eff and that the de-
generacy is not lifted up to order 4. The first non-trivial
process occurs in order 6. Physically, this process couples
two spin-ice states which are connected by a simultane-
ous flip of the six spins on a single elementary hexagon
pointing alternatingly up and down (see also the left il-
lustration in Fig. 1). Up to order 8 no other processes
appear in the effective Hamiltonian and one obtains

Hlf
eff = e0N +K

∑
7

(
σ+
i σ
−
j σ

+
k σ
−
l σ

+
mσ
−
n + H.c.

)
, (6)

where

e0 =− J − 1

4

h2

J
− 7

192

h4

J3
− 893

34560

h6

J5
− 209966173

6967296000

h8

J7

K =− 63

256

h6

J5
− 33833

165888

h8

J7
. (7)

The leading order-6 contribution of K has been already
derived in Ref. 2. The sum is taken over all hexagons of
the pyrochlore lattice. This model is known as the ring
exchange model which is believed to realize a CQSL. In
Ref. 7, the ring-exchange model has been studied nu-
merically by quantum Monte Carlo simulations and a
ground-state energy per site ering

0 = 0.189078J is found.
This allows us to obtain the order-8 low-field expansion
of the pyrochlore TFIM for the ground-state energy per
site εlf0 ≡ e0 +Kering

0 .



4

Low field O(2)

Low field O(4)

Low field O(6)

Low field O(8)

High field O(11)

Pade high field

0

(h = 0)

π /8 π /4 3π /8 π /2

(J = 0)

-1.4

-1.2

-1.0

-0.8

-0.6

φ

ϵ 0

FIG. 4. Comparison of the ground-state energies ε0 from
the low- and high-field expansions as a function of ϕ set-
ting J = cosϕ and h = sinϕ. Dashed vertical line refers to
the mean-field result from Ref. 2 and solid vertical line corre-
sponds to location of the first-order quantum phase transition
as obtained from the crossing of the series expansions.

We are therefore in the position to compare the ener-
gies of the CQSL and the polarized phase directly. We set
J = cosϕ and h = sinϕ which allows a comparison be-
tween elf

0 and ehf
0 on the full parameter axis as shown in

Fig.4. For the high-field expansion Padé extrapolation
is used which works extremely well for ehf

0 , i.e. various
extrapolants lie almost on top of each other in a wide
range of ϕ. The series of elf

0 is monotonous and already
the bare series is sufficient, since the crossing between
both energies is at rather small values of ϕ. Using the
bare order-8 of the low-field expansion, this crossing at
ϕc ≈ 0.542 (h/J ≈ 0.602) corresponds to the location
of the first-order quantum phase transition between the
CQSL and the polarized phase, which we can therefore
determine quantitatively. We remark that the mean-field
value ϕmf

c ≈ 0.611 from Ref. 2 is slightly larger than ϕc,
which is consistent with the expectation that the mean-
field calculation overestimates the CQSL.

Conclusion: We have determined quantitatively the lo-
cation of the quantum critical point between the CQSL
and the polarized phase in the transverse-field Ising
model on the three-dimensional highly frustrated py-
rochlore lattice, which is achieved via high-order series
expansions in both phases. The quantum phase transi-
tion is first order and no symmetry breaking occurs on
both sides of the transition. The first order nature is
actually to be expected based on field theoretic renor-
malization group arguments [2]. In this framework, the
field-induced transition from the CQSL is a confinement
transition, induced by the condensation of an elemen-
tary bosonic monopole (it can be regarded as electric or
magnetic, depending upon convention). Because no sym-
metry breaking occurs in the transition, the monopole
carries no symmetry quantum numbers, only its emer-

gent charge, and is thus described by a complex scalar
field coupled to a U(1) gauge field. Such a field theory,
formulated in imaginary time, is mathematically identi-
cal to the Ginzburg-Landau theory of a superconductor
in four dimensions [26]. Renormalization group analysis
shows that this transition is first order [27]. By combin-
ing two series expansions, we have been able to access
this first order transition quantitatively in a complicated
three dimensional model, for which other computational
techniques are very demanding.

Most importantly for experiments, the critical field
defining the size of the CQSL is found to be relatively
large, i.e. the CQSL is robust, promising good access to
the fascinating properties of spin liquids in the labora-
tory. We expect our results to be of direct relevance for
”quantum-izing” classical spin ice systems. The trans-
verse field can be introduced experimentally in classical
(non-Kramers) spin ice materials like Ho2Ti2O7 by ap-
plying strain, which lowers the symmetry and results in
an effective coupling between the two local spin states.
We therefore propose strained classical (non-Kramers)
spin ice Ho2Ti2O7 as a new experimental platform for
spin liquid physics.
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